

USN					

Internal Assessment Test 2 – May 2025

Sub:	NATURAL	LANGUA	GE PROCE	SSING		Sub Code:	BAI601	Bra	nch :			
Date:	24/05/25	Duration:	90 min	Max Marks:	50	Sem/Sec :	IV /A, B				OB	E
		<u>A</u> 1	iswer any FIV	E FULL Quest	tions	1			MA KS	R	CO	RB T
1	Review	Po	Positive(1)		Negative(0)				1	0	CO3	L3
	"I love this ph	one" 1		0								
	" This Phone is amazing"			0								
	"I hate this Phone" 0		0 1		1							
	"This phone is bad" 0			1								
	compute the probabilities and classify using Naive bayes of the given sentence "This phone is amazing."?											

Extract Data the Review 1 Tove this phone -> {[, love, this, phone?] This phone is a masing -> { this, phone, is, a maging } we Review I have this phone > [I, have, this, phone] This phone is bad > { this, phone, is, bad }. Vocabulary = E1, love, this, phone, is, amaging, hate, bad 3 Word Counts : the I-1, love-1, this-2, phone-2, 15-1, amazing -1, hate -0, bud -0 Total word in positive = 1+1+2+2+1+1=8. word count. -ve. I - 1, have - 1, this - 2, phone - 2,15-1, bad -1, love -0, amazing -0. Total words in Negative = 1+1+a+a+1+1=8 PCPOSiture)=2/h=0.5 p(negtue)=2/h=05 Name Bayes with Laplace Smoothing. $P(\omega|c) = count (\omega,c)+1$ total words in C+ Vacabuley Size p (Iltue)= 0.125 V = 8 totalwords =8 P (tovel tue) = 0.123 p (this (tue) = 0.1275

p $(I -ve) = 0.145^{-1}$ p $(hale -ve) = 0.145^{-1}$ close if sentence = This phone is amology. p $(Hris positive) = 0.1875^{-1}$ p $(I his positive) = 0.1875^{-1}$ p $(I h positive) = 0.1875^{-1}$ Likelihood = $0.1875 \times 0.1875 \times 0.185 = 0.0000547135^{-1}$ Score = p $(Hve) \times p(sentence Hve) = 0.5 \times 0.0000547135^{-1}$ $= 0.000013727^{-1}$ Total score = 0.00003745^{-1} $p(positive sentence) = 0.000037455^{-1} = 6.0000411785^{-1}$ $= 0.000013727^{-1}$ Total score = 0.00003745^{-1} $p(positive sentence) = 0.00003745^{-1} = 6.0000411785^{-1}$ $p(regutuel sentence) = 0.0000037527^{-1} = 6.0000411785^{-1}$ $= 0.000013727^{-1}$ Total score = $0.00003745^{-1} = 0.00000411785^{-1}$ $p(regutuel sentence) = 0.0000037527^{-1} = 6.0000411785^{-1}$ $p(regutuel sentence) = 0.0000037527^{-1} = 6.0000411785^{-1}$ $= 0.000043733^{-1}$	
 2 a With a suitable example explain cluster-based IR modeling. Cluster-Based Information Retrieval (IR) Modeling is a method used to improve the performance of search systems by grouping similar documents together (clustering), and then using those clusters to retrieve relevant documents more efficiently and accurately. Clustering is the process of grouping a set of documents (or data points) such that documents in the same group (called a <i>cluster</i>) are more similar to each other than to those in other groups. Goal in IR: Improve retrieval by organizing documents into meaningful groups before searching, instead of searching the entire document collection blindly. 	L2
Types of Clustering	
There are two main types:	
• Hierarchical Clustering	
• Builds a hierarchy (tree) of clusters.	
• Two approaches:	
 Agglomerative (bottom-up): Each document starts as its own cluster. Pairs of clusters are merged as one moves up. 	
 Divisive (top-down): All documents start in one cluster, and splits are performed recursively. 	
 Output: Dendrogram (a tree diagram). 	

• Suitable when the number of clusters is unknown.			
• Partitioning Clustering (e.g., K-Means)			
\circ Documents are divided into K clusters, where K is specified beforehand.			
 Common algorithm: K-Means 			
 Randomly initialize K centroids. 			
 Assign each document to the nearest centroid. 			
 Recalculate centroids. 			
 Repeat until convergence. 			
Cosine Similarity in Clustering			
Cosine Similarity measures the angle between two document vectors in a multi-dimensional space. It is commonly used in text clustering because it measures orientation, not magnitude.			
$ ext{Cosine Similarity}(A,B) = rac{A \cdot B}{\ A\ \ B\ }$			
Where:			
 A · B is the dot product of vectors A and B. A B are the magnitudes (lengths) of vectors A and B. 			
Range: $[0,1]$ for non-negative documents.			
• 1 means documents are identical in terms of direction.			
• 0 means documents are orthogonal (no similarity). Explain the LSTM Model and architecture	5	CO4	L2
handle sequential data and overcome the vanishing gradient problem typically faced by traditional RNNs. It is widely used in applications such as text generation, speech recognition, and time series prediction.			
add/update new information			
LSTM Architecture:			
LSTM consists of a series of memory cells, each of which has three main components			
(gates):			
(gates): 1. Forget Gate:			
1. Forget Gate: Decides what information from the previous cell state should be forgotten.			
 Forget Gate: Decides what information from the previous cell state should be forgotten. Input Gate: 			
1. Forget Gate: Decides what information from the previous cell state should be forgotten.			

Decides what information from the current cell state should be output to the next		
hidden state.		
• Cell State (C _t):		
Acts as long-term memory that carries important information across many time		
steps.		
• Hidden State (H _t):		
Acts as short-term memory, used at each step for prediction.		
Working		
1. Forget Irrelevant Info:		
Forget gate checks which part of the past information is no longer relevant.		
2. Update with New Info:		
Input gate determines what new data to add.		
3. Pass On Important Info:		
Output gate sends updated data to the next time step.		
Equations of Gates:		
In order to do their respective tasks the gates of the LSTM model are using certain equations in order to do the calculations and operations. They are:		
1. Forget Gate:		
$f_t = \sigma(W_f \cdot [h_{t-1}, x_t] + b_f)$		
2. Input Gate:		
$i_t = \sigma(W_i \cdot [h_{t-1}, x_t] + b_i)$		
$ ilde{C}_t = anh(W_C \cdot [h_{t-1}, x_t] + b_C)$		
3. Cell State Update:		
$C_t = f_t \odot C_{t-1} + i_t \odot ilde{C}_t$		
4. Output Gate:		
$o_t = \sigma(W_o \cdot [h_{t-1}, x_t] + b_o)$		
$h_t = o_t \odot \tanh(C_t)$		
Terminologies of the gate are as follows:		

	x_t : Input at time step t			
	h_{t-1} : Hidden state from the previous time step			
	C_{t-1} : Cell state from the previous time step			
	σ : Sigmoid activation function			
	tanh: Hyperbolic tangent activation			
	⊙: Element-wise multiplication			
3	Given two binary word vectors w1 and w2 as follows: w1= [1010011010] w2= [0011111100] Compute the cosine similarity between them.	10	CO4	L3

4				nage clas	sifier wit	h 5 classes-cat, dog, lion, tiger and deer. Consider the	1	CO	L
	confusion ma	trix shown					0	4	3
		cat	dog	lion	tiger	deer			
	cat	130	17	9	7	40			
	dog	15	150	25	10	7			
	lion	10	45	150	23	5			
	tiger	15	15	20	120	30			
	deer	40 30	20	10	155				

What is the accuracy of your classifier? What is the micro averaged precision?			
11			
4) precision = TP			
TP+FP.			
4). precision = <u>TP</u> TP+FP TP+FN L precision & Recall.			
Marcino Average = Average of precision & Recall.			
MUNO AVERAGE = Z IT			
MILLIO AVERAGE = <u>ZTP</u> ACCUMALY = ZTP			
Total Sumples			
Cat = TP = 130 / FP = 80 / FN = 73 (17+9+740)			
(ISTIGISTIO)			
Doy=TP=150 $FP=107$, $FN=57$			
LION = 150 FP=74, FN = 83.			
LION = 150 (1-11) = 50 , EN=80			
LION = 150 $(T = fi + 10 + 23 + 10) = 50$, FN = 80 Dear = 155 $(FP = 82, FN = 100)$			
Deer = 155 , FP=82, FN= 100			
a troasing = 0.6190, Recall =0.04 11.			
100 Dreusien = 10.6696. , Recult = 0.6438			
Ion p			
Dog preusion = 0.5837 , recall = 0.6438 Lion precision = 0.6696 , recall = 0.6438 Tigerp= 0.7059 , recall = 0.600 . Dev p = 0.6540 , R = 0.6078 Dev p = 0.6540 , R = 0.6078			
Mauro Average pieusion = 0.6190+ 0.6837+0.6686+			
Maaro Arcarose preason = 0 artosq 0.7059			
$\frac{0.7059}{5}$			
6406 + 0.7246 +0.6438 +0.600+			
Masso Average Recall = 0.6078 = 0.6433			
Accuracy = 705 (total predictions) 5 = 0.7015			
Total Simples = 1005 (Sum of all Clements) = = = 0.6421.			
= 0.64.69 Mauxo Average Recall = 0.6404+0.7246+0.6438+0.600+ Mauxo Average Recall = 0.6404+0.7246+0.6438+0.600+ 0.6078 = 0.6433 Accuracy = 705 (total predictory) 5 = 0.7015 Total Simples = 1005 (sum of all devents) = 0.7015 Total Simples = 1005 (sum of all devents) = 0.7015 Micro Average Preusson = TD = 7055973. Write a brief note on his and word embedding models			
while a brief note on blas and word embedding models	5	CO 5	
Word Embedding Models (like Word2Vec, GloVe, or fastText) represent words as dense vectors in a high- dimensional space. These models capture semantic relationships by learning from large text corpora.			
Bias in NLP refers to systematic favoritism or prejudice in language models. It often reflects societal stereotypes, such as associating certain professions with a specific gender or race.			
Word Embedding Models & Bias			
Word embedding models (e.g., Word2Vec, GloVe, FastText) represent words as vectors based on their			
surrounding context.		1	

	These embeddings may capture and even amplify biases from the training corpus.				
	Approach: Corpus-Based Bias Detection				
	 Corpus Creation: Create two gender-specific corpora: Male Corpus: Texts with male references (e.g., <i>he, man, king, father, John</i>). Female Corpus: Texts with female references (e.g., <i>she, woman, queen, mother, Mary</i>). 				
	 2. Embedding Generation: Train or use existing embeddings (e.g., Word2Vec). Generate vectors for key words like <i>doctor</i>, <i>nurse</i>, etc. 3. Bias Detection for Given Sentence: Input: "The doctor treated his patient." Extract keywords (e.g., <i>doctor</i>). Compute average similarity of <i>doctor</i> with male corpus vs. female corpus: 				
	$egin{aligned} ext{sim}_{ ext{male}} &= rac{1}{n}\sum_{i=1}^n \cos(dec{octor},ec{male}_i) \ ext{sim}_{ ext{female}} &= rac{1}{m}\sum_{i=1}^m \cos(dec{octor}, fec{emale}_i) \end{aligned}$				
	Threshold-Based Bias Detection:				
	Define a threshold (e.g., 0.1 difference). If: $Y = \begin{cases} 1 & if f(x) \ge \theta \\ 0 & if f(x) < \theta \end{cases}$				
5 b	Discuss the various fairness measures for evaluating bias in NLP and apply the Gender Bias for the given sentence "The doctor treated his patient".	5	CO 5	L 2	
	Fairness in NLP Fairness in NLP aims to ensure that language models do not promote stereotypes or unfair associations, such as linking certain professions with specific genders, races, or identities.				
	Key Fairness Measures				
	 Direct Bias Checks if neutral words (e.g., <i>doctor</i>, <i>engineer</i>) are more similar to gendered words (like <i>he</i> or <i>she</i>). 				
	 Indirect Bias Evaluates whether words associated with a neutral term reflect bias, even if the word itself seems unbiased. 				
	 Word Embedding Association Test (WEAT) Statistically analyzes how strongly groups of words (e.g., professions) are linked to gendered terms. 				
	4. Projection Test Measures whether a neutral word leans more toward male or female concepts within the model.				
	 Counterfactual Fairness Tests if changing gendered terms in a sentence (e.g., <i>his</i> to <i>her</i>) leads to different outputs or interpretations. 				
1					

Examines full sentences to see if models treat them differently based on gendered language.			
Approach: Corpus-Based Bias Detection			
• Step 1: Create two small corpora — one containing male-associated words and another with female-associated words.			
• Step 2: For the given sentence "The doctor treated his patient," identify keywords like <i>doctor</i> .			
• Step 3: Compare how closely the word <i>doctor</i> relates to the male and female corpora.			
• Step 4: If <i>doctor</i> is significantly closer to the male corpus, the model shows male bias.			
Application to Example Sentence			
Sentence: "The doctor treated his patient."			
• The use of "his" and the association of <i>doctor</i> more strongly with male terms indicates gender bias .			
• The model may be assuming <i>doctor</i> is male, which reflects a lack of fairness .			
Describe the Simple encoder-decoder model and identify the attention mechanism of the given sentence "The girl liked the pink frock ".	1 0	CO 5	L 3
ENCODER INPUT (note: middle layer represents the hidden layer)			
1. Encoder-Decoder Architecture The Encoder-Decoder model is used in sequence-to-sequence tasks like machine translation , summarization , and text generation .			
 Encoder: Takes the input sentence (e.g., "The girl liked the pink frock"). Converts each word into a hidden state. Final hidden state summarizes the full sentence (context vector). Decoder: Starts with the context vector from the encoder. Generates the output sequence word-by-word (e.g., in translation). 			
Limitation : All input information is compressed into a single fixed-length vector, which may lose details for long sentences.			
2. Attention Mechanism			
To overcome this, Attention was introduced. Instead of relying only on the final encoder state, the decoder looks at all encoder hidden states and decides which words to focus on at each decoding step.			
3. Applying Attention to the Sentence			
Sentence: "The girl liked the pink frock."			
When processing this sentence using an encoder-decoder model with attention (e.g., for translating it to another language):			

The encoder generates hidden states for each word: • "The", "girl", "liked", "the", "pink", "frock" 0 At each decoding step (say translating "liked" into another language), the attention mechanism helps the decoder focus more on: • The most relevant words — e.g., "girl" and "liked" For example, when decoding "frock", the decoder may attend more to "pink" and "frock" from the • encoder side. **Basic Equations** Let's say: • h_i = encoder hidden state for the i-th word s_t = decoder hidden state at time t. $lpha_{ti}$ = attention weight for h_i at time t. 1. Score Calculation (e.g., dot product): $score(s_t,h_i) = s_t^{ op}h_i$ 2. Softmax Attention Weights: $lpha_{ti} = rac{\exp(score(s_t,h_i))}{\sum_j \exp(score(s_t,h_j))}$ 3. Context Vector: $c_t = \sum_i lpha_{ti} h_i$

Faculty Signature

CCI Signature

HOD Signature