

USN

Internal Assessment Test 1 – March 2025

Sub: Database Management System
Sub Code:

BCS403 Branch: AIML

Date: 27/3/2025 Duration: 90 min Max Marks: 50 Sem/Sec: IV /A, B & C OBE

Answer any FIVE FULL Questions MARKS CO RBT

1 Describe Main characteristics of DBMS approach and how it is different from the

traditional file system.

1. Self-Description: A database system includes —in addition to the data stored

that is of relevance to

the organization— a complete definition/description of the database's structure and

constraints. This

meta-data (i.e., data about data) is stored in the so-called system catalog, which

contains a description of

the structure of each file, the type and storage format of each field, and the various

constraints on the

data (i.e., conditions that the data must satisfy).

The system catalog is used not only by users (e.g., who need to know the names of

tables and attributes,

and sometimes data type information and other things), but also by the DBMS

software, which certainly

needs to "know" how the data is structured/organized in order to interpret it in a

manner consistent with

that structure.

2. Insulation between Programs and Data; Data Abstraction:

Program-Data Independence: In traditional file processing, the structure of the data

files accessed by an

application is "hard-coded" in its source code. (E.g., Consider a file descriptor in a

COBOL program: it

gives a detailed description of the layout of the records in a file by describing, for

each field, how many

bytes it occupies.)

In contrast, DBMS access programs, in most cases, do not require such changes,

because the structure

of the data is described (in the system catalog) separately from the programs that

access it and those

programs consult the catalog in order to ascertain the structure of the data

3. Data Abstraction:

A data model is used to hide storage details and present the users with a conceptual

view of the

database. Programs refer to the data model constructs rather than data storage

details

Example by which to illustrate this concept: Suppose that you are given the task of

10 CO1 L1

developing a

program that displays the contents of a particular data file. Specifically, each record

should be displayed

as follows:

Record #i: value of first field value of second field value of last field

To keep things very simple, suppose that the file in question has fixed-length

records of 57 bytes with

six fixed-length fields of lengths 12, 4, 17, 2, 15, and 7 bytes, respectively, all of

which are ASCII

strings. Developing such a program would not be difficult. However, the obvious

solution would be

tailored specifically for a file having the particular structure described here and

would be of no use for a

file with a different structure.

4. Multiple Views of Data: Different users (e.g., in different departments of an

organization) have

different "views" or perspectives on the database. For example, from the point of

view of a Bursar's

Office employee, student data does not include anything about which courses were

taken or which

grades were earned. (This is an example of a subset view.)

A good DBMS has facilities for defining multiple views. This is not only

convenient for users, but also

addresses security issues of data access.

5. Data Sharing and Multi-user Transaction Processing: As you learned about (or

will) in the OS

course, the simultaneous access of computer resources by multiple users/processes

is a major source of

complexity. The same is true for multi-user DBMS's.

Arising from this is the need for concurrency control, which is supposed to ensure

that several users

trying to update the same data do so in a "controlled" manner so that the results of

the updates are as

though they were done in some sequential order

This gives rise to the concept of a transaction, which is a process that makes one or

more accesses to a

database and which must have the appearance of executing in isolation from all

other transactions (even

ones that access the same data at the "same time") and of being atomic (in the sense

that, if the system

crashes in the middle of its execution, the database contents must be as though it

did not execute at all).

Applications such as airline reservation systems are known as online transaction

processing applications.
2 a. Explain the three-schema architecture with neat diagram. Why do we need

mapping among the schema levels?

6 CO1 L2

The goal of the three-schema architecture, illustrated in the above Figure , is to
separate the user
applications and the physical database. In this architecture, schemas can be defined
at the following
three levels:
1. The internal level has an internal schema, which describes the physical storage
structure of the
database. The internal schema uses a physical data model and describes the
complete details of data
storage and access paths for the database.
2. The conceptual level has a conceptual schema, which describes the structure of
the whole database
for a community of users. The conceptual schema hides the details of physical
storage structures and

concentrates on describing entities, data types, relationships, user operations, and
constraints. A high-
level data model or an implementation data model can be used at this level.

3. The external or view level includes a number of external schemas or user views.
Each external
schema describes the part of the database that a particular user group is interested
in and hides the rest of the database from that user group. A high-level data model
or an implementation data model
can be used at this level
The three-schema architecture can be used to explain the concept of data
independence, which can be
defined as the capacity to change the schema at one level of a database system
without having to
change the schema at the next higher level. We can define two types of data
independence:
1. Logical data independence is the capacity to change the conceptual schema
without having to
change external schemas or application programs. We may change the conceptual
schema to expand
the database (by adding a record type or data item), or to reduce the database (by

removing a record
type or data item). In the latter case, external schemas that refer only to the
remaining data should not
be affected. Only the view definition and the mappings need be changed in a
DBMS that supports
logical data independence. Application programs that reference the external schema
constructs must
work as before, after the conceptual schema undergoes a logical reorganization.
Changes to
constraints can be applied also to the conceptual schema without affecting the
external schemas or
application programs.
2. Physical data independence is the capacity to change the internal schema without
having to change
the conceptual (or external) schemas. Changes to the internal schema may be
needed because some
physical files had to be reorganized—for example, by creating additional access
structures—to
improve the performance of retrieval or update. If the same data as before remains
in the database,
we should not have to change the conceptual schema.

2 b. Explain data models and its types with the help of examples.

Data Models and Their Types (With Examples)
A data model defines how data is organized, stored, and manipulated within a
database system. It provides a structured representation of the data and
relationships between different elements.

Types of Data Models:

1. Hierarchical Data Model
• Structure: Data is organized in a tree-like structure with parent-child

relationships.
• Example:

o Consider an organization structure where the CEO is at the top,
followed by managers, then employees.

o Example Representation:
css
CopyEdit
CEO
├── Manager 1
│ ├── Employee A
│ ├── Employee B
├── Manager 2
 ├── Employee C
 ├── Employee D
2. Network Data Model

• Structure: Similar to the hierarchical model but allows a many-to-many
relationship using pointers.

• Example:
o University Database: A student can enroll in multiple courses, and

a course can have multiple students.
o Representation:

css
CopyEdit
Student A <--> Course X
Student A <--> Course Y

4 CO1 L2

Student B <--> Course X
3. Relational Data Model

• Structure: Data is stored in tables (relations) with rows (records) and

columns (fields).
• Example:

o Customer Database:

Customer_I

D

Nam

e
Email

101 Alice
alice@email.co
m

102 Bob bob@email.com

o SQL (Structured Query Language) is used to manage relational
databases.

4. Object-Oriented Data Model

• Structure: Data is stored as objects, similar to object-oriented
programming (OOP) concepts.

• Example:
o Online Shopping System: A "Product" can have multiple attributes

like name, price, and category.
arduino
CopyEdit
class Product {
 String name;
 double price;
 String category;
}
5. Entity-Relationship (E-R) Model

• Structure: Uses entities, attributes, and relationships to design the
database structure.

• Example:
o Hospital Management System:

▪ Entities: Patient, Doctor, Appointment
▪ Relationships: A patient can have multiple appointments,

and each appointment is assigned to a doctor.

3 a. Construct an Entity-Relationship (E-R) diagram for a Movie Database considering
the following entities, attributes, and relationships. Represent the entities,
attributes, relationships, and cardinalities accurately using standard notations.

Entities and Attributes:

Movie (Movie_ID, Title, Release_Year, Genre, Language, Duration)

Production House (Production_ID, Name, Established_Year, Country)

Director (Director_ID, Name, Date_of_Birth, Nationality)

Actor (Actor_ID, Name, Date_of_Birth, Gender, Nationality)

Role (Role_ID, Character_Name, Actor_ID, Movie_ID)

Award (Award_ID, Name, Category, Year, Winner_ID)

6 CO2 L3

3 b. For the Movie database given in question number 3a, Write relational algebra

queries for the following.

1. Retrieve all movies that belong to the "Action" genre.
2. Retrieve the names of all production houses.
3. Retrieve the title and release year of all movies that were released in 2020.

1. Retrieve all movies that belong to the "Action" genre.
Relational Algebra Query:

σGenre=′Action′(Movie)\sigma_{Genre = 'Action'}(Movie)σGenre=′Action′
(Movie)
Explanation:

• σ (Selection) is used to filter movies where the Genre is "Action".
• This will return all movies that belong to the Action genre.

2. Retrieve the names of all production houses.

Relational Algebra Query:
πName(Production_House)\pi_{Name}(Production_House)πName
(Production_House)
Explanation:

• π (Projection) is used to select only the Name attribute from the
Production_House table.

• This will return all unique production house names.

3. Retrieve the title and release year of all movies that were released in 2020.

Relational Algebra Query:
πTitle,Release_Year(σRelease_Year=2020(Movie))\pi_{Title,
Release_Year}(\sigma_{Release_Year = 2020}(Movie))πTitle,Release_Year
(σRelease_Year=2020(Movie))
Explanation:

• σ_{Release_Year = 2020}(Movie): Selects movies where Release_Year is
2020.

• π_{Title, Release_Year}: Extracts only the Title and Release_Year
attributes from the filtered movies.

4 CO2 L3

4. Explain the following.

i) Database Schema and Database State

10 CO2 L2

ii) Participation Constraints

iii) Recursive Relationships and Role names.

iv) Cardinality Ratio
v) Primary Key
vi) Candidate Key
vii) Foreign Key

i) Database Schema and Database State

• Database Schema:
o The logical structure/design of the database.
o Defines tables, attributes, data types, constraints, relationships, etc.
o Example:

sql
Copy
CREATE TABLE Employee (
 EmpID INT PRIMARY KEY,
 Name VARCHAR(50),
 Dept VARCHAR(20)
);

o Schema remains constant unless altered.
• Database State (Instance):

o The actual data stored in the database at a given time.
o Changes with insertions, updates, and deletions.
o Example:

EmpI

D

Nam

e

Dep

t

101 Alice HR

102 Bob IT

ii) Participation Constraints

• Specifies whether an entity's participation in a relationship is mandatory
(total) or optional (partial).

• Total Participation (Double Line in ER Diagram):
o Every entity must participate in the relationship.
o Example: Every Student must enroll in at least one Course.

• Partial Participation (Single Line):
o Some entities may not participate.
o Example: Not every Employee manages a project.

iii) Recursive Relationships and Role Names

• Recursive Relationship:
o An entity relates to itself in a relationship.
o Example: An Employee supervises other Employees.

mermaid
Copy
erDiagram
 EMPLOYEE ||--o{ EMPLOYEE : "supervises"

• Role Name:
o Clarifies the purpose of an entity in a relationship.
o Example: In "supervises", roles are Supervisor (one side)

and Subordinate (many side).

iv) Cardinality Ratio

• Defines the numeric relationship between entities in a relationship:
o 1:1 (One-to-One):

▪ Example: One Employee has one CompanyCar.

o 1:N (One-to-Many):
▪ Example: One Department has many Employees.

o M:N (Many-to-Many):
▪ Example: Students enroll in many Courses,

and Courses have many Students.

v) Primary Key

• A minimal set of attributes that uniquely identifies a row in a table.
• Properties:

o Unique
o Not NULL
o Immutable (should not change)

• Example:
sql
Copy
CREATE TABLE Student (
 StudentID INT PRIMARY KEY, -- Primary Key
 Name VARCHAR(50)
);

vi) Candidate Key

• A super key (set of attributes that uniquely identifies a row) without
unnecessary attributes.

• A table can have multiple candidate keys, but only one becomes the primary
key.

• Example:
o In Employee(EmpID, Email, SSN), both EmpID and SSN are

candidate keys.

vii) Foreign Key

• An attribute that references the primary key of another table to enforce
referential integrity.

• Example:
sql
Copy
CREATE TABLE Orders (
 OrderID INT PRIMARY KEY,
 ProductID INT,
 CustomerID INT,
 FOREIGN KEY (ProductID) REFERENCES Products(ProductID),
 FOREIGN KEY (CustomerID) REFERENCES Customers(CustomerID)
);

• Ensures that ProductID in Orders must exist in Products.

Summary Table

Concept Definition Example

Database Schema Blueprint/structure of the database. CREATE TABLE Employee(...)

Database State Actual data stored at a given time. Rows in the Employee table.

Participation
Whether an entity must participate in a
relationship (total/partial).

All students must enroll.

Recursive
Relationship

An entity relates to itself. Employee supervises Employee.

Cardinality
Numerical relationship between entities
(1:1, 1:N, M:N).

One department has many
employees.

Primary Key
Uniquely identifies a row (unique, NOT
NULL).

StudentID in Student.

Candidate Key
A possible primary key (minimal super
key).

SSN or Email in Employee.

Foreign Key References a primary key in another table. CustomerID in Orders.

5 Explain the select, project, union, intersection, set difference, Cartesian product and
join operations in relational algebra with suitable example.

Selection Operator(σ)
Selection and Projection are unary operators.
The selection operator is sigma: σ

The selection operation acts like a filter on a relation by returning only a certain
number of tuples.
σC(R) Returns only those tuples in R that satisfy condition C
A condition C can be made up of any combination of comparison or logical
operators that operate on the
attributes of R. Comparison operators: >,<,<=,>=, ≠,==
Logical operators
┐- not, v - or
Example
Select only those Employees in the CS department:
σ Dept= 'CS'(EMP)

Projection(π)

Projection is also a Unary operator.
The Projection operator is pi: π
Projection limits the attributes that will be returned from the original relation.
The general syntax is: π attributes R
Where attributes is the list of attributes to be displayed and R is the relation.
The resulting relation will have the same number of tuples as the original relation
(unless there are
duplicate tuples produced).
The degree of the resulting relation may be equal to or less than that of the original
relation
Project only the names and departments of the employees:
πname, dept(EMP)

THETA JOIN: Similar to a CARTESIAN PRODUCT followed by a SELECT. The
condition c
is called a join condition.
R(A1, A2, ..., Am, B1, B2, ..., Bn) R1(A1, A2, ..., Am) c R2 (B1, B2, ..., Bn)
EQUIJOIN: The join condition c includes one or more equality comparisons
involving
attributes from R1 and R2. That is, c is of the form:
(Ai=Bj) AND ... AND (Ah=Bk); 1<i,h<m, 1<j,k<n
In the above EQUIJOIN operation:
Ai, ..., Ah are called the join attributes of R1
Bj, ..., Bk are called the join attributes of R2
Example of using EQUIJOIN:
Retrieve each DEPARTMENT's name and its manager's name:
T DEPARTMENT MGRSSN = SSN EMPLOYEE
RESULT
DNAME,FNAME,LNAME
(T)
NATURAL JOIN (*):
In an EQUIJOIN R R1 c R2, the join attribute of R2 appear redundantly in the

10 CO2 L3

result
relation R. In a NATURAL JOIN, the redundant join attributes of R2 are
eliminated from R. The
equality condition is implied and need not be specified.
R R1 *(join attributes of R1),(join attributes of R2) R
Example: Retrieve each EMPLOYEE's name and the name of the DEPARTMENT
he/she works
for:
T EMPLOYEE *(DNO),(DNUMBER) DEPARTMENT
RESULT
FNAME,LNAME,DNAME
(T)
If the join attributes have the same names in both relations, they need not be
specified and we can
write R R1 * R2.
Example: Retrieve each EMPLOYEE's name and the name of his/her
SUPERVISOR:

6 a. Demonstrate the usage of the following SQL commands by writing and executing

appropriate queries on a sample database:

i) INSERT, ii) DELETE, iii) UPDATE, iv) ALTER, v) SELECT

insert

INSERT INTO target [(field1[, field2[, ...]])]

VALUES (value1[, value2[, ...]);

So, to add a User record for user Jim Jones, we would issue the following INSERT

query:

INSERT INTO User (FirstName, LastName, UserID, Dept, EmpNo, PCType) 6

VALUES ("Jim", "Jones", "Jjones","Finance", 9, "DellDimR450");

Obviously populating a database by issuing such a series of SQL commands is

both tedious and

prone to error, which is another reason why database applications have front-ends.

Even without

a specifically designed front-end, many database systems - including MS Access -

allow data

entry direct into tables via a spreadsheet-like interface.

ii) Delete

Now that we know how to add new records and to update existing records it only

remains to

learn how to delete records before we move on to look at how we search through

and collate

data. As you would expect SQL provides a simple command to delete complete

records. The

syntax of the command is:

DELETE [table.*]

FROM table

WHERE criteria;

iii) drop

If you have already executed the original CREATE TABLE command your

database will already

contain a table called User, so let's get rid of that using the DROP command:

6 CO3 L3

DROP TABLE User;

iv) alter

Once a table is created it's structure is not necessarily fixed in stone. In time

requirements change and the

structure of the database is likely to evolve to match your wishes. SQL can be used

to change the

structure of a table, so, for example, if we need to add a new field to our User table

to tell us if the user

has Internet access, then we can execute an SQL ALTER TABLE command as

shown below:

ALTER TABLE User ADD COLUMN Internet BOOLEAN;

To delete a column the ADD keyword is replaced with DROP, so to delete the

field we have just added

the SQL is:

ALTER TABLE User DROP COLUMN Internet;

v) update

the UPDATE command, with syntax:

UPDATE table

SET newvalue

WHERE criteria;

For example, let's assume that we want to move user Jim Jones from the Finance

department to

Marketing. Our SQL statement would then be:

UPDATE User

SET Dept="Marketing"

WHERE EmpNo=9;

6 b. For the Movie database given in question number 3a, Write SQL query for the

following.

1. Retrieve the Movie Title and Release Year of all movies released after

2018.

2. Retrieve the names of all directors from the database.

3. Retrieve all details of movies that belong to the "Comedy" genre.

1. Retrieve the Movie Title and Release Year of all movies released after 2018

sql

Copy

SELECT title AS "Movie Title", release_year AS "Release Year"

FROM movies

WHERE release_year > 2018;

2. Retrieve the names of all directors from the database

sql

Copy

SELECT DISTINCT director_name AS "Director Name"

FROM directors;

3. Retrieve all details of movies that belong to the "Comedy" genre

SELECT *

FROM movies

4 CO3 L3

WHERE genre = 'Comedy';

Faculty Signature CCI Signature

HOD Signature

