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Make use of entropy and information gain to discover the root node for the
Decision tree for the following dataset using 1D3 algorithm.

S. | CG | Interactiv Practical Communication Job
No PA eness Knowledge Skills Offer
1 >9 Yes Very good Good Yes
2 | >8 No Good Moderate Yes
3 >9 No Average Poor No
4 | <8 No Average Good No
5 =8 Yes Good Moderate Yes
6 >9 Yes Good Moderate Yes
7 | <8 Yes Good Poor No
8 >9 No Very good Good Yes
9 =8 Yes Good Good Yes
10 | =8 Yes Average Good Yes
Solution:

Step 1:

Calculate the Entropy for the target class Job Offer.
Entropy_Info(Target Attribute = Job Offer) = Entropy_Info(7, 3) =
i [llog 2 i} = ~(-0.3599 + —0.5208) = 0.8807
—— 107210 10 27 ' '
Step 2:

Calculate the Entropy_Info and Gain(Information_Gain) for each of the attribute in the training
dataset.

Table 6.4 shows the number of data instances classified with Job Offer as Yes or No for the attribute
CGPA.

Table 6.4: Entropy Information for CGPA

29 3 1 4
28 4 0 4 0
<8 0 2

Solution:

Step 1:

Calculate the Entropy for the target class ‘Job Offer’.
Entropy_Info(Target Attribute = Job Offer) = Entropy_Info(7, 3) =

:—[7103 2+ 2 1og, 2 | - 03599 + ~0.5208) = 0.8807
270 * 10 °B: g | = (03599 +-05208)=0.

Iteration 1: 10

Step 2:

Calculate the Entropy_Info and Gain(Information_Gain) for each of the attribute in the training
dataset.

Tagll; 6.4 shows the number of data instances classified with Job Offer as Yes or No for the attribute
C .

Table 6.4: Entropy Information for CGPA

29 3 1 4
28 4 0 4
<8 0 2 2 0
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Decision Tree Learning « 165

Table 6.6: Entropy Information for Practical Knowledge

Practica owledae Offe - 0 o 0 op
Very Good 2 0 2 0
Average 1 2 3

l&ood 4 1 5

Entropy_Info(T, Practical Knowledge)

222003112254411]
== = o ol P = 21+ 2| -=log,——-=log. —
—10[ 21og22 2103’2}+10li 310g23 3]0813]+10[ 5 85" 5 825
2 3 5
= —(0) + —(0.5280 + 0.3897) + —(0. X

=5(0)+ 35 +03897) + - (02574 + 0.4641)
=0 +0.2753 + 0.3608
=0.6361
Gain(Practical Knowledge) = 0.8807 — 0.6361

=0.2446

Table 6.7 shows the number of data instances classified with Job Offer as Yes or No for the
attribute Communication Skills.

Table 6.7: Entropy Information for Communication Skills

0 3 Offe e ob Ofte 0 014
Good 1 1
Moderate 3 0
Poor 0 2

Entropy_Info(T, Communication Skills)

5[ & 4 1. 1| 8[ 8 8 0, 0. 2] 0., .0 2 2}
w2 Ly 1103 B4 3 D Do 2 Siop = S =
m[ 51%:5 51"325]+1o[ 31%:3 3l°g=3]+1ol g %23 3 P22

5 3 2
- : = (0)+—(
(05280 +0.3897) +1-(0) + 1(0)

= 0.3609
Gain(Communication Skills) = 0.8813 - 0.36096
=0.5203
The Gain calculated for all the attributes is shown in Table 6.8:
Table 6.8: Gain
Attributes Gain
CGPA 0.5564
[teractiveness | 00911 |
Practical Knowledge 0.2246
[ Communication Skills 0.5203

29 4/CGPA\ <B

3 m T
Very good
No Average
Yes Good Moderate Yes
No Very good Good Yes

2a

Structure explanation- 1M

Explain decision tree learning with its structure, advantages, and disadvantages.
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Root note

q@@ Decision node

Leaf node

Figure 6.1: Nodes in a Decision Tree

Advantages- 2M
Advantages of Decision Trees

1. Easy to model and interpret
2. Simple to understand
3. The input and output attributes can be discrete or continuous predictor variables.

4. Can model a high degree of nonlinearity in the relationship between the target variables and the
predictor variables

5. Quick to train
Disadvantages- 2M

Advantages of Decision Trees

1. Easy to model and interpret
2. Simple to understand
3. The input and output attributes can be discrete or continuous predictor variables.

4. Can model a high degree of nonlinearity in the relationship between the target variables and the
predictor variables

5. Quick to train

2b

Explain pruning in decision tree with an example.
Explanation — 5M

Inductive Bias in Decision Trees:

¢ Inductive bias is necessary for learning algorithms to generalize from training
data to unseen data.

e In the ID3 algorithm, the bias favors shorter trees and attributes with high
information gain.

e ID3 builds a single decision tree using a hill-climbing search that may not find
the global optimum.

e Occam's Razor is used: the simplest tree (shortest) is preferred.
Overfitting in Decision Trees:

e Overfitting occurs when a tree performs well on training data but poorly on
test data.

e This happens due to the tree being too complex, capturing noise rather than
patterns.

e There is a tradeoff between accuracy and complexity.
Pruning to Prevent Overfitting:

e Pruning improves decision tree generalization.

Pre-pruning: Stops tree growth early.

Post-pruning: Trims the tree after it is fully built.

Data is split into training (40%), validation, and testing (60%).

Validation data helps determine where pruning should occur by measuring
misclassifications
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Define prior probability. Explain Bayes theorem, hme and hmap with an example

Prior Probability — 2M
Prior probability is the initial likelihood of an event occurring before any new
evidence or observation is taken into account. It reflects what is believed based on
existing knowledge, prior to collecting new data.

Bayes Theorem- 3M

P (Hypothesis il Evidence E) is calculated from the prior probability P (Hypothesis h), the
likelihood probability P (Evidence E | Hypothesis ) and the marginal probability P (Evidence E),
It can be written as:

P(Evidence ElHypothesis /) P(Hypothesis h)

P (Hvpothesis i | Evidence E) =
P(Evidence E)

(8.1)

hme and hvap -3M
Maximum A Posteriori (MAP) Hypothesis, h,,,,

Given a set of candidate hypotheses, the hypothesis which has the maximum value is considerea
the maximum probable hypothesis or most probable hypothesis. This most probable hypothesis is caller
the Maximum A Posteriori Hypothesis h,,,,. Bayes theorem Eq. (8.1) can be used to find the k.

h,... = max, , P(Hypothesish| Evidence E)
i P(Evidence E | Hypothesis h)P(Hypothesis h)
-l P(Evidence E)
= max,, P(Evidence E | Hypothesis h)P(Hypothesis h) (8.2)

Maximum Likelihood (ML) Hypothesis, h,,,

Given a set of candidate hypotheses, if every hypothesis is equally probable, only P (E | k) is used
to find the most probable hypothesis. The hypothesis that gives the maximum likelihood for P (E | k)
is called the Maximum Likelihood (ML) Hypothesis, k,,, .

h,, = max,,, P(Evidence E | Hypothesis h) (8.3)

Example- 2M
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Explain different types of artificial neural network with diagram
Explanation with diagram any 3
Feed Forward Neural Network

e Structure: Simple layers where information flows in one direction—from
input to output.

e Features: May or may not have a hidden layer. No backpropagation.
e Use: Suitable for simple classification and image processing tasks.
e Limitations: Not suitable for complex learning problems.

Fully Connected Neural Network

e Structure: Every neuron in one layer is connected to every neuron in the
next layer.

e Use: Allows for more complex representations and learning due to full
connectivity.

e Note: It's a more specific structure within feedforward networks.

Multi-Layer Perceptron (MLP)
e Structure: Multiple layers (input, hidden, and output). Fully connected.
e Features: Includes forward propagation and backpropagation.

e Use: Complex tasks like deep learning, speech recognition, medical
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diagnosis.

e Note: Learning occurs through weight adjustment using errors from
predictions.

Feedback Neural Network
e Structure: Connections allow signals to flow both forward and backward.
e Features: Neurons in later layers can influence earlier layers.

e Use: Suitable for dynamic learning tasks. More complex due to feedback
loops.

Input layer Hidden layer Output layer

Figure 10.8: Model of a Fully Connected Neural Network

4
Output

Input layer Hidden layer Output layer

Figure 10.7: Model of a Feed Forward Neural Network

! Feedback

Input layer Hidden layer Output layer

Figure 10.10: Model of a Feedback Neural Network

Input layer Hidden layer Output layer

Figure 10.9: Model of a Multi-Layer Perceptron

4b

Define activation function. Explain different types of activation function
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Any 3 Activation Function
PeIOW ait suliv Ul uie acuvanon runctions used in AININS:

1. Identity Function or Linear Function
fx)=xVx (104)
The value of f{x) increases linearly or proportionally with the value of x. This function

is useful when we do not want to apply any threshold. The output would be just the
weighted sum of input values. The output value ranges between — and +00.

2. Binary Step Function

0 if f(x)<0
The output value is binary, i.e., 0 or 1 based on the threshold value 6. If value of f(x)
is greater than or equal to 6, it outputs 1 or else it outputs 0.

3. Bipolar Step Function

fix) = {1 =0 (10.5)

fwy=| 1 AN)20 (10.6)
-1 if f(x) <0
The output value is bipolar, i.e,, +1 or -1 based on the threshold value 6. If value of
f(x) is greater than or equal to 6, it outputs +1 or else it outputs -1.
4. Sigmoidal Function or Logistic Function
i (10.7)
l+e™
It is a widely used non-linear activation:function which produces an S-shaped curve

i.e., no change in the prediction for very low input values and very high input values.
5. Bipolar Sigmoid Function :

et (10.8)
1+e*
It outputs values between -1 and +1.

6. Ramp Functions

1ifx>1
f)=4xif 0<x<1 (10.9)
0ifx<0
It is a linear function whose upper and lower limits are fixed.

7. Tanh - Hyperbolic Tangent Function
The Tanh function is a scaled version of the sigmoid function which is also non-linear.
It also suffers from the vanishing gradient problem. The output values range between

-land 1. 5

tan h(x) = ——

-1 (10.10)

and the output values are in the range of 0 and 1. It has a vanishing gradient problem,.

5a

Calculate the Euclidean, Manhattan and chebyshev distance
@ (2, 3, 4) and (1, 5, 6) -------- 2.5M

(b) (2,2,9)and (7, 8, 9)--------- 2.5M

Solution:
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a.(234)and(156)

Solution

Euclidean distance = \/(2— 1)) +(3-5)7+(4-6)* =9 =3
Manhattan distance = [2—1|+[3—5)|+|4—6|=1+2+2=5
Chebyshev Distance = max {|2—-1|,[3-5)|,|4 - 6|} = max{1,2,2} =2

b.(229)and (78 9)

Euclidean Distance = \/(2—7): +(2-8)* +(9-9)? =/25+36+09 =61 =7.81
Manhattan Distance = |2—7[+|2*8)|+|9—9|=5+6+0 =11

Chebyshev Distance = max {|2 — 7|+ |2 —8)| +]|9 - 9|} = {5,6,0} =6

5b

For the given pairs of binary vectors, compute the following similarity measures:

Cosine Similarity & Simple Matching Coefficient (SMC)
(a) (1,0, 1, 1) and (1, 1, 0, 0)--—--- oM
(b) (1,0,0,0,1)and (1,0,0,0, 1) and (1, 1, 0, 0, 0)---------- 3M

a. (101 1)and(1100)
Solution

1011

1100

C=2b=1d=1,

sMC= — 2t _1_49s
a+b+c+d 4
(Ix1+0x1+1x0+1x0) 1 =0.408

Cosine Similarity =

NN R N

(b) Vectors:

1. (1,0,0,0,1)and(1,0,0,0,1)

2. (1,0,0,0,1)and (1,1,0,0,0)
Pair1:(1,0,0,0,1)and (1,0,0,0, 1)
Cosine Similarity:

e Vectors are identical = cosine similarity = 1.0
SMC:

SMcC:

= Al 5 elements match

MO =2 =1.0
5
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Pair2:(1,0,0,0, Thand (1,1, 0,0, 0)

Step 1: Cosine Similarity

s Dotproduct1-140-140-040-041:-0=1
o A=+ 0+0+0+ 1% =42

o Bl=(1F+ 1 +0+0+0=v2

= 0.5

1
Cosine Similarity = =
NCR R

s Matches: 3

3
SMC=—- =048
3

Apply k means clustering algorithm for the given data with initial value of
objects 2 and 5 considered as initial seeds.

Solution — 10M
Objects X-Coordinate | Y-Coordinate
1 2 4
2 4 6
3 6 8
4 10 4
5 12 4

Table 13.9: Sample Data

Objects X-coordinate Y-coordinate

1 2 4
4 -

6 8

4 10 4
12 I e

Solution: As per the problem, choose the objects 2 and 5 with the coordinate values. Hereafter,
the objects' id is not important. The samples or data points (4, 6) and (12, 4) are started as two
clusters as shown in Table 13.10.
Initially, centroid and data points are same as only one sample is involved.
Table 13.10: Initial Cluster Table

4,6) (12,4)
Centroid 1 (4, 6) Centroid 2 (12, 4)

Iteration 1: Compare all the data points or samples with the centroid and assign to the
nearest sample. Take the sample object 1 (2, 4) from Table 13.9 and compare with the centroid of
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the clusters in Table 13.10. The distance is 0. Therefore, it remains in the same cluster. Similarly,

consider the remaining samples. For the object 1 (2, 4), the Euclidean distance between it and
{he centroid is given as:

Dist (1, centroid 1) = /(2 - 4)? + (4 - 6)* = /8
Dist (1, centroid 2) = /(2 —12)? 4+ (4 —4) = 100 =10

Object 1 is closer to the centroid of cluster 1 and hence assign it to cluster 1. This is shown in
Table 13.11. Object 2 is taken as centroid point.

For the object 3 (6, 8), the Euclidean distance between it and the centroid points is given as:
Dist (3, centroid 1) = /(6 —4) +(8-6) = Jg
Dist (3, centroid 2) = /(6 - 12)? + (8 - 4) = J52

Object 3 is closer to the centroid of cluster 1 and hence remains in the same cluster 1,

Proceed with the next point object 4(10, 4) and again compare it with the centroids in
Table 13.10.

Dist (4, centroid 1) = \[(10 - 4)* + (4 - 6)* =40
Dist (4, centroid 2) = \[(10-12)* + (4 — 4 =4 =2

Object 4 is closer to the centroid of cluster 2 and hence assign it to the cluster table. Object 4 is
in the same cluster. The final cluster table is shown in Table 13.11.

Obviously, Object 5 is in Cluster 3. Recompute the new centroids of cluster 1 and cluster 2.
They are (4, 6) and (11, 4), respectively.

lable 13.11: Cluster Table After Iteration 1

Cluster 1 Cluster 2

4,6) (10,4)
@4 (12,4)
(6,8)

Centroid1(4,6) | Centroid2(11,4)

The second iteration is started again with the Table 13,11.

Obviously, the point (4, 6) remains in cluster 1, as the distance of it with itself is 0. The
remaining objects can be checked. Take the sample object 1 (2, 4) and compare with the centroid
of the clusters in Table 13,12,

Dist (1, centroid 1) = (2 - 47 + (4- 67 =8
Dist (1, centroid 2) = (2 - 11 + (4—4) =81 =9

Object 1 is closer to centroid of cluster 1 and hence remains in the same cluster. Take the
sample object 3 (6, 8) and compare with the centroid values of clusters 1 (4, 6) and cluster
2(11, 4) of the Table 13.12.

Dist (3, centroid 1) = /{6 - 4f + (8- 6)* = {8

Dist (3, centroid 2) = /(6 - 117 + (8- 4)* =41




Object 3 is closer to centroid of cluster 1 and hence remains in the same cluster. Take the
sample object 4 (10, 4) and compare with the centroid values of clusters 1 (4, 6) and cluster 2 (11, 4
of the Table 13.12:

Dist (4, centroid 1) = /(10 - 4 +(d-6) = J‘E
Dist (3, centroid 2) = /(10 - 11)2 + (4 - 4)? = J1=1

Object 3 is closer to centroid of cluster 2 and hence remains in the same cluster. Obviously,
the sample (12, 4) is closer to its centroid as shown below:

Dist (5, centroid 1) = \[(12 - 4)* + (4 - 6)* =68

Dist (5, centroid 2) = \/(12 —11)? + (4 - 4)2 = /1 = 1. Therefore, it remains in the same cluster,
Object 5 is taken as centroid point.

The final cluster Table 13.12 is given below:

Table 13.12: Cluster Table After Iteration 2

(4, 6) (10, 4)
@ 4) (12, 4)
(6,8)

Centroid (4, 6) Centroid (11, 4)

There is no change in the cluster Table 13.12. It is exactly the same; therefore, the k-means
algorithm terminates with two clusters with data points as shown in the Table 13.12.
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