

Internal Assessment Test 2 – May 2025

Sub: Database Management System Sub Code: BCS403 Branch

:

AIML
/CSE(AIML)

Date: 26-05-25 Duration

:
90

minutes

Max

Marks:
50 Sem/Sec: IV OBE

Questions Scheme and Solutions MARKS CO RBT

1

a Explain 1NF,2NF and 3NF.Consider the relation schema R (A, B, C, D, E,

F, G, H, I, J) and the functional dependencies

{AB->C, A->DE, B->F, F->GH, D->IJ}. Determine the candidate key and
the highest normal form for the above relation.

1NF (First Normal Form)

A relation is in First Normal Form if:

• All the values in the relation are atomic (indivisible).

• Each column contains unique values.

• There are no repeating groups or arrays.

Example: If a table contains a list of phone numbers for a person in a

single column, it is not in 1NF. To convert it to 1NF, each phone

number should be in a separate row or a separate column.

2NF (Second Normal Form)

A relation is in Second Normal Form if:

• It is in 1NF.

• All non-prime attributes are fully functionally dependent on the

entire primary key (no partial dependency).

Example: Consider a table with attributes {StudentID, CourseID,

StudentName}. If the primary key is {StudentID, CourseID}, and

StudentName is dependent only on StudentID, it is a partial dependency

and violates 2NF. To achieve 2NF, StudentName should be moved to a

separate table where StudentID is the primary key.

3NF (Third Normal Form)

A relation is in Third Normal Form if:

• It is in 2NF.

• There are no transitive dependencies, meaning non-prime attributes

are not dependent on other non-prime attributes.

10 CO3 L3

Example:

Consider a table with attributes {StudentID, CourseID, ProfessorID,

ProfessorName}. If the primary key is {StudentID, CourseID}, and

ProfessorName is dependent on ProfessorID (a non-prime attribute), it

violates 3NF. To achieve 3NF, ProfessorName should be moved to a

separate table where ProfessorID is the primary key.

2 a
Differentiate between nested query and correlated query with suitable

examples.

Nested Subqueries

A subquery is nested when you are having a subquery

in the where or having clause of another subquery.

Get the result of all the students who are enrolled in

the same course as the student with ROLLNO 12.

Select * from result where rollno in (select rollno from student

 Where courseid =(select courseid

 From student where rollno=12));

The innermost subquery will be executed first and then based on its result
the next subquery will be executed and based on that result the outer query

will be executed. The levels to which you can do the nesting is
implementation-dependent.

Correlated Subquery

A Correlated Subquery is one that is executed after the outer query is

executed. So correlated subqueries take an approach opposite to that of

normal subqueries. The correlated subquery execution is as follows:

-The outer query receives a row.

-For each candidate row of the outer query, the subquery (the correlated

subquery) is executed once.
-The results of the correlated subquery are used to determine whether the

candidate row should be part of the result set.

-The process is repeated for all rows.

Correlated Subqueries differ from the normal subqueries in that the nested
SELECT statement referes back to the table in the first SELECT
statement.

To find out the names of all the students who appeared in more than three

papers of their opted course, the SQL will be

6 CO4 L2

Select name

from student A where 3 < (select count(*) from result b where a. rollno =

b.rollno);

b
What is a view in SQL? How to create a view in SQL?

In SQL, a view is a virtual table based on the result-set of an SQL

statement.

A view contains rows and columns, just like a real table. The fields in a

view are fields from one or more real tables in the database.

You can add SQL statements and functions to a view and present the

data as if the data were coming from one single table. A view is

created with the CREATE VIEW statement.

CREATE VIEW Syntax

CREATE VIEW view_name AS SELECT column1,

column2, ...FROM table_name WHERE condition;

SQL Updating a View

A view can be updated with the CREATE OR REPLACE VIEW statement.

SQL CREATE OR REPLACE VIEW Syntax

CREATE OR REPLACE VIEW
view_name AS SELECT
column1, column2, ... FROM
table_name WHERE condition;

SQL dropping VIEW

VIEW is deleted with DROP
VIEW statement

DROP VIEW syntax

DROP VIEW view_name

4 CO4 L1

3
a Discuss the ACID properties of database transaction.

Answer:

There are 4 properties (1 mark)

1. Atomicity,

2. Consistency,

3. Isolation and

4. Durability

5 CO4 L2

To ensure consistency, completeness of the database in scenario of concurrent

access, system failure , the following ACID properties can be enforced on to

database.

(4x1=4)

Atomicity:

 This property states that all of the instructions within a transaction must be

executed or none of them should be executed.

 This property states that all transactions execution must be atomic i.e. all

actions should be carried out or none of the actions should be executed.

Consistency:

 The database must remain in consistence state even after performing any

kind of

transaction ensuring correctness of the database.

 If we execute a particular transaction in isolation (or) together with other

transaction in

multiprogramming environment , the transaction should give same result in

any case.

Isolation:

 When executing multiple transactions concurrently & trying to access

shared resources the system should create an order such that the only one

transaction can access the shared

resource at the same time & release it after completion of it’s execution for

other transaction.

 This property ensures that multiple transactions can occur concurrently

without leading to inconsistency of database state. Transactions occur

independently without interference.

Changes occurring in a particular transaction will not be visible to any other

transaction until that particular change in that transaction is written to memory

or has been committed.

Durability:

 This property states that once after the transaction is completed the changes

that made should

be permanent & should be recoverable even after system crash/power failure.

 This property ensures that once the transaction has completed execution,

the updates and

modifications to the database are stored in and written to disk and they persist

even is system

failure occurs. These updates now become permanent and are stored in a non-

volatile
memory.

b Define Schedule? Illustrate with an example.

Schedule (3Marks)

 It refers to the list of actions to be executed by transaction.

 A schedule is a process of grouping the transactions into one and executing

them in a

predefined order.
Example (2 Marks)

5 CO4 L2

4

a Demonstrate the Two-phase locking protocol used for concurrency control

and how it can lead to deadlocks.

Two Phases-(7 Marks+ Example)

 (a) Locking (Growing)

(b) Unlocking (Shrinking).

Locking (Growing) Phase:

10 CO5 L2

 A transaction applies locks (read or write) on desired data items one

at a time.

Unlocking (Shrinking) Phase:

 A transaction unlocks its locked data items one at a time.

 Requirement:

 For a transaction these two phases must be mutually exclusively, that

is, during locking phase unlocking phase must not start and during

unlocking phase locking phase must not begin

Two phase locking could lead to deadlock+ Example (3 Marks)

5 a Explain CAP theorem.

Two Phases-(7 Marks+ Example)

 (a) Locking (Growing)

(b) Unlocking (Shrinking).

Locking (Growing) Phase:

 A transaction applies locks (read or write) on desired data items one

at a time.

Unlocking (Shrinking) Phase:

 A transaction unlocks its locked data items one at a time.

 Requirement:

 For a transaction these two phases must be mutually exclusively, that

is, during locking phase unlocking phase must not start and during

unlocking phase locking phase must not begin

Two phase locking could lead to deadlock+ Example (3 Marks)

5 CO5 L2

b What is NOSQL Graph database? Explain Neo4j.

Answer:

• Graph databases

• Data represented as a graph

• Collection of vertices (nodes) and edges

• Possible to store data associated with both individual nodes and

individual edges

Neo4j

• Open source system

• Uses concepts of nodes and relationships Nodes can have labels

• Zero, one, or several

• Both nodes and relationships can have properties

• Each relationship has a start node, end node, and a relationship

type

• Properties specified using a map pattern

• Somewhat similar to ER/EER concepts

5 CO5 L2

6

a

Consider the following relation schema and write SQL
queries, employee (person-name, street, city)

works (person-name, company-name,
salary) company (company-name, city)

i. Find the names, street address, and cities of residence for all

employees who work for 'First Bank Corporation' and earn

more than Rs.10,000.

ii. Find the names of all employees in the database who do not work

for 'First Bank Corporation'.

iii. Find the names of all employees in the database who earn more

than every employee of 'Small Bank Corporation'.

iv. Update the salary of people working in ‘Infosys’ by 15%.

v. Display company wise, average salary and maximum salary

paid to the employees.

Ans. 1. SELECT e.person_name, e.street, e.city FROM employee e

JOIN works w ON e.person_name = w.person_name WHERE

w.company_name = 'First Bank Corporation' AND w.salary > 10000;

2. SELECT DISTINCT e.person_name FROM employee e WHERE

e.person_name NOT IN (SELECT w.person_name FROM works w

WHERE w.company_name = 'First Bank Corporation');

3. SELECT e.person_name FROM works e WHERE

e.salary > (SELECT MAX(w.salary)FROM works

w WHERE w.company_name = 'Small Bank

Corporation');

4. UPDATE works SET salary = salary * 1.15 WHERE company_name =
'Infosys';

5. SELECT company_name, AVG(salary) AS

average_salary, MAX(salary) AS max_salary FROM

works GROUP BY company_name;

10

4

L3

