

									CHIEREN,		
USN	I		Internal	Assessment Tes	t 1 -	- March 202	5			CREDITED WITH A+ G	RADE BY NAAC
Sub:	Database Managen	nent Sy	ystem			Sub Code:	BCS403	Branc	h: AIM	IL	
Date:	27/3/2025 Durat	tion:	90 min	Max Marks: 5	50	Sem/Sec:	IV /A, B & 0			OF	
				<u>VE FULL Que</u>					MARKS	CO	RBT
	Describe Main char traditional file syste	em.							10	CO1	L1
	1. Self-Description: that is of relevance the organization— a constraints. This meta-data (i.e., data contains a description the structure of each constraints on the data (i.e., conditions The system catalog tables and attributes and sometimes data software, which cer needs to "know" ho manner consistent w that structure. 2. Insulation betwee Program-Data Indep files accessed by an application is "hard COBOL program: i gives a detailed des each field, how man bytes it occupies.)	A dat to a comp a about on of h file, t s that t is used s, type i tainly w the vith en Prop pender c-codec t criptio	plete defin data) is s the type an the data m d not only nformatio data is stru- grams and nce: In trac l" in its so	ition/descriptio tored in the so-c nd storage form ust satisfy). by users (e.g., y on and other thin uctured/organize ditional file proc urce code. (E.g.	n of calle at o who ngs) ed i stra cess ., C	f the databa ed system c of each fielc o need to kn , but also b n order to i ction: sing, the str onsider a fi	ase's structure catalog, which and the var now the name y the DBMS nterpret it in cucture of the le descriptor	e and h ious es of a data in a			
	In contrast, DBMS because the structur of the data is descri access it and those programs consult th 3. Data Abstraction A data model is use view of the database. Programs details Example by which	re bed (in he cata) : ed to hi refer t	n the syste log in orde ide storage to the data	m catalog) sepa er to ascertain th e details and pre model construc	ne s esen	ely from the tructure of at the users ther than	e programs th the data with a conce data storage	nat ptual			

	developing a			
	program that displays the contents of a particular data file. Specifically, each record			
	should be displayed			
	as follows:			
	Record #i: value of first field value of second field value of last field			
	To keep things very simple, suppose that the file in question has fixed-length			
	records of 57 bytes with			
	six fixed-length fields of lengths 12, 4, 17, 2, 15, and 7 bytes, respectively, all of			
	which are ASCII			
	strings. Developing such a program would not be difficult. However, the obvious			
	solution would be			
	tailored specifically for a file having the particular structure described here and			
	would be of no use for a			
	file with a different structure.			
	4. Multiple Views of Data: Different users (e.g., in different departments of an			
	organization) have			
	different "views" or perspectives on the database. For example, from the point of			
	view of a Bursar's			
	Office employee, student data does not include anything about which courses were			
	taken or which			
	grades were earned. (This is an example of a subset view.)			
	A see d DDMC has facilities for defining multiple signs. This is not only			
	A good DBMS has facilities for defining multiple views. This is not only			
	convenient for users, but also			
	addresses security issues of data access.			
	5. Data Sharing and Multi-user Transaction Processing: As you learned about (or			
	will) in the OS			
	course, the simultaneous access of computer resources by multiple users/processes			
	is a major source of			
	complexity. The same is true for multi-user DBMS's.			
	Arising from this is the need for concurrency control, which is supposed to ensure			
	that several users			
	trying to update the same data do so in a "controlled" manner so that the results of			
	the updates are as			
	though they were done in some sequential order			
	This gives rise to the concept of a transaction, which is a process that makes one or			
	more accesses to a			
	database and which must have the appearance of executing in isolation from all			
	other transactions (even			
	ones that access the same data at the "same time") and of being atomic (in the sense			
	that, if the system			
	crashes in the middle of its execution, the database contents must be as though it			
	did not execute at all).			
	Applications such as airline reservation systems are known as online transaction			
	processing applications.			
2 a.	Explain the three-schema architecture with neat diagram. Why do we need	6	CO1	L2
	mapping among the schema levels?			

	removing a record			
	type or data item). In the latter case, external schemas that refer only to the			
	remaining data should not be affected. Only the view definition and the mappings need be changed in a			
	DBMS that supports			
	logical data independence. Application programs that reference the external schema			
	constructs must			
	work as before, after the conceptual schema undergoes a logical reorganization.			
	Changes to			
	constraints can be applied also to the conceptual schema without affecting the			
	external schemas or			
	application programs.			
	2. Physical data independence is the capacity to change the internal schema without			
	having to change			
	the conceptual (or external) schemas. Changes to the internal schema may be			
	needed because some			
	physical files had to be reorganized—for example, by creating additional access			
	structures—to			
	improve the performance of retrieval or update. If the same data as before remains			
	in the database,			
21	we should not have to change the conceptual schema.	4	CO1	L2
20	Explain data models and its types with the help of examples.	4	COI	LZ
	Data Models and Their Types (With Examples)			
	A data model defines how data is organized, stored, and manipulated within a			
	database system. It provides a structured representation of the data and			
	relationships between different elements.			
	renationships between anterent elements.			_
	 Types of Data Models: 1. Hierarchical Data Model Structure: Data is organized in a tree-like structure with parent-child relationships. Example: 			
	• Consider an organization structure where the CEO is at the top,			
	followed by managers, then employees.			
	 followed by managers, then employees. • Example Representation: 			
	followed by managers, then employees. • Example Representation: css			
	 followed by managers, then employees. • Example Representation: 			
	followed by managers, then employees. • Example Representation: css CopyEdit			
	followed by managers, then employees. • Example Representation: css CopyEdit CEO			
	followed by managers, then employees. • Example Representation: css CopyEdit CEO Manager 1			
	followed by managers, then employees. • Example Representation: CSS CopyEdit CEO Manager 1 Employee A Employee B Manager 2			
	followed by managers, then employees. • Example Representation: css CopyEdit CEO Manager 1 Employee A Employee B Manager 2 Employee C			
	followed by managers, then employees. • Example Representation: CSS CopyEdit CEO Manager 1 Employee A Employee B Manager 2 Employee D			
	followed by managers, then employees. • Example Representation: CSS CopyEdit CEO Manager 1 Employee A Employee B Manager 2 Employee C Employee D 2. Network Data Model			
	followed by managers, then employees. • Example Representation: CSS CopyEdit CEO Manager 1 Employee A Employee B Manager 2 Employee C Employee D 2. Network Data Model • Structure: Similar to the hierarchical model but allows a many-to-many			
	followed by managers, then employees. • Example Representation: CSS CopyEdit CEO Manager 1 Employee A Employee B Manager 2 Employee C Employee D 2. Network Data Model • Structure: Similar to the hierarchical model but allows a many-to-many relationship using pointers.			
	followed by managers, then employees. • Example Representation: CSS CopyEdit CEO Manager 1 Employee A Employee B Manager 2 Employee C Employee D 2. Network Data Model • Structure: Similar to the hierarchical model but allows a many-to-many relationship using pointers. • Example:			
	followed by managers, then employees. • Example Representation: CSS CopyEdit CEO Manager 1 Employee A Employee B Manager 2 Employee C Employee D 2. Network Data Model • Structure: Similar to the hierarchical model but allows a many-to-many relationship using pointers. • Example: • University Database: A student can enroll in multiple courses, and			
	followed by managers, then employees. • Example Representation: CSS CopyEdit CEO Manager 1 Employee A Employee B Manager 2 Employee C Employee D 2. Network Data Model • Structure: Similar to the hierarchical model but allows a many-to-many relationship using pointers. • Example: • University Database: A student can enroll in multiple courses, and a course can have multiple students.			
	followed by managers, then employees. • Example Representation: CSS CopyEdit CEO Manager 1 Employee A Employee B Manager 2 Employee D 2. Network Data Model • Structure: Similar to the hierarchical model but allows a many-to-many relationship using pointers. • Example: • University Database: A student can enroll in multiple courses, and a course can have multiple students.			
	followed by managers, then employees. • Example Representation: CSS CopyEdit CEO Manager 1 Employee A Employee B Manager 2 Employee C Employee D 2. Network Data Model • Structure: Similar to the hierarchical model but allows a many-to-many relationship using pointers. • Example: • University Database: A student can enroll in multiple courses, and a course can have multiple students. • Representation:			
	followed by managers, then employees. • Example Representation: CSS CopyEdit CEO Manager 1 Employee A Employee B Manager 2 Employee C Employee D 2. Network Data Model • Structure: Similar to the hierarchical model but allows a many-to-many relationship using pointers. • Example: • University Database: A student can enroll in multiple courses, and a course can have multiple students. • Representation: CSS			

	Student B <> Course X			
	3. Relational Data Model			
	• Structure: Data is stored in tables (relations) with rows (records) and			
	columns (fields).			
	• Example:			
	• Customer Database:			
	Customer_I Nam Email			
	D e			
	101 Alice alice@email.co m			
	102 Bob bob@email.com			
	 SQL (Structured Query Language) is used to manage relational databases. 			
	4. Object-Oriented Data Model			
	• Structure: Data is stored as objects , similar to object-oriented			
	programming (OOP) concepts.			
	• Example:			
	• Online Shopping System: A "Product" can have multiple attributes like name, price, and category.			
	arduino			
	CopyEdit			
	class Product {			
	String name;			
	double price;			
	String category;			
	}			
	5. Entity-Relationship (E-R) Model			
	• Structure: Uses entities, attributes, and relationships to design the			
	database structure.			
	• Example:			
	 Hospital Management System: 			
	Entities: Patient, Doctor, Appointment			
	• Relationships: A patient can have multiple appointments,			
	and each appointment is assigned to a doctor.			
3 a.	Construct an Entity-Relationship (E-R) diagram for a Movie Database considering	6	CO2	L3
<i>3</i> a.	the following entities, attributes, and relationships. Represent the entities,	U	002	LJ
	attributes, relationships, and cardinalities accurately using standard notations.			
	Entities and Attributes:			
	Movie (Movie_ID, Title, Release_Year, Genre, Language, Duration)			
	Production House (Production_ID, Name, Established_Year, Country)			
	Director (Director_ID, Name, Date_of_Birth, Nationality)			
	Actor (Actor_ID, Name, Date_of_Birth, Gender, Nationality)			
	Role (Role_ID, Character_Name, Actor_ID, Movie_ID)			
	Award (Award_ID, Name, Category, Year, Winner_ID)			

м	produced by 1 Production Company			
1. Retrieve all movies that belong to t Relational Algebra Query: σGenre='Action'(Movie)\sigma_{Genre (Movie) Explanation:	to the ''Action'' genre. action houses . ear of all movies that were released in 2020 . he ''Action'' genre. e = 'Action'}(Movie)σGenre='Action' ovies where the Genre is "Action".	4	CO2	L3
 2. Retrieve the names of all production Relational Algebra Query: πName(Production_House)\pi_{Name} (Production_House) Explanation: π (Projection) is used to select on Production_House table. This will return all unique production 	(Production_House)πName nly the Name attribute from the			_
Relational Algebra Query: π Title,Release_Year(σ Release_Year=20 Release_Year}(\sigma_{Release_Year} (σ Release_Year=2020(Movie))Explanation: • $\sigma_{Release_Year} = 2020$ {(Mov 2020.	r = 2020}(Movie))πTitle,Release_Year ie): Selects movies where Release_Year is cts only the Title and Release_Year			
4. Explain the following.i) Database Schema and Database State		10	CO2	L2

ii) Participatio	on Constraints		
iii) Recursive	Relationships and Role names.		
iv) Cardinality	-		
v) Primary Ke			
vi) Candidate	Key		
vii) Foreign K	Key		
_			
• Datab • Datab • • • • • • • • • • • • •	 Schema and Database State Sase Schema: The logical structure/design of the database. Defines tables, attributes, data types, constraints, relationships, etc. Example: BLE Employee (T PRIMARY KEY, RCHAR(50), CHAR(50), CHAR(20) Schema remains constant unless altered. Schema remains constant unless altere		
0	Example.EmplNamDepDet101AliceHR102BobIT		
Specific (total) Total	 ion Constraints ies whether an entity's participation in a relationship is mandatory or optional (partial). Participation (Double Line in ER Diagram): Every entity must participate in the relationship. Example: Every Student <i>must</i> enroll in at least one Course. Il Participation (Single Line): Some entities may not participate. Example: Not every Employee manages a project. 		
• Recur o mermaid Copy erDiagram EMPLOYE	e Relationships and Role Names rsive Relationship: An entity relates <i>to itself</i> in a relationship. Example: An Employee supervises other Employees. EE o{ EMPLOYEE : "supervises"		
• Role N	Name: Clarifies the purpose of an entity in a relationship. Example: In "supervises", roles are Supervisor (one side) and Subordinate (many side).		
iv) Cardinali • Define °	ty Ratioes the <i>numeric relationship</i> between entities in a relationship:1:1 (One-to-One):		

	• 1:N	(One-to-Many):		
	•	Example : One Department has many E	mployees.	
	• M:N	(Many-to-Many):		
	•	Example: Students enroll in many Cour	rses,	
		and Courses have many Students.		
	v) Primary Key			
		<i>et of attributes</i> that uniquely identifies a re	ow in a table.	
	Properties:			
	• Uniq			
		NULL		
		utable (should not change)		
	• Example:			
	sql Copy			
	CREATE TABLE S	Student (
		RIMARY KEY, Primary Key		
	Name VARCHA	• •		
).	n(30)		
	/,			
	vi) Candidate Key			
	· ·	(set of attributes that uniquely identifies a	row) <i>without</i>	
	unnecessary		,	
		have multiple candidate keys, but only one	becomes the primary	
	key.			
	• Example:			
	∘ In Ei	nployee(EmpID, Email, SSN), both EmpII	D and SSN are	
	cand	idate keys.		
	vii) Foreign Key			
		that references the primary key of another	table to enforce	
	referential in			
	• Example:			
	sql			
	Copy			
	CREATE TABLE (Orders (
	OrderID INT PR	IMARY KEY,		
	ProductID INT,			
	CustomerID INT	·		
		(ProductID) REFERENCES Products(Prod		
		(CustomerID) REFERENCES Customers(CustomerID)	
); Encures that	ProductID in Orders must exist in Product		
	• Ensures that	Producting in Orders must exist in Product	LS.	
	Summary Table			
	Concept	Definition	Example	
	Database Schema	Blueprint/structure of the database.	CREATE TABLE F	
	Database State	Actual data stored at a given time.	Rows in the Employ	
		Whether an entity must participate in a		
	Participation	relationship (total/partial).	All students must er	
	Recursive			
	Relationship	An entity relates to itself.	Employee supervise	
	-	Numerical relationship between entities	One department has	
	Cardinality	(1:1, 1:N, M:N).	employees.	
		Uniquely identifies a row (unique, NOT		
	Primary Key	NULL).	StudentID in Studer	
L	1			

	Candidate Key	A possible primary key (minimal super key). SSN or Email in Employee.		
	Foreign Key	References a primary key in another table. CustomerID in Orders.		
5		project, union, intersection, set difference, Cartesian product and 10 relational algebra with suitable example.	CO2	L3
	Selection Operator Selection and Proj The selection oper	ection are unary operators.		
	number of tuples. $\sigma C(R)$ Returns onl A condition C can operators that oper attributes of R. Co Logical operators γ - not, v - or Example	Employees in the CS department:		
	Projection(π)			
	The general syntax Where attributes is The resulting relat (unless there are duplicate tuples pr The degree of the relation	erator is pi: π he attributes that will be returned from the original relation. k is: π attributes R is the list of attributes to be displayed and R is the relation. ion will have the same number of tuples as the original relation roduced). resulting relation may be equal to or less than that of the original ames and departments of the employees:		
	condition c is called a join con R(A1, A2,, Am, EQUIJOIN: The join involving attributes from R1 (Ai=Bj) AND A In the above EQUI Ai,, Ah are called Bj,, Bk are called Example of using Retrieve each DEF T DEPARTMENT RESULT DNAME,FNAME (T)	 B1, B2,, Bn) R1(A1, A2,, Am) c R2 (B1, B2,, Bn) bin condition c includes one or more equality comparisons and R2. That is, c is of the form: AND (Ah=Bk); 1<i,h<m, 1<j,k<n<="" li=""> IJOIN operation: ed the join attributes of R1 ed the join attributes of R2 EQUIJOIN: PARTMENT's name and its manager's name: T MGRSSN = SSN EMPLOYEE CLNAME </i,h<m,>		
	NATURAL JOIN In an EQUIJOIN F	(*): R R1 c R2, the join attribute of R2 appear redundantly in the		

elimina equality R R1 * Examp he/she for: T EMP RESUI FNAM (T) If the jo	LOYEE *(DNO),(DNUMBER) DEPARTMENT			
write R Examp	R1 * R2. le: Retrieve each EMPLOYEE's name and the name of his/her VISOR:			
6 a. Demon appropr	strate the usage of the following SQL commands by writing and executing riate queries on a sample database: RT, ii) DELETE, iii) UPDATE, iv) ALTER, v) SELECT	6	CO3	L3
VALUI So, to a query: INSER VALUI Obviou both tea prone te Even w a specifi allow d entry di ii) Dele Now th remains learn ho and col data. A records syntax DELET FROM WHER iii) droj If you F	Fically designed front-end, many database systems - including MS Access - ata rect into tables via a spreadsheet-like interface. te at we know how to add new records and to update existing records it only s to bw to delete records before we move on to look at how we search through late s you would expect SQL provides a simple command to delete complete . The of the command is: TE [table.*] table E criteria;			

·			1	1
	DROP TABLE User;			
	iv) alter			
	Once a table is created it's structure is not necessarily fixed in stone. In time			
	requirements change and the			
	structure of the database is likely to evolve to match your wishes. SQL can be used			
	to change the			
	structure of a table, so, for example, if we need to add a new field to our User table			
	to tell us if the user			
	has Internet access, then we can execute an SQL ALTER TABLE command as			
	shown below:			
	ALTER TABLE User ADD COLUMN Internet BOOLEAN;			
	To delete a column the ADD keyword is replaced with DROP, so to delete the			
	field we have just added			
	the SQL is:			
	ALTER TABLE User DROP COLUMN Internet;			
	v) update			
	the UPDATE command, with syntax:			
	UPDATE table			
	SET newvalue			
	WHERE criteria;			
	For example, let's assume that we want to move user Jim Jones from the Finance			
	department to			
	Marketing. Our SQL statement would then be:			
	UPDATE User			
	SET Dept="Marketing"			
	WHERE EmpNo=9;			
6 b.	For the Movie database given in question number 3a, Write SQL query for the	4	CO3	L3
	following.			
	1. Retrieve the Movie Title and Release Year of all movies released after			
	2018.			
	2. Retrieve the names of all directors from the database.			
	3. Retrieve all details of movies that belong to the "Comedy" genre.			
	1. Retrieve the Movie Title and Release Year of all movies released after 2018			
	sql			
	Copy			
	SELECT title AS "Movie Title", release_year AS "Release Year"			
	FROM movies			
	WHERE release_year > 2018;			
	2. Retrieve the names of all directors from the database			
	sql			
	SELECT DISTINCT director_name AS "Director Name"			
	FROM directors;			
	3. Retrieve all details of movies that belong to the "Comedy" genre			
	SELECT *			
1	FROM movies			

Faculty Signature

CCI Signature

HOD Signature