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1 Define an intelligent agent and describe its interaction with the environment. 
Provide a suitable example and present the percept sequence and corresponding 
actions in a table. 

10 CO1 L1 

2a Explain in detail breadth first search, depth first search, Iterative deepening depth 
first search and bi-directional search.  

8 CO3 L2 

2b Compare the uninformed search strategies from Question 2a based on 
completeness, optimality, time, and space complexity. 
 

2 CO3 L2 

3  Illustrate with a suitable algorithm for the following:i)Uniform Cost Search 
ii)Depth Limited Tree Search.And measure the performance of the algorithms. 

10 CO3 L2 

4a)  Explain A* optimality and its required conditions. 5 CO2 L2 

4b) In the following search tree with start state A and goal state M, find the shortest 
path and  optimal path cost using A*algorithm. 

 

5 CO2 L3 

5 Explain problem-solving agents with an algorithm. Describe the five components 
of problem formulation using the Romania map example, where the agent starts in 
Arad and aims to reach Bucharest as the goal. 

10 CO2 L3 
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6   Compare the following with atleast 4 differences: i)Discrete VS Continuous 

environments ii)static VS dynamic environments iii)Episodic VS Sequential 
environments iv)Deterministic vs. Stochastic environments v)Single agent VS 
Multi agents 
 

10 CO2 L2 
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SOLn 

Define an intelligent agent and describe its interaction with the environment. 
Provide a suitable example and present the percept sequence and corresponding 
actions in a table. 

An intelligent agent is stated as an agent that takes the best possible 
action in a situation. 
An agent is anything that can be viewed as perceiving its environment 
through sensors and acting upon that environment through actuators. 

 

¢Sensors help the agent perceive the environment.Example: Eyes and ears for 
humans, cameras for robots. 

¢Actuators help the agent act in the environment.Example: Hands and legs for 
humans, motors for robots. 

¢A percept is what the agent senses at a single moment.A percept sequence is the 
complete history of everything the agent has perceived.Example: A self-driving car 
perceives obstacles, traffic signals, and road signs over time. 

¢Agent Function: A theoretical concept—it decides what action to take based on 
the percept sequence.Agent Program: The actual code or system that implements 
the agent function in a real-world system. 

 
The vacuum-cleaner world Example. 

¢The Vacuum World-The world has only two locations, A and B. The vacuum 
cleaner agent can sense which square it is in and whether there is dirt. 
¢Actions-Move left,Move right,Suck up dirt,Do nothing. 

¢Simple agent function rule-If the square is dirty, suck up the dirt. Otherwise, 
move to the other square. 
Different vacuum cleaner programs can be created by changing how the agent 
responds to situations-way defining a smart agent 

10 CO1 L1 
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Explain in detail breadth first search, depth first search, Iterative deepening depth 
first search and bi-directional search.  
i)Breadth-first search is a simple strategy in which the root node is expanded first, 
then all the successors of the root node are expanded next, then their successors, 
and so on. In general, all the nodes are expanded at a given depth in the search tree 
before any nodes at the next level are expanded. 
 
Breadth-first search is an instance of the general graph-search algorithm (Figure 
3.7) inwhich the shallowest unexpanded node is chosen for expansion. This is 
achieved very simplyby using a FIFO queue for the frontier. 
Thus, new nodes (which are always deeper than theirparents) go to the back of the 
queue, and old nodes, which are shallower than the new nodes,get expanded first. 
There is one slight tweak on the general graph-search algorithm, which isthat the 
goal test is applied to each node when it is generated rather than when it is 
selected for expansion. 

● Time Complexity: In the worst case, it is the last node generated at 
that level. Then the total number of nodes generated is 
b + b2 + b3 + ··· + bd = O(bd) . 

● Breadth-first search is optimal because it always expands the shallowest 
unexpanded node. 

● The memory requirements are a bigger problem for breadth-first search 
than is execution time. 

● Exponential-complexity search problems cannot be solved by 
uniformed methods for any but the smallest instances. 

Advantages: 
● BFS will provide a solution if any solution exists. 
● If there are more than one solutions for a given problem, then 

BFS will provide the minimal solution which requires the least 
number of steps. 

8 CO3 L2 



Disadvantages: 
● It requires lots of memory since each level of the tree must be saved 

into memory to expand the next level. 
● BFS needs lots of time if the solution is far away from the root node. 

 
ii)Depth-first search always expands the deepest node in the current frontier of 
the search tree.The progress of the search is illustrated in Figure 3.16. 

The search proceeds immediately to the deepest level of the search tree, 
where the nodes have no successors. 
As those nodes are expanded, they are dropped from the frontier, so then 
the search “backs up” to the next deepest node that still has unexplored 
successors. 
Depth-first search uses a LIFO queue. A LIFO queue means that the most 
recently generated node is chosen for expansion. 
This must be the deepest unexpanded node because it is one deeper than its 
parent—which, in turn, was the deepest unexpanded node when it was 
selected. 

 
The time complexity of depth-first graph search is bounded by the size of the 
state space (which may be infinite). Generate all of the O(bm) nodes in the 
search tree, where m is the maximum depth of any node. 

 
Advantages: 

DFS requires very less memory as it only needs to store a stack of the 
nodes on the path from root node to the current node. 

It takes less time to reach to the goal node than BFS algorithm (if it traverses 
in the right path). 

Disadvantages: 
There is the possibility that many states keep re occurring, and there is no 
guarantee of finding the solution. 
DFS algorithm goes for deep down searching and sometime it may go to the 
infinite loop. 

iii)Iterative deepening search(IDS) (or iterative deepening depth-first search) is 
a general strategy,often used in combination with depth-first tree search, that finds 
the best depth limit. It doesthis by gradually increasing the limit—first 0, then 1, 
then 2, and so on—until a goal is found.This will occur when the depth limit 
reaches d, the depth of the shallowest goal node. 

The algorithm is shown in Figure 3.18. Iterative deepening combines the 
benefits of depth-first and breadth- first search. 

Like depth-first search, its memory requirements are modest: O(bd)to be 
precise. 
Like breadth-first search, it is complete when the branching factor is finite 
andoptimal when the path cost is a non decreasing function of the depth of 
the node. 

Advantages: It combines the benefits of BFS and DFS search algorithm in 
terms of fast search and memory efficiency. 
Disadvantages: The main drawback of IDS is states are generated multiple 
times. 

 
In an iterativedeepening search, the nodes on the bottom level (depth d) are 
generated once, those on the next-to-bottom level are generated twice, and so 
on, up to the children of the root, which aregenerated d times. So the total 



number of nodes generated in the worst case is 
N (IDS) = (d)b + (d − 1)b2 + ··· + (1)bd , 

which gives a time complexity of O(bd)—asymptotically the same as 
breadth-first search. There is some extra cost for generating the upper 
levels multiple times, but it is not large. 

Forexample, if b = 10 and d = 5, the numbers are 

N (IDS) = 50 + 400 + 3, 000 + 20, 000 + 100, 000 = 123, 450 
N (BFS) = 10 + 100 + 1, 000 + 10, 000 + 100, 000 = 111, 110 . 

iv)Bidirectional search 
● Bidirectional search algorithm runs two simultaneous searches, one 

form initial state called as forward-search and other from goal node 
called as backward-search, to find the goal node. 

● Bidirectional search replaces one single search graph with two small 
subgraphs in which one starts the search from an initial vertex and 
other starts from goal vertex. The search stops when these two 
graphs intersect each other. 

 
2b 
 
 
SOLn 

Compare the uninformed search strategies from Question 2a based on 
completeness, optimality, time, and space complexity. 

2 CO3 L2 

3  
 
SOLn 

Illustrate with a suitable algorithm for the following:i)Uniform Cost Search 
ii)Depth Limited Tree Search.And measure the performance of the algorithms. 
i)Uniform Cost Search- 
function UNIFORM-COST-SEARCH(problem) returns a solution, or failure 
      node ←a node with STATE = problem.INITIAL-STATE, PATH-COST = 0 
     frontier ← a priority queue ordered by PATH-COST, with node as the only 
element 
     explored ← an empty set 
     loop do 
         if EMPTY?(frontier ) then return failure 
         node ← POP(frontier ) /* chooses the lowest-cost node in frontier */ 
         if problem.GOAL-TEST(node.STATE) then return SOLUTION(node) 
        add node.STATE to explored 
        for each action in problem.ACTIONS(node.STATE) do 
             child ← CHILD-NODE(problem, node, action) 
             if child.STATE is not in explored or frontier then 
                  frontier ← INSERT(child,frontier ) 
            else if child.STATE is in frontier with higher PATH-COST then 
                  replace that frontier node with child 
ii)Depth Limited Tree Search 
function DEPTH-LIMITED-SEARCH(problem, limit) returns a solution, or 
failure/cutoff 
    return RECURSIVE-DLS(MAKE-NODE(problem.INITIAL-STATE), problem, 
limit) 
function RECURSIVE-DLS(node, problem, limit) returns a solution, or 
failure/cutoff 

10 CO3 L2 



     if problem.GOAL-TEST(node.STATE) then return SOLUTION(node) 
    else if limit = 0 then return cutoff 
    else 
         cutoff occurred?←false 
         for each action in problem.ACTIONS(node.STATE) do 
                 child ← CHILD-NODE(problem, node, action) 
                 result ← RECURSIVE-DLS(child, problem, limit − 1) 
                 if result = cutoff then cutoff occurred?← true 
                else if result = failure then return result 
         if cutoff occurred? then return cutoff else return failure 

 
 
 

4a) 
SOLn 

 Explain A* optimality and its required conditions. 

The most widely known form of best-first search is called A∗ search 
(pronounced “A-star search”). It evaluates nodes by combining g(n), the cost to 
reach the node, and h(n), the cost to get from the node to the goal: 

f (n) = g(n)+ h(n) . 

Since g(n) gives the path cost from the start node to node n, and h(n) is the 
estimated cost of the cheapest path from n to the goal, we have 

f (n) = estimated cost of the cheapest solution through n . 
Thus, if we are trying to find the cheapest solution, a reasonable thing to try 
first is the node with the lowest value of g(n) + h(n). It turns out that this 
strategy is more than just reasonable: provided that the heuristic function h(n) 
satisfies certain conditions, A∗ search is both complete and optimal. 
Optimality of A* 
A∗ has the following properties: the tree-search version of A∗ is optimal if h(n) 
is admissible, while the graph-search version is optimal if h(n) is consistent. 

The first step is to establish the following: if h(n) is consistent, then the 
values of 

f (n) along any path are nondecreasing. The proof follows directly from the 
definition of consistency. Suppose nt is a successor of n; then g(nt)= g(n)+ 
c(n, a, nt) for some action a, and we have 

f (nt) = g(nt)+ h(nt) = g(n)+ c(n, a, nt)+ h(nt) ≥ g(n)+ h(n) = f (n) . 

The next step is to prove that whenever A∗ selects a node n for expansion, 
the optimal path to that node has been found. Were this not the case, there 
would have to be another frontier node nt on the optimal path from the start 
node to n, by the graph separation property of GRAPH-SEARCH; because f 
is nondecreasing along any path, nt would have lower f -cost than n and 
would have been selected first. 

5 CO2 L2 



The fact that f -costs are nondecreasing along any path also means that 
we can draw contours in the state space, just like the contours in a 
topographic map. Figure 3.25 shows an example. Inside the contour labeled 
400, all nodes have f (n) less than or equal to 400, and so on. Then, because 
A∗ expands the frontier node of lowest f -cost, we can see that an A∗ search 
fans out from the start node, adding nodes in concentric bands of increasing 
f -cost. 

If C∗ is the cost of the optimal solution path, then we can say the following: 

• A∗ expands all nodes with f (n) < C∗. 
• A∗ might then expand some of the nodes right on the “goal contour” 

(where f (n) = C∗) before selecting a goal node 

Completeness requires that there be only finitely many nodes with cost less 
than or equal to 
C∗, a condition that is true if all step costs exceed some finite 

E and if b is finite. Notice that A∗ expands no nodes with f (n) 
> C∗ 

Algorithms that extend search paths from the root and use the same heuristic 
information—A∗ is optimally efficient for any given consistent heuristic. 
That is, no other optimal algorithm is guaran- teed to expand fewer nodes 
than A∗ (except possibly through tie-breaking among nodes with f (n)= C∗). 
This is because any algorithm that does not expand all nodes with f (n) < C∗ 

runs the risk of missing the optimal solution. 
 

Conditions for optimality: Admissibility and consistency 
1. Admissible heuristic 

 
The first condition we require for optimality is that h(n) be an admissible 
heuristic. An admissible heuristic is one that never overestimates the cost 
to reach the goal. Because g(n) is the actual cost to reach n along the 
current path, and f (n)= g(n) + h(n), we have as an immediate consequence 
that f (n) never overestimates the true cost of a solution along the current 
path through n. 

Admissible heuristics are by nature optimistic because they think the 
cost of solving the problem is less than it actually is. An obvious example 
of an admissible heuristic is the straight- line distance hSLD that we used in 
getting to Bucharest.  

Straight-line distance is admissible because the shortest path between 
any two points is a straight line, so the straight line cannot be an 
overestimate. In Figure 3.24, we show the progress of an A∗ tree search for 
Bucharest. The values of g are computed from the step costs in Figure 3.2, 
and the values of hSLD are given in Figure 3.22. Notice in particular that 
Bucharest first appears on the frontier at step (e), but it is not selected for 
expansion because its f -cost (450) is higher than that of Pitesti (417). 
Another way to say this is that there might be a solution through Pitesti 
whose cost is as low as 417, so the algorithm will not settle for a solution 



that costs 450. 
    2.Consistency 

A second, slightly stronger condition called consistency (or sometimes 
monotonicity) is required only for applications of A∗ to graph search. A 
heuristic h(n) is consistent if, for every node n and every successor nt of n 
generated by any action a, the estimated cost of reaching the goal from n is no 
greater than the step cost of getting to nt plus the estimated cost of reaching 
the goal from nt: 

h(n) ≤ c(n, a, nt )+ h(nt) . 
This is a form of the general triangle inequality, which stipulates that each 
side of a triangle cannot be longer than the sum of the other two sides. Here, 
the triangle is formed by n, nt, and the goal Gn closest to n. 
For an admissible heuristic, the inequality makes perfect sense: if there were a 
route from n to Gn via nt that was cheaper than h(n), that would violate the 
property that h(n) is a lower bound on the cost to reach Gn. 
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In the following search tree with start state A and goal state M, find the shortest 
path and  optimal path cost using A*algorithm. 

 

5 CO2 L3 
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Explain problem-solving agents with an algorithm. Describe the five components 
of problem formulation using the Romania map example, where the agent starts in 
Arad and aims to reach Bucharest as the goal. 

 
 
Problem Solving Agent Algorithm- 
function SIMPLE-PROBLEM-SOLVING-AGENT(percept) returns an action 
     persistent: seq, an action sequence, initially empty 
                state, some description of the current world state 
                goal, a goal, initially null 

10 CO2 L3 



                problem, a problem formulation 
    state ← UPDATE-STATE(state, percept) 
    if seq is empty then 
          goal ← FORMULATE-GOAL(state) 
          problem ← FORMULATE-PROBLEM(state, goal) 
          seq ← SEARCH(problem) 
          if seq = failure then return a null action 
action ← FIRST(seq) 
seq ← REST(seq) 
return action 
Problem Formulation 
A problem can be defined formally by five components: 
 • The initial state that the agent starts in. For example, the initial state for our 
agent in Romania might be described as In(Arad). 
• A description of the possible actions available to the agent. Given a particular 
state s, 
ACTIONS(s) returns the set of actions that can be executed in s. We say that each 
of 
these actions is applicable in s. For example, from the state In(Arad), the applicable 
actions are {Go(Sibiu), Go(Timisoara), Go(Zerind)}. 
• A description of what each action does; the formal name for this is the transition 
model, specified by a function RESULT(s, a) that returns the state that results from 
doing action a in state s. We also use the term successor to refer to any state 
reachable from a given state by a single action.2 For example, we have 
RESULT(In(Arad),Go(Zerind)) = In(Zerind) . 
Together, the initial state, actions, and transition model implicitly define the state 
space 
of the problem—the set of all states reachable from the initial state by any sequence 
of actions. The state space forms a directed network or graph in which the nodes 
are states and the links between nodes are actions. (The map of Romania shown in 
Figure 3.2 can be interpreted as a state-space graph if we view each road as 
standing 
 for two driving actions, one in each direction.) A path in the state space is a 
sequence of states connected by a sequence of actions. 
• The goal test, which determines whether a given state is a goal state. Sometimes 
there 
is an explicit set of possible goal states, and the test simply checks whether the 
given 
state is one of them. The agent’s goal in Romania is the singleton set 
{In(Bucharest)}. 
Sometimes the goal is specified by an abstract property rather than an explicitly 
enumer- 
ated set of states. For example, in chess, the goal is to reach a state called 
“checkmate,” 
where the opponent’s king is under attack and can’t escape. 
 • A path cost function that assigns a numeric cost to each path. The 
problem-solving 
agent chooses a cost function that reflects its own performance measure. For the 
agent 
trying to get to Bucharest, time is of the essence, so the cost of a path might be its 
length 
in kilometers. In this chapter, we assume that the cost of a path can be described as 
the 
sum of the costs of the individual actions along the path.The step cost of taking 
action a in state s to reach state s is denoted by c(s, a, s). The step costs for 



Romania are shown in Figure 3.2 as route distances. 
6   
 
 
 
 
SOLn 

Compare the following with atleast 4 differences: i)Discrete VS Continuous 
environments ii)static VS dynamic environments iii)Episodic VS Sequential 
environments iv)Deterministic vs. Stochastic environments v)Single agent VS 
Multi agents 
i)Discrete VS Continuous environments- 
A discrete environment has a finite set of states, actions, and time steps, 
while a continuous environment involves smoothly changing states and time 
progression. 
The state of the environment, the way time is handled, and agents percepts 
& actions can be discrete or continuous 

● Ex: Crossword puzzles: discrete state, time, percepts & actions 
● Ex: Taxi driving: continuous state, time, percepts & actions 

Note: 
● The simplest environment is fully observable, single-agent, 

deterministic, episodic, tatic and discrete. Ex: simple vacuum cleaner 
 

ii)static VS dynamic environments 
A static environment does not change while the agent is deciding, while a 
dynamic environment evolves continuously, requiring real-time 
decision-making. 
The task environment is dynamic if it can change while the agent is 
choosing an action, static otherwise ⇒ agent needs keep looking at the world 
while deciding an action 

● Ex: crossword puzzles are static, taxi driving is dynamic 
The task environment is semidynamic if the environment itself 
does not change with time, but the agent’s performance score 
does 

● Ex: chess with a clock 
Static environments are easier to deal wrt. [semi]dynamic ones. 

iii)Episodic VS Sequential environments 
In an episodic environment, decisions are independent of past actions, 
whereas in a sequential environment, current actions influence future states 
and decisions. 
In an episodic task environment 

● the agent’s experience is divided into atomic episodes 
● in each episode the agent receives a percept and then performs a single 

action 
In episodes do not depend on the actions taken in previous episodes, and 
they do not influence future episodes 

● Ex: an agent that has to spot defective parts on an assembly line, 
In sequential environments the current decision could affect future decisions 
⇒ actions can have long-term consequences 

● Ex: chess, taxi driving, ... 
Episodic environments are much simpler than sequential ones 

● No need to think ahead! 
 iv)Deterministic vs. Stochastic environments 
A discrete environment has a finite set of states, actions, and time steps, 
while a continuous environment involves smoothly changing states and time 

10 CO2 L2 
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progression. 
● A task environment is deterministic if its next state is completely 

determined by its current state and by the action of the agent. (Ex: a 
crossword puzzle). 

● If not so: 
o A task environment is stochastic if uncertainty about 

outcomes is quantified in terms of probabilities (Ex: dice, 
poker game, component failure,...) 

o A task environment is nondeterministic iff actions are 
characterized by their possible outcomes, but no 
probabilities are attached to them. 

In a multi-agent environment we ignore uncertainty that arises from the 
actions of other agents (Ex: chess is deterministic even though each agent is 
unable to predict the actions of the others). 

 
A partially observable environment could appear to be stochastic. =⇒ for 
practical purposes, when it is impossible to keep track of all the unobserved 
aspects, they must be treated as stochastic. (Ex: Taxi driving). 

 v)Single agent VS Multi agents 
A single-agent environment involves one decision-making entity, while a 
multiagent environment includes multiple interacting agents that can be 
competitive (e.g., chess) or cooperative (e.g., traffic coordination). 
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