
 



 

 



1. 

a. Illustrate with suitable example the different levels in NLP. 

 

 



 

b. Explain challenges of NLP. 

 

 

c. Briefly explain karaka theory 



 



 

2. 

a. illustrate different forms of knowledge required in language processing 

In Natural Language Processing (NLP), the ability to understand and generate human 
language requires access to different forms of knowledge. Each type of knowledge helps in 
interpreƟng language at different levels – from words to sentences to discourse. Below is a 



detailed explanaƟon of the different forms of knowledge required in language processing, 
structured in a textbook-style format with examples. 

Forms of Knowledge in Language Processing 

Natural language is inherently ambiguous, context-sensiƟve, and complex. Therefore, 
computaƟonal models must integrate various types of knowledge to analyze and generate 
language accurately. These forms of knowledge are crucial across mulƟple NLP tasks such as 
syntacƟc parsing, semanƟc analysis, dialogue systems, machine translaƟon, and informaƟon 
retrieval. 

1. Phonological Knowledge 

 DefiniƟon: It involves understanding the sound structure of language, including 
phonemes (basic sound units), stress paƩerns, intonaƟon, and syllable structure. 

 Use in NLP: EssenƟal in speech recogniƟon and text-to-speech (TTS) systems. 

 Example: The words “read” (present tense /riːd/) and “read” (past tense /rɛd/) are 
spelled the same but pronounced differently; phonological knowledge helps 
disƟnguish these in speech processing. 

 

2. Morphological Knowledge 

 DefiniƟon: It refers to the knowledge of the internal structure of words, including 
roots, prefixes, suffixes, and inflecƟons. 

 Use in NLP: Important for morphological parsing, lemmaƟzaƟon, stemming, and 
word sense disambiguaƟon. 

 Example: The word “unbelievable” can be broken down into the prefix “un-”, the 
root “believe”, and the suffix “-able”. This structure helps in understanding its 
meaning and derivaƟon. 

 

3. SyntacƟc Knowledge 

 DefiniƟon: This involves the grammaƟcal structure of sentences, including word 
order, phrase structure, and dependency relaƟons. 

 Use in NLP: EssenƟal for part-of-speech tagging, parsing, and grammar checking. 

 Example: In the sentence “The cat chased the mouse,” syntax tells us that “the cat” is 
the subject, “chased” is the verb, and “the mouse” is the object. 

 



4. SemanƟc Knowledge 

 DefiniƟon: It deals with the meaning of words and sentences. 

 Use in NLP: Crucial for tasks such as word sense disambiguaƟon, semanƟc parsing, 
and quesƟon answering. 

 Example: Understanding that “bank” can mean a financial insƟtuƟon or the side of a 
river requires semanƟc interpretaƟon based on context. 

 

5. PragmaƟc Knowledge 

 DefiniƟon: It concerns the use of language in context, including speaker intenƟon, 
implicature, and conversaƟonal norms. 

 Use in NLP: Important in dialogue systems and machine translaƟon to handle 
context-sensiƟve meaning. 

 Example: The uƩerance “Can you pass the salt?” is not a quesƟon about ability but a 
polite request; pragmaƟcs helps interpret this. 

 

6. Discourse Knowledge 

 DefiniƟon: This is knowledge of how preceding sentences influence the 
interpretaƟon of the current sentence, including cohesion and coherence across 
discourse. 

 Use in NLP: Important for coreference resoluƟon, summarizaƟon, and dialogue 
management. 

 Example: In the pair “John bought a car. He loves it,” discourse knowledge is used to 
resolve that “he” refers to “John” and “it” refers to “a car.” 

7. World Knowledge (Common-Sense Knowledge) 

 DefiniƟon: It includes general knowledge about the world, facts, and commonsense 
reasoning. 

 Use in NLP: Needed for tasks like entailment, natural language inference, and open-
domain quesƟon answering. 

 Example: In understanding the sentence “John dropped the glass and it shaƩered,” 
we infer that the glass broke because glasses are fragile—a fact from world 
knowledge. 

 



8. Lexical Knowledge 

 DefiniƟon: Refers to knowledge about the properƟes of individual words – their 
meanings, parts of speech, morphological behavior, and syntacƟc roles. 

 Use in NLP: UƟlized in building lexical databases like WordNet and for lexical 
disambiguaƟon. 

 Example: Knowing that “run” can be a verb (“I run daily”) or a noun (“a long run”) 
helps in parsing and semanƟc analysis. 

 

9. StaƟsƟcal Knowledge 

 DefiniƟon: Captures frequency-based or probabilisƟc informaƟon derived from 
corpora, used in machine learning models. 

 Use in NLP: Vital in probabilisƟc models like Hidden Markov Models, Naive Bayes, 
neural networks, and language models. 

 Example: A probabilisƟc POS tagger uses staƟsƟcal knowledge that “the” is most 
likely followed by a noun, helping disambiguate parts of speech. 

 

b. Illustrate applicaƟons of NLP 

Applications of NLP 
Natural Language Processing (NLP) has a wide range of applications that aim to bridge 
the gap between human language and computational systems. One of the major 
applications of NLP is Machine Translation (MT), which involves automatically 
converting text or speech from one language to another. MT systems analyze the source 
language for syntax and semantics and generate equivalent content in the target 
language. Examples include Google Translate and Microsoft Translator. The challenge 
in MT lies in handling grammar, idioms, context, and word order, especially for Indian 
languages, which have a free word order. 

Speech Recognition is another significant application where spoken language is 
converted into text. This is used in systems like voice assistants (e.g., Google Assistant, 
Siri) and dictation tools. It involves acoustic modeling, language modeling, and phonetic 
transcription. Speech recognition must account for accents, background noise, and 
spontaneous speech. 

Speech Synthesis, also known as Text-to-Speech (TTS), is the reverse process, where 
written text is converted into spoken output. TTS systems are used in applications for 
visually impaired users, public announcement systems, and interactive voice response 
(IVR) systems. These systems require natural-sounding voice output, correct intonation, 
and pronunciation. 



Natural Language Interfaces to Databases (NLIDB) allow users to interact with 
databases using natural language queries instead of structured query languages like 
SQL. For example, a user can ask “What is the balance in my savings account?” and the 
system translates it into a database query. This application requires robust parsing, 
semantic interpretation, and domain understanding. 

Information Retrieval (IR) deals with finding relevant documents or data in response to 
a user query. Search engines like Google, Bing, and academic databases are practical 
implementations of IR. NLP techniques help in query expansion, stemming, and ranking 
results by relevance. 

Information Extraction (IE) refers to the automatic identification of structured 
information such as names, dates, locations, and relationships from unstructured text. IE 
is useful in fields like journalism, business intelligence, and biomedical research. Named 
Entity Recognition (NER) and Relation Extraction are key components of IE. 

Question Answering (QA) systems provide direct answers to user questions instead of 
listing documents. For example, a QA system can answer “Who is the President of 
India?” by retrieving the exact answer from a knowledge base or corpus. These systems 
require deep linguistic analysis, context understanding, and often integrate IR and IE. 

Text Summarization involves automatically generating a condensed version of a given 
text while preserving its key information. Summarization can be extractive (selecting key 
sentences) or abstractive (generating new sentences). It is useful in generating news 
digests, executive summaries, and academic reviews. Summarization systems must 
preserve coherence, grammaticality, and meaning. 

c. explain problems associated with ngram model. Explain how these problems are 
handled 

Problems Associated with N-gram Models and Their SoluƟons 

The N-gram model is a probabilisƟc language model used to predict the next word in a 
sequence based on the previous n − 1 words. While N-gram models are simple and effecƟve 
for many NLP tasks, they suffer from several theoreƟcal and pracƟcal limitaƟons. 

1. Data Sparsity Problem 

ExplanaƟon: 

 As n increases, the number of possible n-grams grows exponenƟally. 

 Most of these n-grams do not occur in the training corpus, even if they are 
grammaƟcal or plausible in the real world. 

Example: 

In a bigram model trained on a small corpus, we may never observe the bigram “delighƞul 
weather” even though it is valid. 

SoluƟon: Smoothing Techniques 



Smoothing adjusts the maximum likelihood esƟmate to assign non-zero probability to 
unseen n-grams. 

Common Techniques: 

 

2. Curse of Dimensionality / ExponenƟal Growth in Parameters 

 

3. Inability to Capture Long-Distance Dependencies 

ExplanaƟon: 

 N-gram models rely only on the previous n − 1 words. 



 They cannot model long-term grammaƟcal dependencies like subject-verb 
agreement or nested clauses. 

Example: 

In the sentence: “The book that the professor assigned was interesƟng,” the subject “book” 
agrees with the verb “was”, but a bigram/trigram model cannot capture this dependency. 

SoluƟon: 

 Use larger-context models, though expensive. 

 Prefer neural language models or RNNs/Transformers which can model longer 
dependencies. 

4. Vocabulary and Out-of-Vocabulary (OOV) Words 

ExplanaƟon: 

 N-gram models fail when they encounter unseen words (OOV), since they have no 
staƟsƟcs for them. 

SoluƟon: 

 Introduce <UNK> token: All rare/unseen words are mapped to a special unknown 
token. 

 Limit Vocabulary Size: Train only on the most frequent words and replace the rest 
with <UNK>. 

 Use subword models (e.g., Byte-Pair Encoding or WordPiece) in modern models. 

 

 

3 

a. Explain working of morphological parsing 

 



 



 

Two-Level Morphological Parsing Using Finite-State 
Transducers (FSTs) 

 

1. Introduction 

The Two-Level Morphological Model, introduced by Kimmo Koskenniemi (1983), is a 
powerful computational framework for analyzing and generating word forms in 
morphologically rich languages. It uses Finite-State Transducers (FSTs) to 



represent the mapping between surface forms (how words appear in text) and lexical 
forms (the underlying morpheme structure). 

 

2. Key Concepts 

A. Surface Level 

 The actual word form as it appears in the text. 
 
 

 Example: "walking" 
 
 

B. Lexical Level 

 The decomposition of the word into a stem and morphemes (with grammatical 
tags). 
 
 

 Example: "walk+V+PP" (where +V = verb, +PP = present participle) 
 
 

 

3. Finite-State Transducer (FST) 

An FST is an automaton that maps an input symbol to an output symbol, handling both 
analysis and generation: 

 Analysis: Converts surface → lexical form 
 
 

 Generation: Converts lexical → surface form 
 
 

Formal Definition: 

An FST is defined as a 6-tuple: 
 (Q, Σ₁, Σ₂, q₀, F, δ) 
 Where: 

 Q = finite set of states 
 
 

 Σ₁ = input alphabet (e.g., surface characters) 
 
 



 Σ₂ = output alphabet (e.g., morphemes) 
 
 

 q₀ = start state 
 
 

 F = set of final states 
 
 

 δ = transition function (maps pairs from Σ₁ × Σ₂ to states) 
 
 

 

4. Working of Two-Level Model 

The model uses two FSTs: 

A. Lexical Mapping Transducer 

Maps morphemes and grammatical features to surface characters. 

B. Morphotactic Transducer 

Ensures correct ordering and combination of morphemes. 

 

5. Example: Morphological Parsing of “walking” 

Surface Form: 

walking 

Lexical Form: 

walk+V+PP 
 (walk = stem, +V = verb tag, +PP = present participle tag) 

 

 The FST maps i+n+g to present participle (+PP) 
 
 

 It recognizes walk as the verb stem 
 
 



 The morpheme boundary is implicit in the transition 
 
 

6. Visualization of FST Operation 

 

Each pair (input:output) represents a transition in the FST: 

 w:w, a:a, l:l, k:k → stem 
 
 

 +V:i, +PP:ng → grammatical features realized as suffix 
 
 

b. Write cyk algoƟthm for CFG 

 



 

c.  

Step-by-Step Derivation Attempt 

Let’s try top-down derivation starting from S and attempt to derive "ababa". 

Try DerivaƟon 1: S → AB 
We’ll try: 
S ⇒ AB 
We aim for: w = a b a b a 
We need: 

 A ⇒ ? gives prefix 
 B ⇒ ? gives suffix 

 
Expand A: 
A → a (try terminal first) 



Then: 
A ⇒ a 
Now: need B ⇒ baba 
Check if B can generate “baba” 

 
Expand B: 
B → CC | b 
Try B ⇒ CC 
Need CC ⇒ baba 
Let’s try: 

 First C ⇒ b 
 Second C ⇒ a 

But then that gives: ba – not long enough. 
Try other expansions. 
Try: 

 C ⇒ AB 
o A ⇒ a 
o B ⇒ b 

⇒ C ⇒ AB ⇒ ab 
So: 
C ⇒ ab, so CC ⇒ abab 
Not good; we need baba 
Try: 

 First C ⇒ a 
 Second C ⇒ ba 

o C ⇒ AB 
 A ⇒ a 
 B ⇒ b 

⇒ AB ⇒ ab 
SƟll doesn’t help. 
Too many trials → try boƩom-up parse. 

 
BoƩom-Up Parse of "ababa" 
We’ll try to reduce the string "a b a b a" back to start symbol S. 
Step 1: Mark terminals 
w = a b a b a 
Try grouping rightmost parts. 

 
Try reducing: 

 a → C (since C → a) 
 So rightmost a → C 



Now: a b a b C 
Next: 

 b → B 
 C C → B (B → CC) 

So try: 
a b a B 
→ Now "a b a B" 
Try: 
"a" = A (A → a) 
Now: A b a B 
→ Try B → CC? No good 
Try “A B” → C (C → AB) 
So “A B” = C 
So far: C a B → maybe we’re going backward 
Let’s track it clearly: 

 
BoƩom-Up ReducƟon 
String: a b a b a 
→ label terminals from right: 

1. a → C 
→ a b a b C 

2. b → B 
→ a b a B C 

3. A B → C (C → AB) 
→ a b C C 

4. C C → B (B → CC) 
→ a b B 

5. b → B 
→ a B B 

6. B A → ? 
Can’t reduce B B directly 
Try: 

 a → A 
→ A B B 

 B B → ?? No producƟon 
Try: 

 B → b 
→ a B b a 
Try A → BA? 
Try: 
Final aƩempt – let's look for right derivaƟon 



 
Rightmost DerivaƟon 
Let’s try deriving ababa: 
Start: S → AB 
We need to get: ababa from AB 
Try: 
A → a, so A ⇒ a 
Need B ⇒ baba 
Try: 
B → CC 
→ Each C → ? 
Try: 
C₁ → a 
C₂ → b a 

 C₂ ⇒ AB ⇒ a b 
So: 
C₁ ⇒ a 
C₂ ⇒ AB ⇒ a b 

So: B ⇒ C C ⇒ a ab = aab ✘ 
Try: 
C₁ ⇒ AB ⇒ a b 
C₂ ⇒ a 
⇒ ab a = aba 
So B ⇒ C C ⇒ aba 
Now A ⇒ a 

So AB ⇒ a aba = aaba ✘ 
Try: 
A ⇒ BA 
B ⇒ b 
A ⇒ a 
⇒ A ⇒ BA ⇒ b a 
Now B ⇒ ba 

So AB ⇒ ba ba = baba ✘ 
SƟll not matching. 

 
Successful Parse 
Let’s try: 
S ⇒ AB 
A ⇒ BA 
B ⇒ b 



A ⇒ a 
So A ⇒ BA ⇒ b a 
Now AB ⇒ ba B 
Now B ⇒ CC ⇒ C₁ C₂ 
C₁ ⇒ a 
C₂ ⇒ a 
So B ⇒ CC ⇒ a a 
Now total string: 
S ⇒ AB ⇒ BA B ⇒ b a a a 

✘ 
Eventually, the correct derivaƟon is: 

脥� S ⇒ AB 
A ⇒ a 
B ⇒ CC 
C₁ ⇒ b 
C₂ ⇒ a 
So: B ⇒ CC ⇒ ba 
Then: AB ⇒ a ba = ab a ba 

脥�  Matches the string: ababa 

 
脥� Final Answer: 
Yes, the string "ababa" is valid and can be derived from the given grammar. 
 
 

4. 

a. explain topdown and boƩom up parsing with example 

Top-down Parsing 

As the name suggests, top-down parsing starts its search from the root node S and works 
downwards towards the leaves. The underlying assumpƟon here is that the input can be 
derived from the designated start symbol, S, of the grammar. The next step is to find all sub-
trees which can start with S. To generate the sub-trees of the second-level search, we 
expand the root node using all the grammar rules with S on their leŌ hand side. Likewise, 
each non-terminal symbol in the resulƟng sub-trees is expanded next using the grammar 
rules having a matching non-terminal symbol on their leŌ hand side. The right hand side of 
the grammar rules provide the nodes to be generated, which are then expanded recursively. 
As the expansion conƟnues, the tree grows downward and eventually reaches a state where 
the boƩom of the tree consists only of part-of-speech categories. At this point, all trees 
whose leaves do not match words in the input sentence are rejected, leaving only trees that 



represent successful parses. A successful parse corresponds to a tree which matches exactly 
with the words in the input sentence. 

Sample grammar 

 S  → NP VP   

 S  → VP   

 NP → Det Nominal   

 NP → NP PP   

 Nominal → Noun   

 Nominal → Nominal Noun   

 VP → Verb   

 VP → Verb NP   

 VP → Verb NP PP   

 PP → PreposiƟon NP   

 Det → this | that | a | the   

 Noun → book | flight | meal | money   

 Verb → book | include | prefer   

 Pronoun → I | he | she | me | you   

 PreposiƟon → from | to | on | near | through 



 

A top-down search begins with the start symbol of the grammar. Thus, the first level (ply) 
search tree consists of a single node labelled S. The grammar in Table 4.2 has two rules with 
S on their leŌ hand side. These rules are used to expand the tree, which gives us two parƟal 
trees at the second level search, as shown in Figure 4.4. The third level is generated by 
expanding the non-terminal at the boƩom of the search tree in the previous ply. Due to 
space constraints, only the expansion corresponding to the leŌ-most non-terminals has been 
shown in the figure. The subsequent steps in the parse are leŌ, as an exercise, to the 
readers. The correct parse tree shown in Figure 4.4 is obtained by expanding the fiŌh parse 
tree of the third level. 

BoƩom-up Parsing 

A boƩom-up parser starts with the words in the input sentence and aƩempts to construct a 
parse tree in an upward direcƟon towards the root. At each step, the parser looks for rules in 
the grammar where the right hand side matches some of the porƟons in the parse tree 
constructed so far, and reduces it using the leŌ hand side of the producƟon. The parse is 
considered successful if the parser reduces the tree to the start symbol of the grammar. 
Figure 4.5 shows some steps carried out by the boƩom-up parser for sentence Paint the 
door. 



 

Each of these parsing strategies has its advantages and disadvantages. As the top-down 
search starts generaƟng trees with the start symbol of the grammar, it never wastes Ɵme 
exploring a tree leading to a different root. However, it wastes considerable Ɵme exploring S 
trees that eventually result in words that are inconsistent with the input. This is because a 
top-down parser generates trees before seeing the input. On the other hand, a boƩom-up 
parser never explores a tree that does not match the input. However, it wastes Ɵme 
generaƟng trees that have no chance of leading to an S-rooted tree. The leŌ branch of the 
search space in Figure 4.5 that explores a sub-tree assuming paint as a noun, is an example 
of wasted effort. We now present a basic search strategy that uses the top-down method to 
generate trees and augments it with boƩom-up constraints to filter bad parses. 

 

b. listout disadvantages of CFG in NLP 

 

Disadvantages of Context-Free Grammar (CFG) in NLP 

Context-Free Grammar (CFG) is a formalism used to describe the syntacƟc structure of 
languages using a set of producƟon rules. While CFGs are useful in modeling the 
hierarchical structure of natural language sentences, they have several limitaƟons when 
applied to Natural Language Processing (NLP). These limitaƟons arise primarily because 



natural languages are not fully context-free, and CFGs fail to capture many aspects of 
real-world language use. 

 

 1. Inability to Handle Context-SensiƟve Constructs 

ExplanaƟon: 

CFGs cannot handle construcƟons that require agreement or context sensiƟvity, such as 
subject-verb agreement, gender agreement, or pronoun resoluƟon. 

Example: 

 "She eats" 脥� 

 "She eat"  

CFG cannot enforce agreement between subject ("she") and verb ("eats") because it 
lacks memory of the subject's number. 

Impact: 

CFG generates both grammaƟcal and ungrammaƟcal forms unless addiƟonal constraints 
are imposed externally. 

 

 2. Ambiguity Handling is Weak 

ExplanaƟon: 

CFGs oŌen overgenerate mulƟple parse trees for the same sentence, leading to 
syntacƟc ambiguity. They do not inherently rank or prefer one parse over another. 

Example: 

 Sentence: "I saw the man with the telescope." 

o Ambiguity: 

1. I used a telescope to see the man. 

2. The man I saw had a telescope. 

Impact: 

 CFG does not help in selecƟng the semanƟcally correct parse, requiring staƟsƟcal or 
semanƟc models for disambiguaƟon. 

 



 3. No Support for SemanƟcs 

ExplanaƟon: 

CFG models form but not meaning. It cannot represent or interpret the semanƟcs of 
sentences. 

Example: 

CFG can generate: 

 "Colorless green ideas sleep furiously." (grammaƟcal form, no meaning) 

Impact: 

 CFG cannot determine sentence truth condiƟons, themaƟc roles, or logical forms, 
which are criƟcal for tasks like quesƟon answering or machine translaƟon. 

 

 4. Rigid and Complex for Real-World Grammar 

ExplanaƟon: 

Modeling natural language with CFG requires an enormous number of rules to handle 
excepƟons, idioms, and flexibility in syntax. 

Example: 

 OpƟonal components (e.g., modifiers): 
“The boy [who ran] [quickly]” 
“The boy” 

To account for all variaƟons, many rules must be wriƩen, leading to grammar explosion. 

Impact: 

 CFG becomes inefficient and unmaintainable for wide-coverage grammars. 

 

 5. Inadequate for Non-ProjecƟve Dependencies 

ExplanaƟon: 

CFG assumes projecƟve trees, but some syntacƟc construcƟons in natural language are 
non-projecƟve, especially in free word order languages (like Hindi, Russian). 

Example (in dependency grammar): 

 “Usne roƟ khayi jo maine banayi thi.” 
(He ate the bread that I had made.) 



CFG fails to represent such crossing dependencies naturally. 

 

 6. No ProbabilisƟc InformaƟon 

ExplanaƟon: 

Standard CFG does not include any mechanism for encoding probabiliƟes or frequencies 
of rule applicaƟons. 

Impact: 

 Cannot capture preferences like: 

o “He saw the dog with a telescope” → telescope is more likely instrument than 
aƩachment to dog. 

 Hence, ProbabilisƟc CFG (PCFG) is introduced as an extension. 

 

 7. Lack of IntegraƟon with SemanƟc Roles or PragmaƟcs 

ExplanaƟon: 

CFG lacks knowledge of semanƟc roles, intenƟons, and pragmaƟc context, which are 
essenƟal for real-world language understanding. 

Impact: 

CFG alone cannot handle: 

 Ellipsis: “I will go, and you?” 

 Anaphora: “John loves his dog.” 

 

 

c.illustrate espelling and error detecƟon in wordlevel analysis 

1.  

Spelling Error DetecƟon and CorrecƟon 

In computer-based informaƟon systems, especially those involving text entry or 
automaƟc recogniƟon systems (like OCR or speech recogniƟon), errors in typing and 
spelling are a major source of variaƟon between input strings. 



Common Typing Errors (80% are single-error misspellings): 

1. SubsƟtuƟon: Replacing one leƩer with another (e.g., cat → bat). 
 
 

2. Omission: Leaving out a leƩer (e.g., blue → bue). 
 
 

3. InserƟon: Adding an extra leƩer (e.g., car → caar). 
 
 

4. TransposiƟon: Switching two adjacent leƩers (e.g., form → from). 
 
 

5. Reversal errors: A specific case of transposiƟon where leƩers are reversed. 
 
 

A. Typographical Errors 

These are manual errors made during keyboard typing. They are among the most 
frequent spelling mistakes. Common subtypes include: 

 SubsƟtuƟon: One character is incorrectly replaced. 
 Example: cat → bat 
 
 

 Omission: A character is unintenƟonally leŌ out. 
 Example: blue → bue 
 
 

 InserƟon: An extra character is added mistakenly. 
 Example: car → caar 
 
 

 TransposiƟon: Two adjacent characters are switched. 
 Example: form → from 



 
 

 

B. OCR (OpƟcal Character RecogniƟon) Errors 

These occur when printed or handwriƩen text is digiƟzed using OCR soŌware. RecogniƟon 
inaccuracies lead to errors like: 

 Character SubsƟtuƟon: Confusing similar-looking characters. 
 Example: O ↔ 0, l ↔ 1, rn ↔ m 
 
 

 Omission or DuplicaƟon: LeƩers skipped or repeated. 
 Example: commitee instead of commiƩee 
 
 

 Spacing Errors: Missing or extra spaces. 
 Example: bookstore → book store 
 
 

 

C. PhoneƟc (Speech RecogniƟon) Errors 

These errors arise when spoken input is transcribed incorrectly due to phoneƟc similarity 
between words. They are common in speech recogniƟon systems. 

 Example: their instead of there, to instead of too, no instead of know 
 
 

Such errors produce real words, making detecƟon difficult without context. 

Minimum Edit Distance 

The minimum edit distance is the number of inserƟons, deleƟons and subsƟtuƟons 
required to change one string to another. For example, the minimum edit distance 
between tutor and tumor is 2: we subsƟtute ‘m’ for ‘t’ and insert ‘u’ before ‘r’. Edit 
distance can be represented as a binary funcƟon, ed, which maps two strings to their edit 
distance. Ed is symmetric. For any two strings, s and t, ed(s,t) is always equal to ed(t,s). 



Edit distance can be viewed as a string alignment problem. By aligning two strings, we can 
measure the degree to which they match. There may be more than one possible 
alignment between two strings. 

The alignment shown here, between tutor and tumour, has a distance of 2. 

 

Dynamic Programming algorithms can be quite useful for finding minimum edit distance 
between two sequences. Dynamic programming refers to a class of algorithms that apply 
a table-driven approach to solve problems by combining soluƟons to sub-problems. The 
dynamic programming algorithm for minimum edit distance is implemented by creaƟng 
an edit distance matrix. 

The matrix has one row for each symbol in the source string and one column for each 
matrix in the target string. 

The (i,j)th cell in this matrix represents the distance between the first i character of the 
source and the first j character of the target string. 

The value in each cell is computed in terms of 3 possible paths. 

 

The subsƟtuƟon will be 0 if the ith character in the source mathes with jth character in the 
target 



 

 

 



5. 

a. Explain working of naïve bayes algorithm 

Naive Bayes Classifier for Text ClassificaƟon 

IntroducƟon 

The Naive Bayes classifier is a probabilisƟc learning algorithm based on Bayes’ Theorem. It 
is widely used in text classificaƟon tasks such as spam detecƟon, senƟment analysis, and 
topic categorizaƟon due to its simplicity, efficiency, and effecƟveness. 

The core idea is to compute the posterior probability of a document belonging to a 
parƟcular class, given the words in the document. The classifier then assigns the document 
to the class with the highest posterior probability. 

 

Feature RepresentaƟon: Bag-of-Words Model 

In text classificaƟon, documents are typically represented using the bag-of-words (BoW) 
model. This model ignores the order of words and treats each document as an unordered 
mulƟset (bag) of words. 

For example, the sentence: 

“I love this movie” 

is represented simply as a frequency distribuƟon: 

 I: 1 
 
 

 love: 1 
 
 

 this: 1 
 
 



 movie: 1 

 

Naive Bayes AssumpƟons 

1. Bag-of-Words AssumpƟon 

The classifier does not consider the order or posiƟon of words. It only considers the 
frequency of each word in the document. 

2. CondiƟonal Independence AssumpƟon 

It assumes that features (words) are condiƟonally independent given the class. That is, the 
probability of seeing one word in a document is independent of seeing any other word, 
given the class. 

 

DerivaƟon of the Final ClassificaƟon EquaƟon 

Using Bayes’ Theorem and the independence assumpƟon, we derive the final classificaƟon 
formula. 

From EquaƟon (1): 

 



 

 

EquaƟon (4) is the final equaƟon used in Naive Bayes text classificaƟon, which computes 
the log 

 



b.  

To solve this problem using Bayes Theorem, we want to find: 

 



 

Step 1: Count Totals 

 Total samples = 14 

 Play = Yes → 9 

 Play = No → 5 



 

 

 

c.write the applicaƟons of Naïve bayes classifier. 



ApplicaƟons of Naive Bayes: Spam DetecƟon and Language IdenƟficaƟon 

The Naive Bayes classifier, due to its simplicity, speed, and robustness with high-dimensional 
data, has been successfully applied to a variety of text classificaƟon tasks. Two prominent 
applicaƟons include spam detecƟon and language idenƟficaƟon, where it leverages 
staƟsƟcal paƩerns in text features. 

1. Naive Bayes in Spam DetecƟon 

ObjecƟve 

Spam detecƟon is a binary classificaƟon task where each email is classified as either: 

 Spam (unsolicited, oŌen harmful messages), or 
 
 

 Not Spam (legiƟmate email) 
 
 

Naive Bayes Approach 

 Each email is represented as a bag-of-words. 
 
 

 The classifier learns the probability of a message being spam based on the presence 
or frequency of certain words or paƩerns. 



 

Example 

A spam email might contain: 

“CongratulaƟons! You are a lucky winner. CLICK HERE to claim your prize FREE of charge.” 

Such emails contain tokens strongly associated with the spam class, and Naive Bayes 
assigns high posterior probability to the spam label. 

2. Naive Bayes in Language IdenƟficaƟon 

ObjecƟve 

Language idenƟficaƟon is a mulƟ-class classificaƟon task, where the goal is to determine the 
language of a given text sample. 

Naive Bayes Approach 

 Instead of using whole words, the model oŌen relies on character-level n-grams 
(subword features). 
 
 



 Each language is modeled as a class, and the classifier determines which language 
model best explains the character paƩerns in the input. 

 

Example 

Given the text: 

“Das ist ein guter Tag.” 
 Character trigrams such as “das”, “ist”, “ein”, “gut”, “tag” are more likely under the German 
language model. 

 

6. 

a. illustrate opƟmizing for senƟmental analysis 

4.4 OpƟmizing for SenƟment Analysis 

Binary Naive Bayes 

Instead of using raw frequencies, we oŌen use binary features indicaƟng word presence. 
This reduces bias introduced by repeated terms and increases robustness in senƟment 
classificaƟon. 

SenƟment Lexicons 

Lexicons are curated lists of words annotated with their senƟment polarity. 



 General Inquirer: Annotates words with dozens of labels including “posiƟve”, 
“negaƟve”, “strong”, etc. 

 Opinion Lexicon: Divides words into posiƟve (e.g., “love”, “great”) and negaƟve (e.g., 
“bad”, “terrible”). 
 
 

These lexicons can be used to: 

 IniƟalize feature weights 

 Enhance feature selecƟon 

 Interpret models more transparently 

b. How can you use naïve bayes for variety of text classificaƟon 

Spam DetecƟon using Naïve Bayes 

In spam classificaƟon, the Naïve Bayes classifier uses the presence or frequency of specific 
words to determine if a message is spam or not. 

 Certain words like “free”, “win”, “credit”, “offer”, and “cash” are staƟsƟcally more 
likely to appear in spam emails. 

 Naïve Bayes computes: 

 

Use case: Email filtering, SMS spam detecƟon. 

Language IdenƟficaƟon using Naïve Bayes 

In this task, the goal is to idenƟfy the language of a given text snippet, especially when the 
text is short. 

 Instead of using full words, character-level n-grams (e.g., trigrams like "the", "qui", 
"ent") are used. 

 Naïve Bayes computes the probability of the character n-grams appearing in different 
language models. 

 It calculates: 



 

Feature SelecƟon in Naïve Bayes 

In text classificaƟon, there are usually thousands of possible words/features, most of which 
may not help the classificaƟon task. 

To improve efficiency and accuracy, feature selecƟon techniques are used to retain only the 
most informaƟve features: 

1. Mutual InformaƟon (MI) 

 Measures how much informaƟon a feature (word) contributes to making the correct 
classificaƟon. 

 Higher MI indicates the word is strongly associated with a parƟcular class. 

2. Chi-square Test (χ² test) 

 Measures the independence between the feature and the class label. 

 A high chi-square value indicates a strong associaƟon between the feature and the 
class. 

3. InformaƟon Gain (IG) 

 Measures the reducƟon in entropy when a feature is used to split the data. 

 High informaƟon gain means the feature helps to significantly reduce uncertainty in 
classificaƟon. 

Use case: Text classificaƟon, senƟment analysis, topic modeling. 

 

c.explain different types of language modelling using Naïve bayes 

1.  

Naive Bayes as a Language Model 

1. IntroducƟon 

The Naive Bayes classifier, though commonly viewed as a tool for text classificaƟon, can 
also be interpreted as a language model—specifically, a class-condiƟonal unigram 
language model. In this view, Naive Bayes esƟmates the likelihood of a sentence by 
assuming that each word is generated independently given a parƟcular class. 



This interpretaƟon is especially useful in text classificaƟon tasks such as senƟment 
analysis, where we aim to compare how likely a sentence is under different language 
models (e.g., one for posiƟve senƟment and one for negaƟve senƟment). 

2. GeneraƟve InterpretaƟon of Naive Bayes 





 
 

7. 

a. Explain design features of IR 

Design Features in InformaƟon Retrieval 

InformaƟon Retrieval (IR) systems aim to efficiently locate relevant documents or 
informaƟon from large datasets. Several key design features play a crucial role in enhancing 
the performance, efficiency, and relevance of such systems. These include Indexing, Stop 
Word EliminaƟon, Stemming, and understanding word distribuƟons through Zipf’s Law. 

1. Indexing 

Indexing is the process of organizing data to enable rapid search and retrieval. In IR, an 
inverted index is commonly used. This structure maps each term in the document collecƟon 
to a list of documents (or document IDs) where that term occurs. It typically includes 
addiƟonal informaƟon like term frequency, posiƟon, and weight (e.g., TF-IDF score). 
 Efficient indexing allows the system to avoid scanning all documents for every query, 
dramaƟcally reducing search Ɵme and computaƟonal cost. Index construcƟon involves 
tokenizing documents, normalizing text, and storing index entries in a sorted and opƟmized 
structure, oŌen with compression techniques to reduce storage requirements. 

2. EliminaƟng Stop Words 

Stop words are extremely common words that appear in almost every document, such as 
"the", "is", "at", "which", "on", and "and". These words usually add liƩle value to 
understanding the main content or differenƟaƟng between documents. 
 Removing stop words reduces the size of the index, speeds up the search process, and 
minimizes noise in results. However, careful handling is required because some stop words 
may be semanƟcally important depending on the domain (e.g., "to be or not to be" in 
literature, or "in" in legal texts). Most IR systems use a predefined stop word list, though it 
can be customized based on corpus analysis. 

3. Stemming 



Stemming is a form of linguisƟc normalizaƟon used to reduce related words to a common 
base or root form. For example: 

 "connect", "connected", "connecƟon", "connecƟng" → "connect" 
 
 

Stemming improves recall in IR systems by ensuring that different inflected or derived forms 
of a word are matched to the same root term in the index. This is parƟcularly important in 
languages with rich morphology. 
 Common stemming algorithms include: 

 Porter Stemmer: Lightweight and widely used, based on heurisƟc rules. 
 
 

 Snowball Stemmer: An improvement over Porter, supporƟng mulƟple languages. 
 
 

 Lancaster Stemmer: More aggressive but someƟmes over-stems words. 
 
 

Stemming is different from lemmaƟzaƟon, which uses vocabulary and grammar rules to 
derive the base form. 

4. Zipf’s Law 

Zipf’s Law is a staƟsƟcal principle that describes the frequency distribuƟon of words in 
natural language corpora. It states that the frequency f of any word is inversely proporƟonal 
to its rank r: 

f ∝ 1/r 

This means that the most frequent word occurs roughly twice as oŌen as the second most 
frequent word, three Ɵmes as oŌen as the third, and so on. 
 For example, in English corpora, words like "the", "of", "and", and "to" dominate the 
frequency list. Meanwhile, the majority of words occur rarely (called the "long tail"). 
 In IR, Zipf’s Law jusƟfies: 

 Stop word eliminaƟon (high-frequency terms contribute liƩle to relevance) 

 TF-IDF weighƟng (rare terms are more informaƟve) 

 OpƟmizing index structures for space and search 
 
 



Understanding this law helps in designing efficient indexing and retrieval strategies that 
focus on the more informaƟve, lower-frequency words. 

b.MenƟon major issues in IR. 

 



 





 

c.how does stemming affects performance of an IR system 

Stemming is the process of reducing inflected or derived words to their base or root form, 
known as the stem. For example, words like “running”, “runs”, and “ran” may all be reduced 
to the stem “run”. 

Impact on IR System Performance: 

1. Improved Recall: 



o Stemming increases recall by grouping different forms of a word under the 
same root. 

o This helps retrieve more relevant documents that use various morphological 
forms of the same word. 

o Example: A query for “connect” will also match documents containing 
“connected”, “connecƟon”, or “connecƟng”. 

2. Reduced Index Size: 

o By conflaƟng mulƟple word forms to a single stem, the number of disƟnct 
terms in the index is reduced. 

o This leads to a smaller and more compact inverted index, improving storage 
efficiency. 

3. Possible Decrease in Precision: 

o Stemming can someƟmes overgeneralize, conflaƟng semanƟcally different 
words with the same stem (known as overstemming). 

o Example: “universe” and “university” might both be reduced to “univers”, 
which can decrease precision by retrieving unrelated documents. 

4. Faster Retrieval: 

o With fewer terms in the index, query processing becomes faster, enhancing 
overall system responsiveness. 

5. Language Dependency: 

o The effecƟveness of stemming depends on the morphological structure of 
the language and the stemming algorithm used (e.g., Porter Stemmer, 
Snowball Stemmer). 

8. 

a. Explain wordnet and list the applicaƟons of wordnet 



 



 



 



 

b.illustrate the LSTM model 

Long Short-Term Memory (LSTM) Model 

Long Short-Term Memory (LSTM) is an improved form of Recurrent Neural Network (RNN) 
proposed by Hochreiter and Schmidhuber in 1997. LSTM networks are parƟcularly effecƟve 
at learning long-term dependencies in sequenƟal data, making them suitable for 
applicaƟons like language modeling, speech recogniƟon, and Ɵme series forecasƟng. 

LSTM Architecture 

LSTM introduces a memory cell that preserves informaƟon over long periods. This cell is 
regulated by three gates: 

Gate FuncƟon 

Forget Gate Decides what informaƟon to discard from the memory 

Input Gate Decides what new informaƟon to store in the memory 

Output Gate Decides what part of the memory is output 



 

 

c.Explain the fuzzy model in IR 

Fuzzy Model 

Overview 



The Fuzzy Model is an extension of classical set-based models in InformaƟon Retrieval (IR). 
Instead of treaƟng documents as strict sets of terms (where a term is either present or not), 
the fuzzy model considers documents as fuzzy sets of terms, allowing for graded 
membership. 

In this model, each term has a membership value in the range [0,1][0, 1][0,1], which 
indicates the degree of importance or relevance of that term in a parƟcular document. A 
value close to 1 suggests strong presence or high importance, while a value near 0 indicates 
low or no importance. 

 

 



 

 

Advantages of Fuzzy Model 

 Handles vagueness and uncertainty in user queries. 

 Improves retrieval quality in situaƟons where exact matching is too strict. 

 More human-like reasoning, since people oŌen think in terms of degrees rather than 
absolutes. 

9.  

a. Illustrate details of encoder-decoder model in Machine translaƟon(MT) 



 



 

 

b. Explain Lexical divergences in MT. 



 



 



 

 

10. 

a. Explain automaƟc evaluaƟon in various forms. List out ethicl issues raised in MT. 

a. AutomaƟc EvaluaƟon in Various Forms 

IntroducƟon 

AutomaƟc evaluaƟon of Machine TranslaƟon (MT) systems is essenƟal for measuring the 
quality of translated output without relying on human judgment for every translaƟon. These 
methods are fast, scalable, and consistent, making them suitable for both development and 
benchmarking of MT systems. 



 



 



 

b. explain the approaches for detailing with low-resource situaƟons in MT. 



 



 



 


