| USN |  |  |  |  |  |  |  |  |  |
|-----|--|--|--|--|--|--|--|--|--|
|-----|--|--|--|--|--|--|--|--|--|



Internal Assessment Test 2 – May 2025 Scheme & Solution

|       |            |           |             | Scheme &             | 2010   | lion         |         |      |     |   |     |    |
|-------|------------|-----------|-------------|----------------------|--------|--------------|---------|------|-----|---|-----|----|
| Sub:  | Machine Le | arning    |             |                      |        | Sub<br>Code: | BAI602  | Bran | ch: | A | IML |    |
| Date: | 23/05/25   | Duration: | 90 min      | Max Marks:           | 50     | Sem/Sec:     | VI(A&B) |      |     |   | OBI | Е  |
|       | •          | Ar        | nswer any F | <b>IVE FULL Ques</b> | stions |              |         |      | MAF | R | СО  | RB |
|       |            |           |             |                      |        |              |         |      | KS  |   |     | Т  |

| ecisi<br><b>S.</b>                                                      | CG                                                                                                                                                                    | Interactiv                                                                                                                                                                                                                          | Practical                                                                                                                                                                                                                                                                                                                                                                         | Communication                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Job              |  |
|-------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--|
| No                                                                      | PA                                                                                                                                                                    | eness                                                                                                                                                                                                                               | Knowledge                                                                                                                                                                                                                                                                                                                                                                         | Skills                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Offer            |  |
| ·<br>1                                                                  | ≥9                                                                                                                                                                    | Yes                                                                                                                                                                                                                                 | Very good                                                                                                                                                                                                                                                                                                                                                                         | Good                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Yes              |  |
| 2                                                                       | <u>_</u> ><br>≥8                                                                                                                                                      | No                                                                                                                                                                                                                                  | Good                                                                                                                                                                                                                                                                                                                                                                              | Moderate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Yes              |  |
| <u>-</u><br>3                                                           | <u>≥</u> 9                                                                                                                                                            | No                                                                                                                                                                                                                                  | Average                                                                                                                                                                                                                                                                                                                                                                           | Poor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | No               |  |
| 4                                                                       | <8                                                                                                                                                                    | No                                                                                                                                                                                                                                  | Average                                                                                                                                                                                                                                                                                                                                                                           | Good                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | No               |  |
| 5                                                                       | <u>≥8</u>                                                                                                                                                             | Yes                                                                                                                                                                                                                                 | Good                                                                                                                                                                                                                                                                                                                                                                              | Moderate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Yes              |  |
| 6                                                                       | <u>≥</u> 9                                                                                                                                                            | Yes                                                                                                                                                                                                                                 | Good                                                                                                                                                                                                                                                                                                                                                                              | Moderate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Yes              |  |
| 7                                                                       | <8                                                                                                                                                                    | Yes                                                                                                                                                                                                                                 | Good                                                                                                                                                                                                                                                                                                                                                                              | Poor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | No               |  |
| 8                                                                       | <br>≥9                                                                                                                                                                | No                                                                                                                                                                                                                                  | Very good                                                                                                                                                                                                                                                                                                                                                                         | Good                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Yes              |  |
| 9                                                                       | <u>≥</u> 8                                                                                                                                                            | Yes                                                                                                                                                                                                                                 | Good                                                                                                                                                                                                                                                                                                                                                                              | Good                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Yes              |  |
| <u>)</u><br>10                                                          | $\geq 8$                                                                                                                                                              | Yes                                                                                                                                                                                                                                 | Average                                                                                                                                                                                                                                                                                                                                                                           | Good                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Yes              |  |
| Te                                                                      | unbiger 1-                                                                                                                                                            | $=-\left \frac{7}{10}\right $                                                                                                                                                                                                       | $\log_2 \frac{7}{10} + \frac{3}{10} \log_2 \frac{3}{10} = -(4)$                                                                                                                                                                                                                                                                                                                   | ropy_Info(7, 3) = $-0.3599 + -0.5208$ ) = $0.8807$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  |  |
| Ste<br>Cal<br>dat<br>Tab                                                | aset.<br>ole 6.4 sh                                                                                                                                                   | ne Entropy_Info                                                                                                                                                                                                                     | and Gain(Information_C                                                                                                                                                                                                                                                                                                                                                            | -0.3599 + -0.5208) = 0.8807<br>Gain) for each of the attribute<br>ed with Job Offer as Yes or No f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  |  |
| Ste<br>Cal<br>dat<br>Tab                                                | p 2:<br>culate th<br>aset.                                                                                                                                            | ne Entropy_Info                                                                                                                                                                                                                     | and Gain(Information_C                                                                                                                                                                                                                                                                                                                                                            | -0.3599 + -0.5208) = 0.8807<br>Gain) for each of the attribute<br>ed with Job Offer as Yes or No f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  |  |
| Ste<br>Cal<br>dat<br>Tab                                                | p 2:<br>culate th<br>aset.<br>ole 6.4 sh                                                                                                                              | ne Entropy_Info<br>ows the number<br>Table 6.4:<br>CGPA                                                                                                                                                                             | and Gain(Information_C<br>of data instances classifie<br>Entropy Information for<br>Job Offer = Yes Job Offer                                                                                                                                                                                                                                                                     | -0.3599 + -0.5208) = 0.8807<br>Gain) for each of the attribute<br>ed with Job Offer as Yes or No f<br>CGPA<br>er = No Total Entropy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |  |
| Ste<br>Cal<br>dat<br>Tab                                                | p 2:<br>culate th<br>aset.<br>ole 6.4 sh                                                                                                                              | ne Entropy_Info<br>ows the number<br>Table 6.4:<br>CGPA<br>≥9                                                                                                                                                                       | and Gain(Information_C<br>of data instances classifie<br>Entropy Information for<br>Job Offer = Yes Job Off<br>3 1                                                                                                                                                                                                                                                                | -0.3599 + -0.5208) = 0.8807<br>Gain) for each of the attribute<br>ed with Job Offer as Yes or No f<br>CGPA<br>er = No Total Entropy<br>4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                  |  |
| Ste<br>Cal<br>dat<br>Tab                                                | p 2:<br>culate th<br>aset.<br>ole 6.4 sh                                                                                                                              | ne Entropy_Info<br>ows the number<br>Table 6.4:<br>CGPA                                                                                                                                                                             | and Gain(Information_(<br>of data instances classifie<br>Entropy Information for<br>Job Offer = Yes Job Offe                                                                                                                                                                                                                                                                      | -0.3599 + -0.5208) = 0.8807 Gain) for each of the attribute<br>ed with Job Offer as Yes or No f<br>CGPA<br>$\frac{4}{4}$ $0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |  |
| Ste<br>Cal<br>dat<br>Tab<br>CG<br>So<br>So                              | p 2:<br>loulate th<br>aset.<br>ble 6.4 sho<br>PA.<br>lution:<br>ep 1:<br>loulate th                                                                                   | ne Entropy_Info<br>ows the number<br>Table 6.4:<br>CGPA<br>≥9<br>≥8<br><8<br><8                                                                                                                                                     | and Gain(Information_C<br>of data instances classifie<br>Entropy Information for<br>Job Offer = Yes Job Offer<br>3 1<br>4 0<br>0 2<br>e target class 'Job Offer'.<br>ribute = Job Offer) = Ent                                                                                                                                                                                    | -0.3599 + -0.5208) = 0.8807 Gain) for each of the attribute<br>ed with Job Offer as Yes or No f<br>CGPA<br>$\frac{4}{2}$ $0$ ropy_Info(7, 3) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  |  |
| Ste<br>Cai<br>dat<br>Tab<br>CG<br>So<br>Ste<br>Ca                       | p 2:<br>loulate th<br>aset.<br>ble 6.4 sho<br>PA.<br>lution:<br>ep 1:<br>loulate th                                                                                   | ne Entropy_Info<br>ows the number<br>Table 6.4:<br>CGPA<br>≥9<br>≥8<br><8<br><8                                                                                                                                                     | and Gain(Information_C<br>of data instances classifie<br>Entropy Information for<br>Job Offer = Yes Job Offer<br>3 1<br>4 0<br>0 2<br>e target class 'Job Offer'.<br>ribute = Job Offer) = Ent                                                                                                                                                                                    | -0.3599 + -0.5208) = 0.8807 Gain) for each of the attribute<br>ed with Job Offer as Yes or No f<br>CGPA<br>$\frac{4}{2}$ $\frac{4}{2}$ $\frac{2}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                  |  |
| Ste<br>Cai<br>dat<br>Tab<br>CG<br>So<br>Ste<br>Ca<br>Ite<br>Ste<br>Cai  | p 2:<br>culate the<br>aset.<br>ole 6.4 she<br>PA.<br>lution:<br>p 1:<br>lculate the<br>Entropy<br>ration 1:<br>p 2:<br>lculate the<br>aset.                           | the Entropy_Info<br>ows the number<br>Table 6.4:<br>CGPA<br>$\geq 9$<br>$\geq 8$<br>< 8<br>the Entropy for the<br>y_Info(Target Att<br>$= -\left[\frac{7}{10}\right] c$<br>the Entropy_Info                                         | and Gain(Information_C<br>of data instances classified<br>Entropy Information for<br>Job Offer = Yes Job Offer<br>3 1<br>4 0<br>0 2<br>e target class 'Job Offer'.<br>ribute = Job Offer) = Ent<br>$g_2 \frac{7}{10} + \frac{3}{10} \log_2 \frac{3}{10} = -(c)$<br>and Gain(Information_C                                                                                         | -0.3599 + -0.5208) = 0.8807 Gain) for each of the attribute<br>ad with Job Offer as Yes or No for Each of the attribute<br>ad with Job Offer as Yes or No for Each of the attribute<br>and the section of the attribute                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | or the attribute |  |
| Ste<br>Cai<br>dat<br>Tab<br>CG<br>Sto<br>Ca<br>Ste<br>Cai<br>dat<br>Tab | p 2:<br>culate the<br>aset.<br>ole 6.4 she<br>PA.<br>lution:<br>p 1:<br>lculate the<br>Entropy<br>ration 1:<br>p 2:<br>lculate the<br>aset.                           | the Entropy_Info<br>ows the number<br>Table 6.4:<br>CGPA<br>$\geq 9$<br>$\geq 8$<br>< 8<br>the Entropy for the<br>y_Info(Target Att<br>$= -\left[\frac{7}{10}\right] c$<br>the Entropy_Info<br>ows the number                       | and Gain(Information_C<br>of data instances classified<br>Entropy Information for<br>Job Offer = Yes Job Offer<br>3 1<br>4 0<br>0 2<br>e target class 'Job Offer'.<br>ribute = Job Offer) = Ent<br>$g_2 \frac{7}{10} + \frac{3}{10} \log_2 \frac{3}{10} = -(c)$<br>and Gain(Information_C<br>of data instances classified                                                         | -0.3599 + -0.5208) = 0.8807 Gain) for each of the attribute<br>ad with Job Offer as Yes or No for the attribute<br>$\frac{1}{2} + \frac{1}{2} + \frac$ | or the attribute |  |
| Ste<br>Cal<br>dat<br>Tab<br>CG<br>Ste<br>Ca<br>Ste<br>Cal<br>dat<br>Tab | ution:<br>p 2:<br>leulate the<br>aset.<br>ole 6.4 she<br>PA.<br>lution:<br>p 1:<br>lculate the<br>Entropy<br>ration 1:<br>p 2:<br>lculate the<br>aset.<br>ole 6.4 she | the Entropy_Info<br>ows the number<br>Table 6.4:<br>CGPA<br>$\geq 9$<br>$\geq 8$<br>< 8<br>the Entropy for the<br>y_Info(Target Att<br>$= -\left[\frac{7}{10}\right] c$<br>the Entropy_Info<br>ows the number                       | and Gain(Information_C<br>of data instances classified<br>Entropy Information for<br>Job Offer = Yes Job Offer<br>3 1<br>4 0<br>0 2<br>e target class 'Job Offer'.<br>ribute = Job Offer) = Ent<br>$9g_2 \frac{7}{10} + \frac{3}{10} log_2 \frac{3}{10} = -(c)$<br>and Gain(Information_C<br>of data instances classified<br>Entropy Information for                              | -0.3599 + -0.5208) = 0.8807 Gain) for each of the attribute<br>ed with Job Offer as Yes or No f<br>CGPA<br>$r = No  Total  Entropy$ $4  0$ $2  0$ Tropy_Info(7, 3) =<br>-0.3599 + -0.5208) = 0.8807 Gain) for each of the attribute<br>ed with Job Offer as Yes or No f<br>CGPA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | or the attribute |  |
| Ste<br>Cal<br>dat<br>Tab<br>CG<br>Ste<br>Ca<br>Ste<br>Cal<br>dat<br>Tab | ution:<br>p 2:<br>leulate the<br>aset.<br>ole 6.4 she<br>PA.<br>lution:<br>p 1:<br>lculate the<br>Entropy<br>ration 1:<br>p 2:<br>lculate the<br>aset.<br>ole 6.4 she | the Entropy_Info<br>ows the number<br>Table 6.4:<br>CGPA<br>$\ge 9$<br>$\ge 8$<br>< 8<br>the Entropy for the<br>y_Info(Target Att<br>$= -\left[\frac{7}{10}\right] c$<br>the Entropy_Info<br>ows the number<br>Table 6.4:           | and Gain(Information_C<br>of data instances classified<br>Entropy Information for<br>Job Offer = Yes Job Offer<br>3 1<br>4 0<br>0 2<br>e target class 'Job Offer'.<br>ribute = Job Offer) = Ent<br>$g_2 \frac{7}{10} + \frac{3}{10} \log_2 \frac{3}{10} = -(c)$<br>and Gain(Information_C<br>of data instances classified                                                         | -0.3599 + -0.5208) = 0.8807 Gain) for each of the attribute<br>ad with Job Offer as Yes or No for the attribute<br>$\frac{1}{2} = \frac{1}{2} = \frac$ | or the attribute |  |
| Ste<br>Cal<br>dat<br>Tab<br>CG<br>Ste<br>Cal<br>dat<br>Tab              | ution:<br>p 2:<br>leulate the<br>aset.<br>ole 6.4 she<br>PA.<br>lution:<br>p 1:<br>lculate the<br>Entropy<br>ration 1:<br>p 2:<br>lculate the<br>aset.<br>ole 6.4 she | the Entropy_Info<br>ows the number<br>Table 6.4:<br>CGPA<br>$\geq 9$<br>$\geq 8$<br>< 8<br>The Entropy for the<br>y_Info(Target Att<br>$= -\left[\frac{7}{10}\right] c$<br>the Entropy_Info<br>ows the number<br>Table 6.4:<br>CGPA | and Gain(Information_C<br>of data instances classified<br>Entropy Information for<br>Job Offer = Yes Job Offer<br>3 1<br>4 0<br>0 2<br>e target class 'Job Offer'.<br>ribute = Job Offer) = Ent<br>$g_2 \frac{7}{10} + \frac{3}{10} \log_2 \frac{3}{10} = -(2)$<br>and Gain(Information_C<br>of data instances classified<br>Entropy Information for<br>Job Offer = Yes Job Offer | -0.3599 + -0.5208) = 0.8807 Gain) for each of the attribute<br>ed with Job Offer as Yes or No f<br>CGPA<br>$r = No  Total  Entropy$ $4  0$ $2  0$ Tropy_Info(7, 3) =<br>-0.3599 + -0.5208) = 0.8807 Gain) for each of the attribute<br>ed with Job Offer as Yes or No f<br>CGPA<br>r = No  Total  Entropy $4  -0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | or the attribute |  |

- Decision Tree Learning • 165

Table 6.6: Entropy Information for Practical Knowledge

| Practical Knowledge | Job Offer = Yes | Job Offer = No | Total | Entropy |
|---------------------|-----------------|----------------|-------|---------|
| Very Good           | 2               | 0              | 2     | 0       |
| Average             | 1               | 2              | 3     |         |
| Good                | 4               | 1              | 5     |         |

Entropy\_Info(T, Practical Knowledge)

$$=\frac{2}{10}\left[-\frac{2}{2}\log_2\frac{2}{2}-\frac{0}{2}\log_2\frac{0}{2}\right]+\frac{3}{10}\left[-\frac{1}{3}\log_2\frac{1}{3}-\frac{2}{3}\log_2\frac{2}{3}\right]+\frac{5}{10}\left[-\frac{4}{5}\log_2\frac{4}{5}-\frac{1}{5}\log_2\frac{1}{5}\right]$$
$$=\frac{2}{10}(0)+\frac{3}{10}(0.5280+0.3897)+\frac{5}{10}(0.2574+0.4641)$$

$$=\frac{10}{10}(0)+\frac{10}{10}(0.5280+0.3897)+\frac{1}{10}(0.5280+0.3897)+\frac{1}{10}(0.5280+0.3897)+\frac{1}{10}(0.5280+0.3897)+\frac{1}{10}(0.5280+0.3897)+\frac{1}{10}(0.5280+0.3897)+\frac{1}{10}(0.5280+0.3897)+\frac{1}{10}(0.5280+0.3897)+\frac{1}{10}(0.5280+0.3897)+\frac{1}{10}(0.5280+0.3897)+\frac{1}{10}(0.5280+0.3897)+\frac{1}{10}(0.5280+0.3897)+\frac{1}{10}(0.5280+0.3897)+\frac{1}{10}(0.5280+0.3897)+\frac{1}{10}(0.5280+0.3897)+\frac{1}{10}(0.5280+0.3897)+\frac{1}{10}(0.5280+0.3897)+\frac{1}{10}(0.5280+0.3897)+\frac{1}{10}(0.5280+0.3897)+\frac{1}{10}(0.5280+0.3897)+\frac{1}{10}(0.5280+0.3897)+\frac{1}{10}(0.5280+0.3897)+\frac{1}{10}(0.5280+0.3897)+\frac{1}{10}(0.5280+0.3897)+\frac{1}{10}(0.5280+0.3897)+\frac{1}{10}(0.5280+0.3897)+\frac{1}{10}(0.5280+0.3897)+\frac{1}{10}(0.5280+0.3897)+\frac{1}{10}(0.5280+0.3897)+\frac{1}{10}(0.5280+0.3897)+\frac{1}{10}(0.5280+0.3897)+\frac{1}{10}(0.5280+0.3897)+\frac{1}{10}(0.5280+0.3897)+\frac{1}{10}(0.5280+0.3897)+\frac{1}{10}(0.5280+0.3897)+\frac{1}{10}(0.5280+0.3897)+\frac{1}{10}(0.5280+0.3897)+\frac{1}{10}(0.5280+0.3897)+\frac{1}{10}(0.5280+0.3897)+\frac{1}{10}(0.5280+0.3897)+\frac{1}{10}(0.5280+0.3897)+\frac{1}{10}(0.5280+0.3897)+\frac{1}{10}(0.5280+0.3897)+\frac{1}{10}(0.5280+0.3897)+\frac{1}{10}(0.5280+0.3897)+\frac{1}{10}(0.5280+0.3897)+\frac{1}{10}(0.5280+0.3897)+\frac{1}{10}(0.5280+0.3897)+\frac{1}{10}(0.5280+0.3897)+\frac{1}{10}(0.5280+0.3897)+\frac{1}{10}(0.5280+0.3897)+\frac{1}{10}(0.5280+0.3897)+\frac{1}{10}(0.5280+0.3897)+\frac{1}{10}(0.5280+0.3897)+\frac{1}{10}(0.5280+0.3897)+\frac{1}{10}(0.5280+0.3897)+\frac{1}{10}(0.5280+0.3897)+\frac{1}{10}(0.5280+0.589)+\frac{1}{10}(0.5880+0.589)+\frac{1}{10}(0.5880+0.589)+\frac{1}{10}(0.5880+0.589)+\frac{1}{10}(0.5880+0.589)+\frac{1}{10}(0.5880+0.589)+\frac{1}{10}(0.5880+0.589)+\frac{1}{10}(0.5880+0.589)+\frac{1}{10}(0.5880+0.589)+\frac{1}{10}(0.5880+0.589)+\frac{1}{10}(0.5880+0.589)+\frac{1}{10}(0.5880+0.589)+\frac{1}{10}(0.5880+0.589)+\frac{1}{10}(0.5880+0.589)+\frac{1}{10}(0.5880+0.589)+\frac{1}{10}(0.5880+0.589)+\frac{1}{10}(0.5880+0.589)+\frac{1}{10}(0.5880+0.589)+\frac{1}{10}(0.5880+0.589)+\frac{1}{10}(0.5880+0.589)+\frac{1}{10}(0.5880+0.589)+\frac{1}{10}(0.5880+0.589)+\frac{1}{10}(0.5880+0.589)+\frac{1}{10}(0.5880+0.589)+\frac{1}{10}(0.5880+0.589)+\frac{1}{10}(0.5880+0.589)+\frac{1}{10}(0.5880+0.589)+\frac{1}{10}(0.5880+0.589)+\frac{1}{10}(0.5880+0$$

= 0 + 0.2753 + 0.3608

= 0.6361

Gain(Practical Knowledge) = 0.8807 - 0.6361

= 0.2446

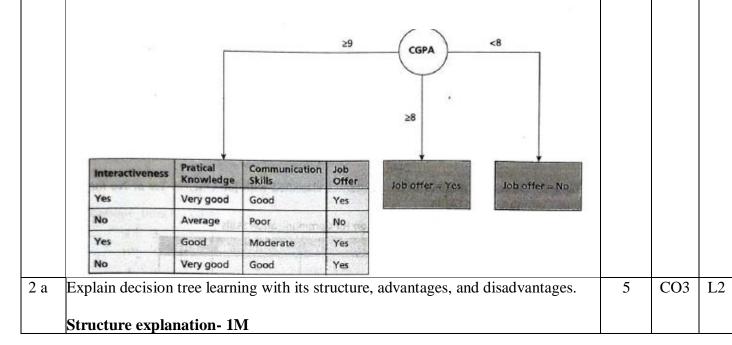
Table 6.7 shows the number of data instances classified with Job Offer as Yes or No for the attribute Communication Skills.

Table 6.7: Entropy Information for Communication Skills

| <b>Communication Skills</b> | Job Offer = Yes | Job Offer = No | Total |
|-----------------------------|-----------------|----------------|-------|
| Good                        | 4               | 1              | 5     |
| Moderate                    | 3               | 0              | 3     |
| Poor                        | 0               | 2              | 2     |

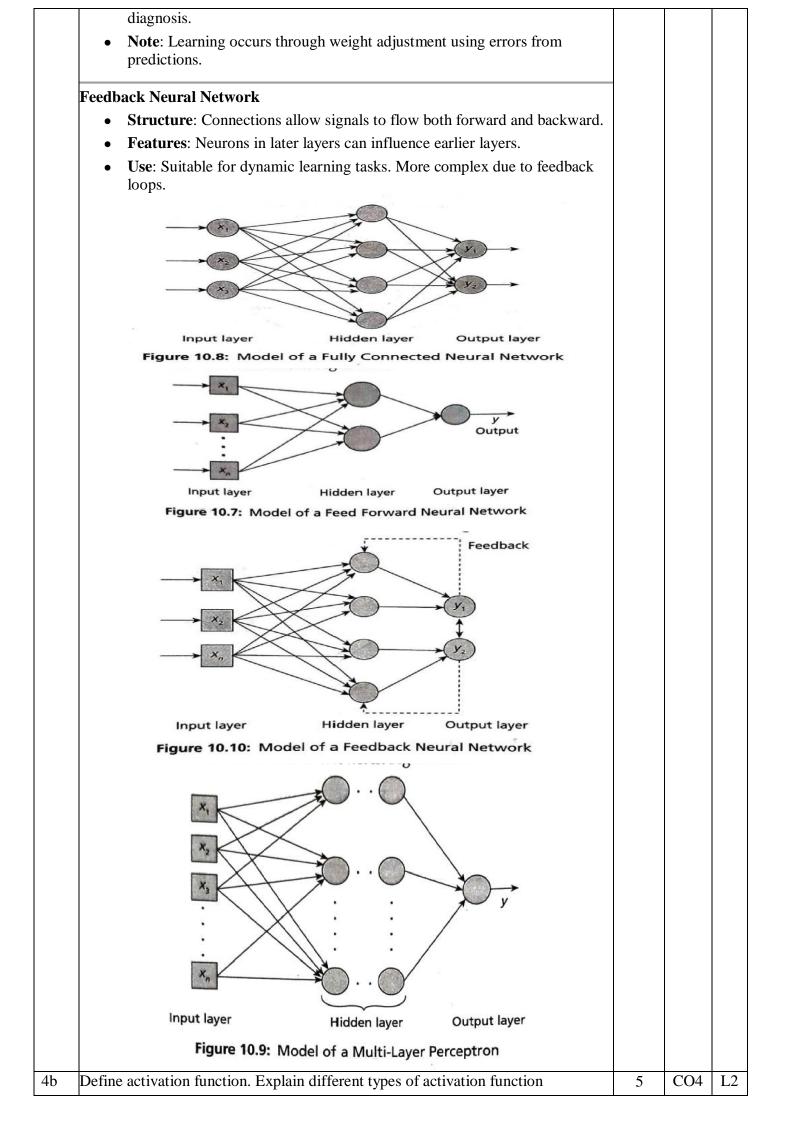
Entropy\_Info(T, Communication Skills)

| $=\frac{5}{10}\left[-\frac{4}{5}\log_2\frac{4}{5}-\frac{1}{5}\log_2\frac{1}{5}\right]$ | $+\frac{3}{10}\left[-\frac{3}{3}\log_2\frac{3}{3}-\right]$ | $\frac{0}{3}\log_2 \frac{0}{3} + \frac{2}{10} \left[ -\frac{0}{3} \right]$ | $\frac{1}{2}\log_2\frac{0}{2} - \frac{2}{2}\log_2\frac{2}{2}$ |
|----------------------------------------------------------------------------------------|------------------------------------------------------------|----------------------------------------------------------------------------|---------------------------------------------------------------|
| $=\frac{5}{10}(0.5280+0.3897)+\frac{3}{10}$                                            |                                                            |                                                                            |                                                               |
| = 0.3609                                                                               |                                                            |                                                                            |                                                               |


Gain(Communication Skills) = 0.8813 - 0.36096

= 0.5203

The Gain calculated for all the attributes is shown in Table 6.8:


Table 6.8: Gain

| Attributes           | Gain   |
|----------------------|--------|
| CGPA                 | 0.5564 |
| Interactiveness      | 0.0911 |
| Practical Knowledge  | 0.2246 |
| Communication Skills | 0.5203 |



|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 12                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                              |                                                                                                               |                                                                   |     |   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-----|---|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\bigcirc$                                                                                                                                                                                                                                                                                                                                                                                                                  | Root note                                                                                                                                                                                                                    | . C <sup></sup>                                                                                               |                                                                   |     |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                             | Decision node                                                                                                                                                                                                                |                                                                                                               |                                                                   |     |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                             | Leaf node                                                                                                                                                                                                                    |                                                                                                               |                                                                   |     |   |
| Figur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | e 6.1: Nodes                                                                                                                                                                                                                                                                                                                                                                                                                | in a Decisior                                                                                                                                                                                                                | Tree                                                                                                          |                                                                   |     |   |
| Advantages- 2M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                              |                                                                                                               |                                                                   |     |   |
| Advantages of D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                              |                                                                                                               |                                                                   |     |   |
| 1. Easy to model an                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | d interpret                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                              |                                                                                                               |                                                                   |     |   |
| 2. Simple to unders                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | tand                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                              |                                                                                                               | ÷:                                                                |     |   |
| 3. The input and ou                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | itput attributes can be d                                                                                                                                                                                                                                                                                                                                                                                                   | liscrete or continuous pr                                                                                                                                                                                                    | edictor variables.                                                                                            |                                                                   |     |   |
| <ol> <li>Can model a high<br/>predictor variable</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                             | in the relationship betw                                                                                                                                                                                                     | een the target variable                                                                                       | s and the                                                         |     |   |
| 5. Quick to train                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                              |                                                                                                               | 8                                                                 |     |   |
| Disadvantages- 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\mathbf{M}$                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                              |                                                                                                               |                                                                   |     |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                              |                                                                                                               |                                                                   |     |   |
| Advantages of D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                              |                                                                                                               |                                                                   |     |   |
| 1. Easy to model ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                              |                                                                                                               |                                                                   |     |   |
| <ol> <li>Simple to unders</li> <li>The input and or</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                             | liscrete or continuous pr                                                                                                                                                                                                    | dictor variables                                                                                              | •                                                                 |     |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                             | in the relationship betw                                                                                                                                                                                                     |                                                                                                               | s and the                                                         |     |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                              | 0                                                                                                             |                                                                   |     |   |
| predictor variabl                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                              |                                                                                                               |                                                                   |     |   |
| 5. Quick to train                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                              |                                                                                                               | Ξ.                                                                |     |   |
| 5. Quick to train                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                             | h an example.                                                                                                                                                                                                                |                                                                                                               | 5                                                                 | CO3 |   |
| 5. Quick to train                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n decision tree with                                                                                                                                                                                                                                                                                                                                                                                                        | h an example.                                                                                                                                                                                                                |                                                                                                               | 5                                                                 | CO3 |   |
| 5. Quick to train<br>Explain pruning i<br>Explanation – 5M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | n decision tree wit                                                                                                                                                                                                                                                                                                                                                                                                         | h an example.                                                                                                                                                                                                                |                                                                                                               | 5                                                                 | CO3 | L |
| 5. Quick to train<br>Explain pruning i<br>Explanation – 5M<br>Inductive Bias in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | n decision tree with                                                                                                                                                                                                                                                                                                                                                                                                        | Ĩ                                                                                                                                                                                                                            | to gonoraliza fro                                                                                             |                                                                   | CO3 | L |
| 5. Quick to train<br>Explain pruning i<br>Explanation – 5M<br>Inductive Bias in                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | n decision tree with<br>Decision Trees:<br>ias is necessary for                                                                                                                                                                                                                                                                                                                                                             | h an example.<br>learning algorithm                                                                                                                                                                                          | s to generalize fro                                                                                           |                                                                   | CO3 | L |
| <ul> <li>5. Quick to train</li> <li>Explain pruning i<br/>Explanation – 5M</li> <li>Inductive Bias in</li> <li>Inductive b<br/>data to unit</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | n decision tree with<br><b>Decision Trees:</b><br>ias is necessary for<br>seen data.<br>algorithm, the bia                                                                                                                                                                                                                                                                                                                  | Ĩ                                                                                                                                                                                                                            | -                                                                                                             | m training                                                        | CO3 | L |
| <ul> <li>5. Quick to train</li> <li>Explain pruning i<br/>Explanation – 5M</li> <li>Inductive Bias in</li> <li>Inductive b<br/>data to unit</li> <li>In the ID3<br/>information</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | n decision tree with<br><b>Decision Trees:</b><br>ias is necessary for<br>seen data.<br>algorithm, the bia<br>on gain.<br>a single decision tree                                                                                                                                                                                                                                                                            | learning algorithm                                                                                                                                                                                                           | es and attributes                                                                                             | m training<br>with high                                           | CO3 | L |
| <ul> <li>5. Quick to train</li> <li>Explain pruning i<br/>Explanation – 5M</li> <li>Inductive Bias in</li> <li>Inductive Bias in</li> <li>Inductive b<br/>data to und</li> <li>In the ID3<br/>information</li> <li>ID3 builds<br/>the global</li> <li>Occam's Ra</li> <li>Overfitting in Design (2010)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n decision tree with<br><b>Decision Trees:</b><br>ias is necessary for<br>seen data.<br>algorithm, the bia<br>on gain.<br>a single decision tro<br>optimum.<br>azor is used: the sin<br>ecision Trees:                                                                                                                                                                                                                      | e learning algorithm<br>s favors shorter tre<br>ee using a hill-climb<br>nplest tree (shortes                                                                                                                                | es and attributes<br>ing search that ma<br>) is preferred.                                                    | m training<br>with high<br>ay not find                            | CO3 | L |
| <ul> <li>5. Quick to train</li> <li>Explain pruning i<br/>Explanation – 5M</li> <li>Inductive Bias in <ul> <li>Inductive Bias in</li> <li>Inductive b<br/>data to und</li> <li>In the ID3<br/>information</li> </ul> </li> <li>ID3 builds a<br/>the global</li> <li>Occam's Ration Overfitting in Data<br/>test data.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | n decision tree with<br><b>Decision Trees:</b><br>ias is necessary for<br>seen data.<br>algorithm, the bia<br>on gain.<br>a single decision tra<br>optimum.<br>azor is used: the sin<br><b>ecision Trees:</b><br>occurs when a tre                                                                                                                                                                                          | learning algorithm<br>s favors shorter tre<br>ee using a hill-climb<br>nplest tree (shortes<br>e performs well on                                                                                                            | es and attributes<br>ing search that ma<br>) is preferred.<br>training data but                               | m training<br>with high<br>ay not find<br>poorly on               | CO3 | L |
| <ul> <li>5. Quick to train</li> <li>Explain pruning i<br/>Explanation – 5M</li> <li>Inductive Bias in <ul> <li>Inductive Bias in</li> <li>Inductive b<br/>data to und</li> <li>In the ID3<br/>information</li> </ul> </li> <li>ID3 builds a<br/>the global</li> <li>Occam's Ration Overfitting in Data<br/>test data.</li> <li>This happe<br/>patterns.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | n decision tree with<br><b>Decision Trees:</b><br>ias is necessary for<br>seen data.<br>algorithm, the bia<br>on gain.<br>a single decision tra<br>optimum.<br>azor is used: the sin<br><b>ecision Trees:</b><br>occurs when a tree<br>ns due to the tree                                                                                                                                                                   | learning algorithm<br>s favors shorter tre<br>ee using a hill-climb<br>nplest tree (shortes<br>e performs well on<br>being too complex,                                                                                      | es and attributes<br>ing search that ma<br>) is preferred.<br>training data but<br>capturing noise r          | m training<br>with high<br>ay not find<br>poorly on               | CO3 | L |
| <ul> <li>5. Quick to train</li> <li>Explain pruning i<br/>Explanation – 5M</li> <li>Inductive Bias in</li> <li>Inductive Bias in</li> <li>Inductive b<br/>data to un</li> <li>In the ID3<br/>information</li> <li>ID3 builds the global</li> <li>Occam's Ration</li> <li>Overfitting in Data</li> <li>Overfitting in Data</li> <li>This happe<br/>patterns.</li> <li>There is a total</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | n decision tree with<br><b>Decision Trees:</b><br>ias is necessary for<br>seen data.<br>algorithm, the bia<br>on gain.<br>a single decision tro<br>optimum.<br>azor is used: the sin<br><b>ecision Trees:</b><br>occurs when a tre<br>ns due to the tree bia<br>radeoff between ac                                                                                                                                          | learning algorithm<br>s favors shorter tre<br>ee using a hill-climb<br>nplest tree (shortes<br>e performs well on                                                                                                            | es and attributes<br>ing search that ma<br>) is preferred.<br>training data but<br>capturing noise r          | m training<br>with high<br>ay not find<br>poorly on               | CO3 | L |
| <ul> <li>5. Quick to train</li> <li>Explain pruning i<br/>Explanation – 5M</li> <li>Inductive Bias in</li> <li>Inductive Bias in</li> <li>Inductive b<br/>data to und</li> <li>In the ID3<br/>information</li> <li>ID3 builds a<br/>the global</li> <li>Occam's Ration Overfitting in Data<br/>test data.</li> <li>This happe<br/>patterns.</li> <li>There is a terming to Prevention</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | n decision tree with<br><b>Decision Trees:</b><br>ias is necessary for<br>seen data.<br>algorithm, the bia<br>on gain.<br>a single decision tre<br>optimum.<br>azor is used: the sin<br><b>ecision Trees:</b><br>occurs when a tre<br>ns due to the tree is<br>radeoff between acc<br><b>ent Overfitting:</b>                                                                                                               | learning algorithm<br>s favors shorter tre<br>ee using a hill-climb<br>nplest tree (shortes<br>e performs well on<br>being too complex,<br>ecuracy and comple                                                                | es and attributes<br>ing search that ma<br>) is preferred.<br>training data but<br>capturing noise r          | m training<br>with high<br>ay not find<br>poorly on               | CO3 | L |
| <ul> <li>5. Quick to train</li> <li>Explain pruning i<br/>Explanation – 5M</li> <li>Inductive Bias in <ul> <li>Inductive Bias in</li> <li>Inductive bidata to undistance</li> <li>In the ID3 information</li> <li>ID3 builds at the global</li> <li>Occam's Rate Overfitting in Data to the second se</li></ul></li></ul> | n decision tree with<br>Decision Trees:<br>ias is necessary for<br>seen data.<br>algorithm, the bia<br>on gain.<br>a single decision tre<br>optimum.<br>azor is used: the sin<br>cision Trees:<br>occurs when a tre<br>ns due to the tree is<br>radeoff between ac<br>ent Overfitting:<br>proves decision tree                                                                                                              | e learning algorithm<br>s favors shorter tre<br>ee using a hill-climb<br>mplest tree (shortes<br>e performs well on<br>being too complex,<br>ccuracy and comple                                                              | es and attributes<br>ing search that ma<br>) is preferred.<br>training data but<br>capturing noise r          | m training<br>with high<br>ay not find<br>poorly on               | CO3 | L |
| <ul> <li>5. Quick to train</li> <li>Explain pruning i<br/>Explanation – 5M</li> <li>Inductive Bias in</li> <li>Inductive Bias in</li> <li>Inductive b<br/>data to un</li> <li>In the ID3<br/>information</li> <li>ID3 builds the global</li> <li>Occam's Ration Overfitting in Data<br/>overfitting in Data</li> <li>Overfitting in Data</li> <li>Overfitting test data.</li> <li>This happe<br/>patterns.</li> <li>There is a test of the pruning im</li> <li>Pre-pruning im</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | n decision tree with<br><b>Decision Trees:</b><br>ias is necessary for<br>seen data.<br>algorithm, the bia<br>on gain.<br>a single decision tree<br>optimum.<br>azor is used: the sin<br><b>ecision Trees:</b><br>occurs when a tree<br>ns due to the tree of<br>radeoff between accent Overfitting:<br>proves decision tree<br>ng: Stops tree grow                                                                         | learning algorithm<br>s favors shorter tre<br>ee using a hill-climb<br>mplest tree (shortes<br>e performs well on<br>being too complex,<br>ccuracy and comple<br>ee generalization.<br>wth early.                            | es and attributes<br>ing search that ma<br>) is preferred.<br>training data but<br>capturing noise r<br>kity. | m training<br>with high<br>ay not find<br>poorly on               | CO3 | L |
| <ul> <li>5. Quick to train</li> <li>Explain pruning i<br/>Explanation – 5M</li> <li>Inductive Bias in</li> <li>Inductive Bias in</li> <li>Inductive b<br/>data to und</li> <li>In the ID3<br/>information</li> <li>ID3 builds a<br/>the global</li> <li>Occam's Ration Overfitting in Data<br/>overfitting in Data</li> <li>Overfitting in Data</li> <li>Overfitting test data.</li> <li>This happe<br/>patterns.</li> <li>There is a terming to Prevention<br/>Pruning im</li> <li>Pre-pruning im</li> <li>Post-pruning</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | n decision tree with<br><b>Decision Trees:</b><br>ias is necessary for<br>seen data.<br>algorithm, the bia<br>on gain.<br>a single decision tree<br>optimum.<br>azor is used: the sin<br>ecision Trees:<br>occurs when a tree<br>ns due to the tree of<br>radeoff between accent Overfitting:<br>proves decision tree<br>ng: Stops tree grow<br>ng: Trims the tree                                                          | learning algorithm<br>s favors shorter tre<br>ee using a hill-climb<br>mplest tree (shortes<br>e performs well on<br>being too complex,<br>ccuracy and comple<br>ee generalization.<br>wth early.<br>after it is fully built | es and attributes<br>ing search that ma<br>) is preferred.<br>training data but<br>capturing noise r<br>kity. | m training<br>with high<br>ay not find<br>poorly on               | CO3 | L |
| <ul> <li>5. Quick to train</li> <li>Explain pruning i<br/>Explanation – 5M</li> <li>Inductive Bias in <ul> <li>Inductive Bias in</li> <li>Inductive bidata to undistate outsing</li> <li>In the ID3 information</li> <li>ID3 builds at the global</li> <li>Occam's Rate of the Overfitting in Data is split</li> </ul> </li> <li>5. Quick to train the ID3 information of the ID3 builds at the global</li> <li>Occam's Rate of the Overfitting in Data is split</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n decision tree with<br><b>Decision Trees:</b><br>ias is necessary for<br>seen data.<br>algorithm, the bia<br>on gain.<br>a single decision tree<br>optimum.<br>azor is used: the sin<br><b>ecision Trees:</b><br>occurs when a tree<br>ins due to the tree is<br>radeoff between ac<br><b>ent Overfitting:</b><br>proves decision tree<br><b>ig:</b> Stops tree grow<br><b>ng:</b> Trims the tree<br>t into training (40%) | learning algorithm<br>s favors shorter tre<br>ee using a hill-climb<br>mplest tree (shortes<br>e performs well on<br>being too complex,<br>ccuracy and comple<br>ee generalization.<br>wth early.                            | es and attributes<br>ing search that ma<br>) is preferred.<br>training data but<br>capturing noise r<br>kity. | m training<br>with high<br>ay not find<br>poorly on<br>ather than | CO3 | L |

| 3  | Define prior probability. Explain Bayes theorem, $h_{ML}$ and $h_{MAP}$ with an example                                                                           | 10 | CO4 | L2  |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----|-----|
|    | Prior Probability – 2M                                                                                                                                            |    |     |     |
|    | Prior probability is the initial likelihood of an event occurring before any new                                                                                  |    |     |     |
|    | evidence or observation is taken into account. It reflects what is believed based on                                                                              |    |     |     |
|    | existing knowledge, prior to collecting new data.                                                                                                                 |    |     |     |
|    | Bayes Theorem- 3M                                                                                                                                                 |    |     |     |
|    | P (Hypothesis $h$   Evidence E) is calculated from the prior probability P (Hypothesis $h$ ), the                                                                 |    |     |     |
|    | likelihood probability $P$ (Evidence $E$  Hypothesis $h$ ) and the marginal probability $P$ (Evidence $E$ ).<br>It can be written as:                             |    |     |     |
|    | $P (\text{Hypothesis } h \mid \text{Evidence } E) = \frac{P(\text{Evidence } E \mid \text{Hypothesis } h) P(\text{Hypothesis } h)}{P(\text{Evidence } E)} $ (8.1) |    |     |     |
|    | P(Evidence  E) (0.1)                                                                                                                                              |    |     |     |
|    | $h_{ML}$ and $h_{MAP}$ -3M                                                                                                                                        |    |     |     |
|    | Maximum A Posteriori (MAP) Hypothesis, h <sub>MAP</sub>                                                                                                           |    |     |     |
|    | Given a set of candidate hypotheses, the hypothesis which has the maximum value is considered                                                                     |    |     |     |
|    | the maximum probable hypothesis or most probable hypothesis. This most probable hypothesis is called                                                              |    |     |     |
|    | the Maximum A Posteriori Hypothesis $h_{MAP}$ . Bayes theorem Eq. (8.1) can be used to find the $h_{MAP}$ .<br>$h_{MAP} = \max_{nefl} P(Hypothesish Evidence E)$  |    |     |     |
|    |                                                                                                                                                                   |    |     |     |
|    | $= \max_{heH} \frac{P(Evidence \ E \   Hypothesis \ h)P(Hypothesis \ h)}{P(Evidence \ E)}$                                                                        |    |     |     |
|    | $= \max_{h \in H} P(Evidence \ E \   Hypothesis \ h) P(Hypothesis \ h) $ (8.2)                                                                                    |    |     |     |
|    | Maximum Likelihood (ML) Hypothesis, h <sub>ML</sub>                                                                                                               |    |     |     |
|    | Given a set of candidate hypotheses, if every hypothesis is equally probable, only $P(E \mid h)$ is used                                                          |    |     |     |
|    | to find the most probable hypothesis. The hypothesis that gives the maximum likelihood for $P(E \mid h)$                                                          |    |     |     |
|    | is called the Maximum Likelihood (ML) Hypothesis, $h_{ML}$ .<br>$h_{ML} = \max_{h \in H} P(Evidence E \mid Hypothesis h)$ (8.3)                                   |    |     |     |
|    | ML NET                                                                                                                                                            |    |     |     |
|    | Example- 2M                                                                                                                                                       |    |     |     |
| 4a | Explain different types of artificial neural network with diagram                                                                                                 | 5  | CO4 | L2  |
| Ta | Explanation with diagram any 3                                                                                                                                    | 5  | 001 | 112 |
|    | Feed Forward Neural Network                                                                                                                                       |    |     |     |
|    | • Structure: Simple layers where information flows in one direction—from                                                                                          |    |     |     |
|    | input to output.                                                                                                                                                  |    |     |     |
|    | • Features: May or may not have a hidden layer. No backpropagation.                                                                                               |    |     |     |
|    | • Use: Suitable for simple classification and image processing tasks.                                                                                             |    |     |     |
|    | • Limitations: Not suitable for complex learning problems.                                                                                                        |    |     |     |
|    | Fully Connected Neural Network                                                                                                                                    |    |     |     |
|    | • Structure: Every neuron in one layer is connected to every neuron in the                                                                                        |    |     |     |
|    | next layer.                                                                                                                                                       |    |     |     |
|    | • Use: Allows for more complex representations and learning due to full connectivity.                                                                             |    |     |     |
|    | <ul> <li>Note: It's a more specific structure within feedforward networks.</li> </ul>                                                                             |    |     |     |
|    | Multi-Layer Perceptron (MLP)                                                                                                                                      |    |     |     |
|    |                                                                                                                                                                   |    |     |     |
|    |                                                                                                                                                                   |    |     |     |
|    | • Features: Includes forward propagation and backpropagation.                                                                                                     |    |     |     |
|    | • Use: Complex tasks like deep learning, speech recognition, medical                                                                                              |    |     |     |
|    |                                                                                                                                                                   |    |     |     |



| (a) (2, 3, 4) and (1, 5, 6)2.5M<br>(b) (2, 2, 9) and (7, 8, 9)2.5M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Any 3 Activation Function<br>Below are some of the activation functions used in ANINS:                                                                                     |          |     |    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----|----|
| The value of f(x) increases linearly or proportionally with the value of x. This function<br>is useful when we do not want to apply any threshold. The output would be just the<br>weighted sum of input values. The output value ranges between $-\infty$ and $+\infty$ .<br>2. Binary Step Function<br>$f(x) = \begin{cases} 1 & \text{if } f(x) \ge \theta \\ 0 & \text{if } f(x) < \theta \end{cases} $ (10.5)<br>The output value is binary, i.e., 0 or 1 based on the threshold value $\theta$ . If value of $f(x)$<br>is greater than or equal to $\theta$ , it outputs 1 or else it outputs 0.<br>3. Bipolar Step Function<br>$f(x) = \begin{cases} 1 & \text{if } f(x) \ge \theta \\ -1 & \text{if } f(x) < \theta \end{cases} $ (10.6)<br>The output value is bipolar, i.e., +1 or -1 based on the threshold value $\theta$ . If value of<br>$f(x)$ is greater than or equal to $\theta$ it outputs +1 or else it outputs -1.<br>4. Sigmoidal Function or Logistic Function<br>$\sigma(x) = \frac{1}{1 + e^{-x}} \qquad (10.7)$ Th is a widely used non-linear division function which produces an S-shaped curve<br>and the output values are in the range of 0 and 1. It has a vanishing gradient problem,<br>i.e., no change in the prediction for very low input values and very high input values.<br>5. Bipolar Sigmoid Function<br>$\sigma(x) = \frac{1 - e^{-x}}{1 + e^{-x}} \qquad (10.8)$ It outputs values between -1 and +1.<br>6. Ramp Functions<br>$f(x) = \frac{1}{x} \frac{y}{y} 0 \le x < 1 \qquad (10.9) \\ 0 & \text{if } x < 0$<br>It is a linear function whose upper and lower limits are fixed.<br>7. Tanh - Hyperbolic Tangent Function<br>The Tanh function is a scaled version of the sigmoid function which is also non-linear.<br>It also suffers from the vanishing gradient problem. The output values range between<br>-1 and 1.<br>$\tan h(x) = \frac{2}{1 + e^{-2x}} - 1 \qquad (10.10)$ |                                                                                                                                                                            |          |     |    |
| is useful when we do not want to apply any threshold. The output would be just the weighted sum of input values. The output value ranges between $-\infty$ and $+\infty$ .<br>2. Binary Step Function<br>$f(x) = \begin{cases} 1 & \text{if } f(x) \ge \theta \\ 0 & \text{if } f(x) < \theta \end{cases} (10.5)$ The output value is binary, i.e., 0 or 1 based on the threshold value $\theta$ . If value of $f(x)$ is greater than or equal to $\theta$ , it outputs 1 or else it outputs 0.<br>3. Bipolar Step Function<br>$f(x) = \begin{cases} 1 & \text{if } f(x) \ge \theta \\ -1 & \text{if } f(x) < \theta \end{cases} (10.6)$ The output value is bipolar, i.e., +1 or -1 based on the threshold value $\theta$ . If value of $f(x)$ is greater than or equal to $\theta$ it outputs +1 or else it outputs -1.<br>4. Sigmoidal Function or Logistic Function<br>$\sigma(x) = \frac{1}{1 + e^{-x}} \qquad (10.7)$ It is a widely used non-linear activation function which produces an S-shaped curve and the output values are in the range of 0 and 1. It has a vanishing gradient problem, i.e., no change in the prediction for very low input values and very high input values.<br>5. Bipolar Sigmoid Function<br>$\sigma(x) = \frac{1 - e^{-x}}{1 + e^{-x}} \qquad (10.8)$ It outputs values between -1 and +1.<br>6. Ramp Functions<br>$f(x) = \begin{cases} 1 & \text{if } x > 1 \\ x & \text{if } 0 \le x < 1 \\ 0 & \text{if } x < 0 \end{cases}$ It is a linear function whose upper and lower limits are fixed.<br>7. Tanh - Hyperbolic Tangent Function<br>The Tanh function is a scaled version of the sigmoid function which is also non-linear. It also suffers from the vanishing gradient problem. The output values range between -1 and 1.<br>$\tan h(x) = \frac{2}{1 + e^{2x}} - 1 \qquad (10.10)$                                                                                                  |                                                                                                                                                                            |          |     |    |
| $f(x) = \begin{cases} 1 & \text{if } f(x) \ge \theta \\ 0 & \text{if } f(x) < \theta \end{cases} $ (10.5)<br>The output value is binary, i.e., 0 or 1 based on the threshold value $\theta$ . If value of $f(x)$ is greater than or equal to $\theta$ , it outputs 0.<br>3. Bipolar Step Function<br>$f(x) = \begin{cases} 1 & \text{if } f(x) \ge \theta \\ -1 & \text{if } f(x) < \theta \end{cases} $ (10.6)<br>The output value is bipolar, i.e., +1 or -1 based on the threshold value $\theta$ . If value of $f(x)$ is greater than or equal to $\theta$ , it outputs +1 or else it outputs -1.<br>4. Sigmoidal Function or Logistic Function<br>$\sigma(x) = \frac{1}{1 + e^{-x}} \qquad (10.7)$ Tt is a widely used non-linear activation function which produces an S-shaped curve and the output values are in the range of 0 and 1. It has a vanishing gradient problem, i.e., no change in the prediction for very low input values and very high input values.<br>5. Bipolar Sigmoid Function<br>$\sigma(x) = \frac{1 - e^{-x}}{1 + e^{-x}} \qquad (10.8)$ It outputs values between -1 and +1.<br>6. Ramp Functions<br>$f(x) = \begin{cases} 1 & \text{if } x > 1 \\ 0 & \text{if } x < 0 \end{cases}$ It is a linear function whose upper and lower limits are fixed.<br>7. Tanh - Hyperbolic Tangent Function<br>The Tanh function is a scaled version of the sigmoid function which is also non-linear.<br>It also suffers from the vanishing gradient problem. The output values range between -1 and 1.<br>$\tan h(x) = \frac{2}{1 + e^{2x}} - 1 \qquad (10.10)$                                                                                                                                                                                                                                                                                                                                                 | is useful when we do not want to apply any threshold. The output would be just the weighted sum of input values. The output value ranges between $-\infty$ and $+\infty$ . | 1        |     |    |
| The output value is binary, i.e., 0 of 1 based on the threshold value $\theta$ . If value of $f(x)$ is greater than or equal to $\theta$ , it outputs 1 or else it outputs 0.<br>3. Bipolar Step Function<br>$f(x) = \begin{cases} 1 & \text{if } f(x) \ge \theta \\ -1 & \text{if } f(x) \le \theta \end{cases} (10.6)$ The output value is bipolar, i.e., +1 or -1 based on the threshold value $\theta$ . If value of $f(x)$ is greater than or equal to $\theta$ , it outputs +1 or else it outputs -1.<br>4. Sigmoidal Function or Logistic Function<br>$\sigma(x) = \frac{1}{1 + e^{-x}} \qquad (10.7)$ It is a widely used non-linear activation function which produces an S-shaped curve and the output values are in the range of 0 and 1. It has a vanishing gradient problem, i.e., no change in the prediction for very low input values and very high input values.<br>5. Bipolar Sigmoid Function<br>$\sigma(x) = \frac{1 - e^{-x}}{1 + e^{-x}} \qquad (10.8)$ It outputs values between -1 and +1.<br>6. Ramp Functions<br>$f(x) = \begin{cases} 1 & \text{if } x > 1 \\ x & \text{if } 0 \le x \le 1 \\ 0 & \text{if } x < 0 \end{cases}$ It is a linear function is a scaled version of the sigmoid function which is also non-linear.<br>It also suffers from the vanishing gradient problem. The output values range between -1 and 1.<br>$\tan h(x) = \frac{2}{1 + e^{-x}} - 1 \qquad (10.10)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2. Binary Step Function                                                                                                                                                    |          |     |    |
| is greater than or equal to $\theta$ , if outputs 1 or else it outputs 0.<br>3. Bipolar Step Function<br>$f(x) = \begin{cases} 1 & \text{if } f(x) \ge \theta \\ -1 & \text{if } f(x) < \theta \end{cases} (10.6)$ The output value is bipolar, i.e., +1 or -1 based on the threshold value $\theta$ . If value of $f(x)$ is greater than or equal to $\theta$ , it outputs +1 or else it outputs -1.<br>4. Sigmoidal Function or Logistic Function<br>$\sigma(x) = \frac{1}{1 + e^x} \qquad (10.7)$ It is a widely used non-linear activation function which produces an S-shaped curve and the output values are in the range of 0 and 1. It has a vanishing gradient problem, i.e., no change in the prediction for very low input values and very high input values.<br>5. Bipolar Sigmoid Function<br>$\sigma(x) = \frac{1 - e^{-x}}{1 + e^{-x}} \qquad (10.8)$ It outputs values between -1 and +1.<br>6. Ramp Functions<br>$f(x) = \begin{cases} 1 & \text{if } x > 1 \\ x & \text{if } 0 \le x \le 1 \\ 0 & \text{if } x < 0 \end{cases} \qquad (10.9)$ It is a linear function whose upper and lower limits are fixed.<br>7. Tanh – Hyperbolic Tangent Function<br>The Tanh function is a scaled version of the sigmoid function which is also non-linear.<br>It also suffers from the vanishing gradient problem. The output values range between -1 and 1.<br>$\tan h(x) = \frac{2}{1 + e^{2x}} - 1 \qquad (10.10)$ Calculate the Euclidean, Manhattan and chebyshev distance<br>(a) (2, 3, 4) and (1, 5, 6)2.5M<br>(b) (2, 2, 9) and (7, 8, 9)2.5M                                                                                                                                                                                                                                                                                                                                                                      | $f(x) = \begin{cases} 1 & \text{if } f(x) \ge \theta \\ 0 & \text{if } f(x) < \theta \end{cases} $ (10.5)                                                                  | )        |     |    |
| $f(x) = \begin{cases} 1 & \text{if } f(x) \ge \theta \\ -1 & \text{if } f(x) < \theta \end{cases} $ (10.6)<br>The output value is bipolar, i.e., +1 or -1 based on the threshold value $\theta$ . If value of $f(x)$ is greater than or equal to $\theta$ , it outputs +1 or else it outputs -1.<br>4. Sigmoidal Function or Logistic Function<br>$\sigma(x) = \frac{1}{1 + e^{-x}} \qquad (10.7)$ It is a widely used non-linear activation function which produces an S-shaped curve and the output values are in the range of 0 and 1. It has a vanishing gradient problem, i.e., no change in the prediction for very low input values and very high input values.<br>5. Bipolar Sigmoid Function<br>$\sigma(x) = \frac{1 - e^{-x}}{1 + e^{-x}} \qquad (10.8)$ It outputs values between -1 and +1.<br>6. Ramp Functions<br>$f(x) = \begin{cases} 1 & \text{if } x > 1 \\ x & \text{if } 0 \le x \le 1 \\ 0 & \text{if } x < 0 \end{cases}$ It is a linear function whose upper and lower limits are fixed.<br>7. Tanh - Hyperbolic Tangent Function<br>The Tanh function is a scaled version of the sigmoid function which is also non-linear.<br>It also suffers from the vanishing gradient problem. The output values range between -1 and 1.<br>$\tan h(x) = \frac{2}{1 + e^{2x}} - 1 \qquad (10.10)$ Calculate the Euclidean, Manhattan and chebyshev distance<br>(a) (2, 3, 4) and (1, 5, 6)2.5M<br>(b) (2, 2, 9) and (7, 8, 9)2.5M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                            | )        |     |    |
| The output value is bipolar, i.e., $\pm 1$ or $\pm 1$ based on the threshold value $\theta$ . If value of $f(x)$ is greater than or equal to $\theta$ , it outputs $\pm 1$ or else it outputs $\pm 1$ .<br>4. Sigmoidal Function or Logistic Function<br>$\sigma(x) = \frac{1}{1 + e^{-x}}$ (10.7)<br>It is a widely used non-linear activation function which produces an S-shaped curve and the output values are in the range of 0 and 1. It has a vanishing gradient problem, i.e., no change in the prediction for very low input values and very high input values.<br>5. Bipolar Sigmoid Function<br>$\sigma(x) = \frac{1 - e^{-x}}{1 + e^{-x}}$ (10.8)<br>It outputs values between $-1$ and $\pm 1$ .<br>6. Ramp Functions<br>$f(x) = \begin{cases} 1 & \text{if } x > 1 \\ x & \text{if } 0 \le x \le 1 \\ 0 & \text{if } x < 0 \end{cases}$<br>It is a linear function whose upper and lower limits are fixed.<br>7. Tanh – Hyperbolic Tangent Function<br>The Tanh function is a scaled version of the sigmoid function which is also non-linear.<br>It also suffers from the vanishing gradient problem. The output values range between $-1$ and 1.<br>$\tan h(x) = \frac{2}{1 + e^{-2x}} - 1$ (10.10)<br>4. Calculate the Euclidean, Manhattan and chebyshev distance<br>(a) $(2, 3, 4)$ and $(1, 5, 6) 2.5M$<br>(b) $(2, 2, 9)$ and $(7, 8, 9) 2.5M$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3. Bipolar Step Function                                                                                                                                                   |          |     |    |
| f(x) is greater than or equal to $\theta_i$ it outputs +1 or else it outputs -1.4. Sigmoidal Function or Logistic Function $\sigma(x) = \frac{1}{1+e^{-x}}$ (10.7)It is a widely used non-linear activation function which produces an S-shaped curve<br>and the output values are in the range of 0 and 1. It has a vanishing gradient problem,<br>i.e., no change in the prediction for very low input values and very high input values.5. Bipolar Sigmoid Function $\sigma(x) = \frac{1-e^{-x}}{1+e^{-x}}$ (10.8)It outputs values between -1 and +1.6. Ramp Functions $f(x) = \begin{cases} 1 & \text{if } x > 1 \\ x & \text{if } 0 \le x \le 1 \\ 0 & \text{if } x < 0 \end{cases}$ It is a linear function whose upper and lower limits are fixed.7. Tanh - Hyperbolic Tangent Function<br>The Tanh function is a scaled version of the sigmoid function which is also non-linear.<br>It also suffers from the vanishing gradient problem. The output values range between<br>$-1$ and 1.4. Calculate the Euclidean, Manhattan and chebyshev distance<br>(a) $(2, 3, 4)$ and $(1, 5, 6)$ 2.5M<br>(b) $(2, 2, 9)$ and $(7, 8, 9)$ 2.5M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $f(x) = \begin{cases} 1 & \text{if } f(x) \ge \theta \\ -1 & \text{if } f(x) < \theta \end{cases} $ (10.6)                                                                 | )        |     |    |
| $\sigma(x) = \frac{1}{1 + e^{-x}} $ (10.7)<br>It is a widely used non-linear activation function which produces an S-shaped curve<br>and the output values are in the range of 0 and 1. It has a vanishing gradient problem,<br>i.e., no change in the prediction for very low input values and very high input values.<br>5. Bipolar Sigmoid Function<br>$\sigma(x) = \frac{1 - e^{-x}}{1 + e^{-x}} $ (10.8)<br>It outputs values between -1 and +1.<br>6. Ramp Functions<br>$f(x) = \begin{cases} 1 & \text{if } x > 1 \\ x & \text{if } 0 \le x \le 1 \\ 0 & \text{if } x < 0 \end{cases}$ It is a linear function whose upper and lower limits are fixed.<br>7. Tanh - Hyperbolic Tangent Function<br>The Tanh function is a scaled version of the sigmoid function which is also non-linear.<br>It also suffers from the vanishing gradient problem. The output values range between -1 and 1.<br>$\tan h(x) = \frac{2}{1 + e^{-2x}} - 1 $ (10.10)<br>Calculate the Euclidean, Manhattan and chebyshev distance<br>(a) (2, 3, 4) and (1, 5, 6)2.5M<br>(b) (2, 2, 9) and (7, 8, 9)2.5M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                            | f        |     |    |
| If it is a widely used non-linear activation function which produces an S-shaped curve<br>and the output values are in the range of 0 and 1. It has a vanishing gradient problem,<br>i.e., no change in the prediction for very low input values and very high input values.5. Bipolar Sigmoid Function $\sigma(x) = \frac{1 - e^{-x}}{1 + e^{-x}}$ (10.8)<br>It outputs values between -1 and +1.6. Ramp Functions $f(x) = \begin{cases} 1 & if x > 1 \\ x & if 0 \le x \le 1 \\ 0 & if x < 0 \end{cases}$<br>It is a linear function whose upper and lower limits are fixed.7. Tanh - Hyperbolic Tangent Function<br>The Tanh function is a scaled version of the sigmoid function which is also non-linear.<br>It also suffers from the vanishing gradient problem. The output values range between<br>$-1$ and 1.Calculate the Euclidean, Manhattan and chebyshev distance<br>(a) (2, 3, 4) and (1, 5, 6)2.5M5CO5L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4. Sigmoidal Function or Logistic Function                                                                                                                                 |          |     |    |
| and the output values are in the range of 0 and 1. It has a vanishing gradient problem,<br>i.e., no change in the prediction for very low input values and very high input values.<br>5. Bipolar Sigmoid Function<br>$\sigma(x) = \frac{1 - e^{-x}}{1 + e^{-x}}$ (10.8)<br>It outputs values between -1 and +1.<br>6. Ramp Functions<br>$f(x) = \begin{cases} 1 & \text{if } x > 1 \\ x & \text{if } 0 \le x \le 1 \\ 0 & \text{if } x < 0 \end{cases}$ It is a linear function whose upper and lower limits are fixed.<br>7. Tanh – Hyperbolic Tangent Function<br>The Tanh function is a scaled version of the sigmoid function which is also non-linear.<br>It also suffers from the vanishing gradient problem. The output values range between<br>-1 and 1.<br>Calculate the Euclidean, Manhattan and chebyshev distance<br>(a) (2, 3, 4) and (1, 5, 6)2.5M<br>(b) (2, 2, 9) and (7, 8, 9)2.5M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\sigma(x) = \frac{1}{1 + e^{-x}} $ (10.7)                                                                                                                                 | )        |     |    |
| $\sigma(x) = \frac{1 - e^{-x}}{1 + e^{-x}}$ (10.8)<br>It outputs values between -1 and +1.<br>6. Ramp Functions<br>$f(x) = \begin{cases} 1 & \text{if } x > 1 \\ x & \text{if } 0 \le x \le 1 \\ 0 & \text{if } x < 0 \end{cases}$ (10.9)<br>It is a linear function whose upper and lower limits are fixed.<br>7. Tanh – Hyperbolic Tangent Function<br>The Tanh function is a scaled version of the sigmoid function which is also non-linear.<br>It also suffers from the vanishing gradient problem. The output values range between<br>-1 and 1.<br>$\tan h(x) = \frac{2}{1 + e^{-2x}} - 1$ (10.10)<br>Calculate the Euclidean, Manhattan and chebyshev distance<br>(a) (2, 3, 4) and (1, 5, 6)2.5M<br>(b) (2, 2, 9) and (7, 8, 9)2.5M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | and the output values are in the range of 0 and 1. It has a vanishing gradient problem                                                                                     |          |     |    |
| It outputs values between -1 and +1.6. Ramp Functions $f(x) = \begin{cases} 1 & if x > 1 \\ x & if 0 \le x \le 1 \\ 0 & if x < 0 \end{cases}$ It is a linear function whose upper and lower limits are fixed.7. Tanh - Hyperbolic Tangent Function<br>The Tanh function is a scaled version of the sigmoid function which is also non-linear.<br>It also suffers from the vanishing gradient problem. The output values range between<br>-1 and 1.Calculate the Euclidean, Manhattan and chebyshev distance(a) (2, 3, 4) and (1, 5, 6)2.5M(b) (2, 2, 9) and (7, 8, 9)2.5M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5. Bipolar Sigmoid Function                                                                                                                                                |          |     |    |
| 6. Ramp Functions $f(x) = \begin{cases} 1 & \text{if } x > 1 \\ x & \text{if } 0 \le x \le 1 \\ 0 & \text{if } x < 0 \end{cases}$ (10.9)It is a linear function whose upper and lower limits are fixed.(10.9)7. Tanh - Hyperbolic Tangent Function<br>The Tanh function is a scaled version of the sigmoid function which is also non-linear.<br>It also suffers from the vanishing gradient problem. The output values range between<br>-1 and 1.<br>$\tan h(x) = \frac{2}{1 + e^{-2x}} - 1$ (10.10)Calculate the Euclidean, Manhattan and chebyshev distance<br>(a) (2, 3, 4) and (1, 5, 6)2.5M5CO5L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\sigma(x) = \frac{1 - e^{-x}}{1 + e^{-x}} \tag{10.8}$                                                                                                                     | )        |     |    |
| $f(x) = \begin{cases} 1 & \text{if } x > 1 \\ x & \text{if } 0 \le x \le 1 \\ 0 & \text{if } x < 0 \end{cases}$ It is a linear function whose upper and lower limits are fixed.<br>7. Tanh – Hyperbolic Tangent Function<br>The Tanh function is a scaled version of the sigmoid function which is also non-linear.<br>It also suffers from the vanishing gradient problem. The output values range between<br>-1 and 1.<br>$\tan h(x) = \frac{2}{1 + e^{-2x}} - 1 \qquad (10.10)$ Calculate the Euclidean, Manhattan and chebyshev distance<br>(a) (2, 3, 4) and (1, 5, 6)2.5M<br>(b) (2, 2, 9) and (7, 8, 9)2.5M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                            |          |     |    |
| It is a linear function whose upper and lower limits are fixed.It is a linear function whose upper and lower limits are fixed.7. Tanh – Hyperbolic Tangent Function<br>The Tanh function is a scaled version of the sigmoid function which is also non-linear.<br>It also suffers from the vanishing gradient problem. The output values range between<br>$-1$ and 1.<br>$\tan h(x) = \frac{2}{1 + e^{-2x}} - 1$ (10.10)Calculate the Euclidean, Manhattan and chebyshev distance<br>(a) (2, 3, 4) and (1, 5, 6)2.5M<br>(b) (2, 2, 9) and (7, 8, 9)2.5M5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                            | 40)<br>- |     |    |
| It is a linear function whose upper and lower limits are fixed.It is a linear function whose upper and lower limits are fixed.7. Tanh – Hyperbolic Tangent Function<br>The Tanh function is a scaled version of the sigmoid function which is also non-linear.<br>It also suffers from the vanishing gradient problem. The output values range between<br>$-1$ and 1.<br>$\tan h(x) = \frac{2}{1 + e^{-2x}} - 1$ (10.10)Calculate the Euclidean, Manhattan and chebyshev distance<br>(a) (2, 3, 4) and (1, 5, 6)2.5M<br>(b) (2, 2, 9) and (7, 8, 9)2.5M5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $\begin{array}{c} 1  \text{if } x > 1 \\ \text{if } x > 1 \end{array} $                                                                                                    |          |     |    |
| It is a linear function whose upper and lower limits are fixed.It is a linear function whose upper and lower limits are fixed.7. Tanh – Hyperbolic Tangent Function<br>The Tanh function is a scaled version of the sigmoid function which is also non-linear.<br>It also suffers from the vanishing gradient problem. The output values range between<br>$-1$ and 1.<br>$\tan h(x) = \frac{2}{1 + e^{-2x}} - 1$ (10.10)Calculate the Euclidean, Manhattan and chebyshev distance<br>(a) (2, 3, 4) and (1, 5, 6)2.5M<br>(b) (2, 2, 9) and (7, 8, 9)2.5M5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | $f(x) = \begin{cases} x & \text{if } 0 \le x \le 1 \\ x & \text{if } 0 \le x \le 1 \end{cases} $ (10.9)                                                                    | )        |     |    |
| 7. Tanh – Hyperbolic Tangent Function<br>The Tanh function is a scaled version of the sigmoid function which is also non-linear.<br>It also suffers from the vanishing gradient problem. The output values range between<br>$-1$ and 1.<br>$\tan h(x) = \frac{2}{1 + e^{-2x}} - 1$ (10.10)(10.10)Calculate the Euclidean, Manhattan and chebyshev distance<br>(a) (2, 3, 4) and (1, 5, 6)2.5M<br>(b) (2, 2, 9) and (7, 8, 9)2.5M5CO5L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                            |          |     |    |
| The Tanh function is a scaled version of the sigmoid function which is also non-linear.<br>It also suffers from the vanishing gradient problem. The output values range between<br>$-1$ and 1.<br>$\tan h(x) = \frac{2}{1 + e^{-2x}} - 1$ (10.10)(10.10)Calculate the Euclidean, Manhattan and chebyshev distance<br>(a) (2, 3, 4) and (1, 5, 6)2.5M<br>(b) (2, 2, 9) and (7, 8, 9)2.5M5CO5L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                            |          |     |    |
| It also suffers from the vanishing gradient problem. The output values range between<br>-1 and 1.<br>$\tan h(x) = \frac{2}{1 + e^{-2x}} - 1$ (10.10)(10.10)Calculate the Euclidean, Manhattan and chebyshev distance<br>(a) (2, 3, 4) and (1, 5, 6)2.5M<br>(b) (2, 2, 9) and (7, 8, 9)2.5M5CO5L                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                            |          |     |    |
| $\tan h(x) = \frac{2}{1 + e^{-2x}} - 1 $ (10.10)<br>Calculate the Euclidean, Manhattan and chebyshev distance<br>(a) (2, 3, 4) and (1, 5, 6)2.5M<br>(b) (2, 2, 9) and (7, 8, 9)2.5M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | It also suffers from the vanishing gradient problem. The output values range between                                                                                       |          |     |    |
| (a) (2, 3, 4) and (1, 5, 6)2.5M<br>(b) (2, 2, 9) and (7, 8, 9)2.5M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\tan h(x) = \frac{2}{1 + e^{-2x}} - 1 \tag{10.10}$                                                                                                                        | )        |     |    |
| (b) (2, 2, 9) and (7, 8, 9)2.5M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | · 5                                                                                                                                                                        | 5        | CO5 | L3 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                            |          |     |    |
| Solution:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (b) (2, 2, 9) and (7, 8, 9)2.5M                                                                                                                                            |          |     |    |

|    | a. (2 3 4) and (1 5 6)                                                                                                                                                                                                                                                                                                                                                             |   |     |    |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|-----|----|
|    | Solution                                                                                                                                                                                                                                                                                                                                                                           |   |     |    |
|    | Euclidean distance = $\sqrt{(2-1)^2 + (3-5)^2 + (4-6)^2} = \sqrt{9} = 3$                                                                                                                                                                                                                                                                                                           |   |     |    |
|    | Manhattan distance = $ 2-1 + 3-5 + 4-6 =1+2+2=5$                                                                                                                                                                                                                                                                                                                                   |   |     |    |
|    | Chebyshev Distance = max $\{ 2-1 ,  3-5) ,  4-6 \} = \max\{1, 2, 2\} = 2$                                                                                                                                                                                                                                                                                                          |   |     |    |
|    | b. (2 2 9) and (7 8 9)                                                                                                                                                                                                                                                                                                                                                             |   |     |    |
|    | Euclidean Distance = $\sqrt{(2-7)^2 + (2-8)^2 + (9-9)^2} = \sqrt{25+36+09} = \sqrt{61} = 7.81$                                                                                                                                                                                                                                                                                     |   |     |    |
|    | Manhattan Distance = $ 2-7 + 2-8 + 9-9 =5+6+0=11$                                                                                                                                                                                                                                                                                                                                  |   |     |    |
|    | Chebyshev Distance = max { $ 2-7 + 2-8 + 9-9 $ } = {5,6,0} = 6                                                                                                                                                                                                                                                                                                                     |   |     |    |
|    |                                                                                                                                                                                                                                                                                                                                                                                    |   |     |    |
| 5b | For the given pairs of binary vectors, compute the following similarity measures:<br>Cosine Similarity & Simple Matching Coefficient (SMC)<br>(a) (1, 0, 1, 1) and (1, 1, 0, 0)2M<br>(b) (1, 0, 0, 0, 1) and (1, 0, 0, 0, 1) and (1, 1, 0, 0, 0)3M<br>a. (1011) and (1100)<br>Solution<br>1011<br>1100<br>C = 2, b = 1, d = 1,<br>$SMC = \frac{a+d}{a+b+c+d} = \frac{1}{4} = 0.25$ | 5 | CO5 | L3 |
|    | a+b+c+d = 4<br>Cosine Similarity = $\frac{(1\times 1+0\times 1+1\times 0+1\times 0)}{\sqrt{3}\sqrt{2}} = \frac{1}{\sqrt{3}\sqrt{2}} = 0.408$                                                                                                                                                                                                                                       |   |     |    |
|    | <ul> <li>(b) Vectors: <ol> <li>(1, 0, 0, 0, 1) and (1, 0, 0, 0, 1)</li> <li>(1, 0, 0, 0, 1) and (1, 1, 0, 0, 0)</li> </ol> </li> <li>Pair 1: (1, 0, 0, 0, 1) and (1, 0, 0, 0, 1)</li> <li>Cosine Similarity:</li> </ul>                                                                                                                                                            |   |     |    |
|    | • Vectors are identical ⇒ cosine similarity = 1.0<br>SMC:                                                                                                                                                                                                                                                                                                                          |   |     |    |
|    | SMC:                                                                                                                                                                                                                                                                                                                                                                               |   |     |    |
|    | All 5 elements match     S                                                                                                                                                                                                                                                                                                                                                         |   |     |    |
|    | $SMC = \frac{5}{5} = 1.0$                                                                                                                                                                                                                                                                                                                                                          |   |     |    |

|   | Pair 2: <b>(1, 0</b> ,                                                                                                            | , <b>0, 0, 1)</b> and <b>(1,</b> 1                     | , 0, 0, 0)                                      |                                                           |                                                        |    |     |   |
|---|-----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-------------------------------------------------|-----------------------------------------------------------|--------------------------------------------------------|----|-----|---|
|   |                                                                                                                                   | ne Similarity                                          |                                                 |                                                           |                                                        |    |     |   |
|   |                                                                                                                                   | -                                                      | $\pm 0.0 \pm 0.0$                               | $\pm 1.0 = 1$                                             |                                                        |    |     |   |
|   | • Dot product: $1 \cdot 1 + 0 \cdot 1 + 0 \cdot 0 + 0 \cdot 0 + 1 \cdot 0 = 1$<br>• $ A  = \sqrt{(1^2 + 0 + 0 + 1^2)} = \sqrt{2}$ |                                                        |                                                 |                                                           |                                                        |    |     |   |
|   |                                                                                                                                   |                                                        |                                                 |                                                           |                                                        |    |     |   |
|   | •  B  = √(1                                                                                                                       | $1^2 + 1^2 + 0 + 0 +$                                  | 0) = √2                                         |                                                           |                                                        |    |     |   |
|   |                                                                                                                                   |                                                        | Cosine Similar                                  | $\operatorname{rity} = \frac{1}{\sqrt{2} \cdot \sqrt{2}}$ | $=rac{1}{2}=0.5$                                      |    |     |   |
|   | •                                                                                                                                 | Matches: 3                                             |                                                 |                                                           |                                                        |    |     |   |
|   |                                                                                                                                   |                                                        |                                                 | SMC =                                                     | $\frac{3}{5} = 0.6$                                    |    |     |   |
| 6 | Apply k means                                                                                                                     | s clustering algo                                      | orithm for the g                                | given data with                                           | initial value of                                       | 10 | CO5 | L |
|   |                                                                                                                                   | considered as in                                       | nitial seeds.                                   |                                                           |                                                        |    |     |   |
|   | Solution – 10M                                                                                                                    |                                                        |                                                 |                                                           | -                                                      |    |     |   |
|   |                                                                                                                                   | Objects                                                | X-Coordinate                                    | Y-Coordinate                                              | -                                                      |    |     |   |
|   |                                                                                                                                   | 1                                                      | 2                                               | 4                                                         | -                                                      |    |     |   |
|   |                                                                                                                                   | 2 3                                                    | 4                                               | 6<br>8                                                    | -                                                      |    |     |   |
|   |                                                                                                                                   | 4                                                      | 10                                              | 4                                                         | -                                                      |    |     |   |
|   |                                                                                                                                   | 5                                                      | 10                                              | 4                                                         | -                                                      |    |     |   |
|   |                                                                                                                                   | Object<br>1<br>2<br>3<br>4<br>5<br>er the problem, cho | 2<br>4<br>6<br>10<br>12<br>ose the objects 2 ar |                                                           | linate values. Hereafter,<br>12, 4) are started as two |    |     |   |
|   |                                                                                                                                   | vn in Table 13.10.                                     |                                                 |                                                           |                                                        |    |     |   |
|   | Initially, cer                                                                                                                    | ntroid and data poin                                   |                                                 |                                                           | lved.                                                  |    |     |   |
|   |                                                                                                                                   |                                                        | 3.10: Initial Cluster 1                         |                                                           |                                                        |    |     |   |
|   |                                                                                                                                   |                                                        | (4, 6)                                          | Cluster 2<br>(12, 4)<br>pid 2 (12, 4)                     |                                                        |    |     |   |
|   |                                                                                                                                   |                                                        |                                                 |                                                           | troid and assign to the are with the centroid of       |    |     |   |

the clusters in Table 13.10. The distance is 0. Therefore, it remains in the same cluster. Similarly, consider the remaining samples. For the object 1 (2, 4), the Euclidean distance between it and the centroid is given as:

Dist (1, centroid 1) =  $\sqrt{(2-4)^2 + (4-6)^2} = \sqrt{8}$ 

Dist (1, centroid 2) =  $\sqrt{(2-12)^2 + (4-4)^2} = \sqrt{100} = 10$ 

Object 1 is closer to the centroid of cluster 1 and hence assign it to cluster 1. This is shown in Table 13.11. Object 2 is taken as centroid point.

For the object 3 (6, 8), the Euclidean distance between it and the centroid points is given as:

Dist (3, centroid 1) =  $\sqrt{(6-4)^2 + (8-6)^2} = \sqrt{8}$ 

Dist (3, centroid 2) =  $\sqrt{(6-12)^2 + (8-4)^2} = \sqrt{52}$ 

Object 3 is closer to the centroid of cluster 1 and hence remains in the same cluster 1.

Proceed with the next point object 4(10, 4) and again compare it with the centroids in Table 13.10.

Dist (4, centroid 1) =  $\sqrt{(10-4)^2 + (4-6)^2} = \sqrt{40}$ 

Dist (4, centroid 2) =  $\sqrt{(10-12)^2 + (4-4)^2} = \sqrt{4} = 2$ 

Object 4 is closer to the centroid of cluster 2 and hence assign it to the cluster table. Object 4 is in the same cluster. The final cluster table is shown in Table 13.11.

Obviously, Object 5 is in Cluster 3. Recompute the new centroids of cluster 1 and cluster 2. They are (4, 6) and (11, 4), respectively.

Iable 13.11: Cluster Table After Iteration 1

| Cluster 1         | Cluster 2          |
|-------------------|--------------------|
| (4, 6)            | (10, 4)            |
| (2, 4)            | (12, 4)            |
| (6, 8)            |                    |
| Centroid 1 (4, 6) | Centroid 2 (11, 4) |

The second iteration is started again with the Table 13.11.

Obviously, the point (4, 6) remains in cluster 1, as the distance of it with itself is 0. The remaining objects can be checked. Take the sample object 1 (2, 4) and compare with the centroid of the clusters in Table 13.12.

Dist (1, centroid 1) = 
$$\sqrt{(2-4)^2 + (4-6)^2} = \sqrt{8}$$

Dist (1, centroid 2) =  $\sqrt{(2-11)^2 + (4-4)^2} = \sqrt{81} = 9$ 

Object 1 is closer to centroid of cluster 1 and hence remains in the same cluster. Take the sample object 3 (6, 8) and compare with the centroid values of clusters 1 (4, 6) and cluster 2(11, 4) of the Table 13.12.

Dist (3, centroid 1) =  $\sqrt{(6-4)^2 + (8-6)^2} = \sqrt{8}$ 

Dist (3, centroid 2) =  $\sqrt{(6-11)^2 + (8-4)^2} = \sqrt{41}$ 

| Object 3 is closer to centroid of cluster 1 and hence <b>remains</b> in the same cluster. Take the sample object 4 (10, 4) and compare with the centroid values of clusters 1 (4, 6) and cluster 2 (11, 4) of the Table 13.12: |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Dist (4, centroid 1) = $\sqrt{(10-4)^2 + (4-6)^2} = \sqrt{40}$                                                                                                                                                                 |  |
| Dist (3, centroid 2) = $\sqrt{(10 - 11)^2 + (4 - 4)^2} = \sqrt{1} = 1$                                                                                                                                                         |  |
| Object 3 is closer to centroid of cluster 2 and hence remains in the same cluster. Obviously, the sample (12, 4) is closer to its centroid as shown below:                                                                     |  |
| Dist (5, centroid 1) = $\sqrt{(12-4)^2 + (4-6)^2} = \sqrt{68}$                                                                                                                                                                 |  |
| Dist (5, centroid 2) = $\sqrt{(12-11)^2 + (4-4)^2} = \sqrt{1} = 1$ . Therefore, it remains in the same cluster. Object 5 is taken as centroid point.                                                                           |  |
| The final cluster Table 13.12 is given below:                                                                                                                                                                                  |  |
| Table 13.12: Cluster Table After Iteration 2                                                                                                                                                                                   |  |
| Cluster 1 Cluster 2                                                                                                                                                                                                            |  |
| (4, 6) (10, 4)                                                                                                                                                                                                                 |  |
| (2, 4) (12, 4)                                                                                                                                                                                                                 |  |
| (6, 8)                                                                                                                                                                                                                         |  |
| Centroid (4, 6) Centroid (11, 4)                                                                                                                                                                                               |  |
| There is no change in the cluster Table 13.12. It is exactly the same; therefore, the <i>k</i> -means algorithm terminates with two clusters with data points as shown in the Table 13.12.                                     |  |
|                                                                                                                                                                                                                                |  |

Faculty Signature

CCI Signature

HOD Signature