6983 Sl

BAl601
USN tc R |1 " .

A

Sixth Semester B.E./B.Tech. Degyree pxam minations

Natural La nguage proce

ssing Max. Marks: 100

Time: 3 hrs.
i module.
Note: 1. Answer any FIVE full questions, choosing ONE full question fro™ each
2. M : Marks , L: Bloom’s level , C: Coypse oM1COMES =
- i WL <]
- odule -1 S o 2| CO
Q.1 |a Illustrat_e with suitable examples the different Jevels in Natural Language 08 L
Processing.
o6 L2 | COl |
- 2
b. | Explain the challenges of Natural Language Processing. | E
¢. | Briefly explain Karaka Theory 06| L2 e
L , 21 col
Q.2 | a. | [lustrate different forms of knowledge required in language processing. 06 | L
] I E——
b. | Write the applications of Natural Language Processing. ' 06| L2 | €Ol
. | List the problems associated with N-gram Model. Explain how these 08| L2 | CO1
problems are handled. / | |
. ____________________&Jdulc -2
Q.3 | a. | Explain the working of Morphological Parsing. 05 12| CO2
b. | Write CYK Algorithm for context Free Grammar. 06 L3 | CO2
¢. | For the given context Free Grammar (CFG) 08 | L3 | CO2
S— AB/BC
A— BA/a
—>CC‘fb S 1)
C— ABfa” N\
Check whether the string (w) = ‘ababa’ is valid or not.
| I~ e
& OR
Q4 |a Explain Top-down.md Bottom-up Parsing with example. 08| L1 | Ccoz
p. | List out dwad\iantages of Context Free Grammar i Natural Language [04 | L1 | CO2
Grammar v
e | Nlustrate spelling Error Detection and Correction in word level analysis. 08| L2 | co2
| of2

BAIG01
5 : : Module - 3
l Q l a. \ Explain working of Naive Bayes Algorithm. __o_f._rz___a_jT

b. | Suppose - : P A A
lar?;t W?;b";;{g:y‘a g‘:i‘é‘:‘ﬁe lsz:wcaiher Conditions’ and corresponding 08 | L3 CO3
[CSiNo. [Outlook |
\ 1 l Rainy

__Sunny

Ovcrm—sl_ a
Overcast

—3 | Overcast |
o Ye

Using above dataset, decide Whether you should play or notona particular
day with weather s *Sunny”_by appl ing Bayes Theorem.
Write applications of Naive Bayes classifier.

a variety O
Model using Naive Bayes.

How can you use€
Explain different types

Module =5
_ Decoder

o with low-resource situations in MT.

Explain Lexical
—OR
matic € Fion in V&' ous forms, List out ethical issues raised Hﬂﬁ
= valus
i achine T G (12 €05

il

1.

a. lllustrate with suitable example the different levels in NLP.

In the context of NLP, language refers to a system of communication that uses structured
symbols—spoken, written, or signed—to convey meaning. Natural languages like English, Hindi, or Tamil
are inherently ambiguous, complex, and context-dependent, which makes computational processing a
challenging task. Knowledge, in NLP, is the information that supports the interpretation of language—this
includes grammatical rules, semantic relationships, world knowledge, and context awareness. The
integration of language and knowledge is crucial for enabling machines to understand and generate
human-like responses.

NATURAL LANGUAGE
PROCESSING PYRAMID

The first step in processing language is usually lexical analysis, which involves breaking down the input
text into tokens—individual units like words, punctuation, and symbols. It also involves assigning categories
like part-of-speech tags (e.g., noun, verb, adjective) to each token. This stage helps structure the text so it
can be processed more deeply in later stages.

Next is word-level processing, where each word's meaning and properties are analyzed. This includes
looking up dictionary definitions, understanding synonyms or antonyms, and checking word usage. A
fundamental concept here is the morpheme, the smallest unit of meaning in a language. For instance, in
the word “unhappiness”, “un-", “happy”, and “-ness” are three morphemes. |dentifying morphemes helps in
understanding the structure and meaning of words beyond their surface forms.

Atfter word-level processing, the focus shifts to syntactic analysis (or parsing), which involves determining
the grammatical structure of a sentence. This includes analyzing how words are grouped into phrases and
how those phrases relate to each other in a hierarchy. For example, in the sentence "The boy ate the
apple,” syntactic analysis identifies "The boy" as the subject noun phrase and “ate the apple” as the verb
phrase.

Once syntax is understood, semantic analysis aims to derive the meaning of a sentence. This involves
mapping syntactic structures to logical representations and identifying the roles of words (e.g., who is doing
what to whom). Semantic analysis tries to resolve word sense disambiguation (e.g., the word “bank™ could
mean a financial institution or a riverbank) and capture the intended meaning of phrases and sentences.

Moving beyond individual sentences, discourse analysis deals with the structure and meaning of
connected text or dialogue. It considers how one sentence relates to the next and how information flows
across sentences. For example, resolving anaphora (i.e., identifying what a pronoun refers to) is a key task
in discourse analysis — in "John dropped the glass. It broke,” the word "it" refers to "the glass.”

Finally, pragmatic analysis focuses on how context influences interpretation. This includes speaker
intention, tone, politeness, and real-world knowledge. For example, if someone says, “Can you pass the
salt?”, a pragmatic analysis understands it not as a question about ability but as a polite request.
Pragmatics allows machines to go beyond literal meanings and engage in more natural communication.

Together, these layers—lexical, syntactic, semantic, discourse, and pragmatic—form a pipeline through
which language is processed using both linguistic rules and background knowledge. Mastery of these
components is essential for building effective NLP applications.

b. Explain challenges of NLP.

Challenges in Natural Language Processing

Natural Language Processing (NLP) deals with the inherently complex and ambiguous nature of human
language. One of the key challenges is representation and interpretation, which refers to how machines
can represent the structure and meaning of language in a formal way that computers can manipulate. Unlike
numbers or code, natural language involves abstract concepts, emotions, and context, making it difficult to
represent using fixed logical forms or algorithms. Interpretation becomes even harder when the same
sentence can carry different meanings depending on the speaker’s intent, cultural background, or tone.

Another major challenge is identifying semantics, especially in the presence of idioms and metaphors.
Idioms such as "kick the bucket” or “spill the beans” have meanings that cannot be derived from the literal
meaning of the words. Similarly, metaphors like “time is a thief" require deep contextual and cultural
understanding, which machines struggle to grasp. These figurative expressions pose a serious problem for
semantic analysis since they don't follow regular linguistic patterns.

Quantifier scoping is another subtle issue, dealing with how quantifiers (like “all,” “some,” “none”) affect the
meaning of sentences. For example, the sentence “Every student read a book™ can mean either that all
students read the same book or that each student read a different one. Disambiguating such sentences
requires complex logical reasoning and context awareness.

Ambiguity is one of the most persistent challenges in NLP. At the word level, there are two main types:
part-of-speech ambiguity and semantic ambiguity. In part-of-speech ambiguity, a word like “book™ can be
a noun (“a book™) or a verb (“to book a ticket”), and the correct tag must be determined based on context. This
ties into the task of Part-of-Speech (POS) tagging, where the system must assign correct grammatical labels
to each word in a sentence, often using probabilistic models like Hidden Markov Models or neural networks.

In terms of semantic ambiguity, many words have multiple meanings—a problem known as polysemy. For
instance, the word “bat™ can refer to a flying mammal or a piece of sports equipment. Resolving this is the
goal of Word Sense Disambiguation (WSD), which attempts to determine the most appropriate meaning of
a word in a given context. WSD is particularly difficult in resource-poor languages or when the context is
vague.

Another type of complexity arises from structural ambiguity, where a sentence can be parsed in more than
one grammatical way. For example, in “| saw the man with a telescope,” it is unclear whether the telescope
was used by the speaker or the man. Structural ambiguity can lead to multiple interpretations and is a major
hurdle in syntactic and semantic parsing.

c. Briefly explain karaka theory

Karaka Theory in Paninian Grammar

1. Introduction to Karaka Theory
Karaka Theory is a foundational component of Paninian grammar, which provides a semantic
framework for analyzing the grammatical roles of nouns in relation to the main verb of a
sentence. It answers questions such as:

e Who is performing the action?

e What is affected by the action?

e With what, for whom, where, or from where is the action done?

Unlike Western grammatical models that emphasize syntactic roles such as subject, object, etc.,
Karaka Theory focuses on semantic functions, making it especially suitable for
free-word-order languages like Hindi and other Indian languages.

2. Definition of Karaka

e The term "Karaka" means ¢

e A Karaka is the semantic role that a noun or noun phrase plays with respect to the verb in
a sentence.

e Karaka relationships are verb-centric—the nature of the verb determines the number and
type of Karakas needed.

e The actual grammatical markers used (called vibhaktis) help indicate these roles but are
not always one-to-one with semantic roles.

3. The Six Main Karakas!

Karaka Name Role (Function) Typical Marker (Vibhakti) Example (Hindi) Meaning
Karta Doer or Agent of the Ergative/Instrumental 7/ W A &M Ram ate
action 2)
Karma Object of the action Accusative ($1/Q) Bd 9™l Ate the fruit
Karana Instrument used for Instrumental (8) RICJ k| Cut with a knife
action
Sampradana Recipient/Beneficiary Dative (@) wes @t B Gave to Mohan
Apadana Source/Separation point Ablative (&) feeht & amm Came from Delhi
Adhikarana Location or contextual Locative (&, ™) T R A3 Sat on the chair
setling
4. Example Sentence (Hindi)
Let us analyze the sentence:
WA AP | G AT HI @ A fgan
(Ram gave the fruit to Mohan with a knife in a plate.)
Karaka Analysis:
Word Karaka Role
I Karta Doer of the action
wa Karma Object being given
g &t Sampradana Recipient of the action
wﬁ Karana Instrument used for giving
@ d Adhikarana Location where the action occurs

This example shows that semantic roles are identified not just by position in the sentence, but
by the relationship with the verb and case markers (vibhaktis).

5. Features of Karaka Theory
e Verb-Driven: Karaka roles are determined by the valency of the verb.

e Semantic, not Syntactic: It focuses on meaning rather than word order.

2.
a. illustrate different forms of knowledge required in language processing

In Natural Language Processing (NLP), the ability to understand and generate human
language requires access to different forms of knowledge. Each type of knowledge helps in
interpreting language at different levels — from words to sentences to discourse. Below is a

detailed explanation of the different forms of knowledge required in language processing,
structured in a textbook-style format with examples.

Forms of Knowledge in Language Processing

Natural language is inherently ambiguous, context-sensitive, and complex. Therefore,
computational models must integrate various types of knowledge to analyze and generate
language accurately. These forms of knowledge are crucial across multiple NLP tasks such as
syntactic parsing, semantic analysis, dialogue systems, machine translation, and information
retrieval.

1. Phonological Knowledge

o Definition: It involves understanding the sound structure of language, including
phonemes (basic sound units), stress patterns, intonation, and syllable structure.

e Usein NLP: Essential in speech recognition and text-to-speech (TTS) systems.

e Example: The words “read” (present tense /ri:d/) and “read” (past tense /red/) are
spelled the same but pronounced differently; phonological knowledge helps
distinguish these in speech processing.

2. Morphological Knowledge

o Definition: It refers to the knowledge of the internal structure of words, including
roots, prefixes, suffixes, and inflections.

e Usein NLP: Important for morphological parsing, lemmatization, stemming, and
word sense disambiguation.

o Example: The word “unbelievable” can be broken down into the prefix “un-”, the
root “believe”, and the suffix “-able”. This structure helps in understanding its
meaning and derivation.

3. Syntactic Knowledge

e Definition: This involves the grammatical structure of sentences, including word
order, phrase structure, and dependency relations.

e Use in NLP: Essential for part-of-speech tagging, parsing, and grammar checking.

o Example: In the sentence “The cat chased the mouse,” syntax tells us that “the cat” is
the subject, “chased” is the verb, and “the mouse” is the object.

4. Semantic Knowledge
o Definition: It deals with the meaning of words and sentences.

e Use in NLP: Crucial for tasks such as word sense disambiguation, semantic parsing,
and question answering.

e Example: Understanding that “bank” can mean a financial institution or the side of a
river requires semantic interpretation based on context.

5. Pragmatic Knowledge

o Definition: It concerns the use of language in context, including speaker intention,
implicature, and conversational norms.

e Usein NLP: Important in dialogue systems and machine translation to handle
context-sensitive meaning.

o Example: The utterance “Can you pass the salt?” is not a question about ability but a
polite request; pragmatics helps interpret this.

6. Discourse Knowledge

o Definition: This is knowledge of how preceding sentences influence the
interpretation of the current sentence, including cohesion and coherence across
discourse.

e Usein NLP: Important for coreference resolution, summarization, and dialogue
management.

e Example: In the pair “John bought a car. He loves it,” discourse knowledge is used to
resolve that “he” refers to “John” and “it” refers to “a car.”

7. World Knowledge (Common-Sense Knowledge)

o Definition: It includes general knowledge about the world, facts, and commonsense
reasoning.

o Use in NLP: Needed for tasks like entailment, natural language inference, and open-
domain question answering.

o Example: In understanding the sentence “John dropped the glass and it shattered,”
we infer that the glass broke because glasses are fragile—a fact from world
knowledge.

8. Lexical Knowledge

o Definition: Refers to knowledge about the properties of individual words — their
meanings, parts of speech, morphological behavior, and syntactic roles.

e Use in NLP: Utilized in building lexical databases like WordNet and for lexical
disambiguation.

e Example: Knowing that “run” can be a verb (“/ run daily”) or a noun (“a long run”)
helps in parsing and semantic analysis.

9. Statistical Knowledge

o Definition: Captures frequency-based or probabilistic information derived from
corpora, used in machine learning models.

o Use in NLP: Vital in probabilistic models like Hidden Markov Models, Naive Bayes,
neural networks, and language models.

e Example: A probabilistic POS tagger uses statistical knowledge that “the” is most
likely followed by a noun, helping disambiguate parts of speech.

b. lllustrate applications of NLP

Applications of NLP

Natural Language Processing (NLP) has a wide range of applications that aim to bridge
the gap between human language and computational systems. One of the major
applications of NLP is Machine Translation (MT), which involves automatically
converting text or speech from one language to another. MT systems analyze the source
language for syntax and semantics and generate equivalent content in the target
language. Examples include Google Translate and Microsoft Translator. The challenge
in MT lies in handling grammar, idioms, context, and word order, especially for Indian
languages, which have a free word order.

Speech Recognition is another significant application where spoken language is
converted into text. This is used in systems like voice assistants (e.g., Google Assistant,
Siri) and dictation tools. It involves acoustic modeling, language modeling, and phonetic
transcription. Speech recognition must account for accents, background noise, and
spontaneous speech.

Speech Synthesis, also known as Text-to-Speech (TTS), is the reverse process, where
written text is converted into spoken output. TTS systems are used in applications for
visually impaired users, public announcement systems, and interactive voice response
(IVR) systems. These systems require natural-sounding voice output, correct intonation,
and pronunciation.

Natural Language Interfaces to Databases (NLIDB) allow users to interact with
databases using natural language queries instead of structured query languages like
SQL. For example, a user can ask “What is the balance in my savings account?” and the
system translates it into a database query. This application requires robust parsing,
semantic interpretation, and domain understanding.

Information Retrieval (IR) deals with finding relevant documents or data in response to
a user query. Search engines like Google, Bing, and academic databases are practical
implementations of IR. NLP techniques help in query expansion, stemming, and ranking
results by relevance.

Information Extraction (IE) refers to the automatic identification of structured
information such as names, dates, locations, and relationships from unstructured text. IE
is useful in fields like journalism, business intelligence, and biomedical research. Named
Entity Recognition (NER) and Relation Extraction are key components of IE.

Question Answering (QA) systems provide direct answers to user questions instead of
listing documents. For example, a QA system can answer “Who is the President of
India?” by retrieving the exact answer from a knowledge base or corpus. These systems
require deep linguistic analysis, context understanding, and often integrate IR and IE.

Text Summarization involves automatically generating a condensed version of a given
text while preserving its key information. Summarization can be extractive (selecting key
sentences) or abstractive (generating new sentences). It is useful in generating news
digests, executive summaries, and academic reviews. Summarization systems must
preserve coherence, grammaticality, and meaning.

c. explain problems associated with ngram model. Explain how these problems are
handled

Problems Associated with N-gram Models and Their Solutions

The N-gram model is a probabilistic language model used to predict the next word in a
sequence based on the previous n — 1 words. While N-gram models are simple and effective
for many NLP tasks, they suffer from several theoretical and practical limitations.

1. Data Sparsity Problem
Explanation:
e Asnincreases, the number of possible n-grams grows exponentially.

e Most of these n-grams do not occur in the training corpus, even if they are
grammatical or plausible in the real world.

Example:

In a bigram model trained on a small corpus, we may never observe the bigram “delightful
weather” even though it is valid.

Solution: Smoothing Techniques

Smoothing adjusts the maximum likelihood estimate to assign non-zero probability to
unseen n-grams.

Common Techniques:

¢ Add-One Smoothing (Laplace Smoothing):

C(wi_y,w;) +1
C(w,-_l) -+ vV

&aplacc(wi | wi—l) =

where V' is the vocabulary size.
» Add-k Smoothing (generalized version with k& < 1).

¢ Good-Turing Smoothing:
Adjusts the count of n-grams based on the frequency of n-grams that appear once, twice, etc.

¢ Kneser-Ney Smoothing:
Advanced smoothing that adjusts for how likely a word is to appear in new contexts.

2. Curse of Dimensionality / Exponential Growth in Parameters

Explanation:
¢ An N-gram model requires a separate parameter for every possible n-gram.
« The number of parameters is O(V ™), where V is the vocabulary size.
¢ This makes training and storing models expensive.

Solution:
¢ Limiting N: Use smaller n-values (typically n < 3), like unigrams, bigrams, or trigrams.
¢ Backoff and Interpolation:

« |If a higher-order n-gram is unseen, fall back to a lower-order n-gram.
Example (Backoff):

use trigram if seen
P(w; | wi—s,w;—1) = { else use bigram if seen

else use unigram

3. Inability to Capture Long-Distance Dependencies
Explanation:

e N-gram models rely only on the previous n — 1 words.

e They cannot model long-term grammatical dependencies like subject-verb
agreement or nested clauses.

Example:

In the sentence: “The book that the professor assigned was interesting,” the subject “book”
agrees with the verb “was”, but a bigram/trigram model cannot capture this dependency.

Solution:
¢ Use larger-context models, though expensive.

e Prefer neural language models or RNNs/Transformers which can model longer
dependencies.

4. Vocabulary and Out-of-Vocabulary (OOV) Words
Explanation:

¢ N-gram models fail when they encounter unseen words (OOV), since they have no
statistics for them.

Solution:

¢ Introduce <UNK> token: All rare/unseen words are mapped to a special unknown
token.

¢ Limit Vocabulary Size: Train only on the most frequent words and replace the rest
with <UNK>.

¢ Use subword models (e.g., Byte-Pair Encoding or WordPiece) in modern models.

a. Explain working of morphological parsing

Morphological Parsing

1. Definition
Morphological parsing is the process of analyzing the internal structure of a word to identify its
morphemes, which are the smallest meaning-bearing units of language. The goal is to decompose
a given word into its root (or stem) and any affixes (such as prefixes, suffixes) and determine their
grammatical features.
Morphological parsing helps in determining:

e The canonical (base) form or lemma of a word.

e |ts part of speech (POS).

e Other morphological features such as tense, number, gender, case, etc.

2. Importance of Morphological Parsing
Morphological parsing is essential for many natural language processing (NLP) tasks including:
e Machine translation
e Speech recognition
e Information retrieval
e Spell checking
e Syntactic parsing

It enables systems to understand and generate correct word forms, even for previously unseen
words.

3. Components of a Morphological Parser

A morphological parser typically consists of three key components:

(i) Lexicon

A lexicon is a dictionary containing:
e Valid stems (base forms of words)
o Affixes (prefixes, suffixes)

e Grammatical categories (e.g., Noun, Verb)

It may contain entries like:
e egg: Noun
e play: Verb
e -ed: Verb, past tense

e -s: Noun, plural

(ii) Morphotactics

Morphotactics defines the rules and structure by which morphemes are combined in a given
language. It ensures that:

e Morphemes appear in the correct order

e Only legal combinations are accepted

Example:
e playtedis valid (Verb stem + past tense suffix)

e ed+playis invalid

(iii) Orthographic Rules

These are spelling rules that govern how morphemes interact when combined. They handle
changes like:

T -

e [etier insertion or deietion

T T—

e Vowel/consonant alternation

Example:

e carry + ed — carried (rule: "y" changes to "i" before "ed")

e egg +s— eggs (no spelling change)

4. Examples of Morphological Parsing

Example 1: eggs
e Surface form: eggs
e Parsed form:

o Lemma: egg

Two-Level Morphological Parsing Using Finite-State
Transducers (FSTs)

1. Introduction

The Two-Level Morphological Model, introduced by Kimmo Koskenniemi (1983), is a
powerful computational framework for analyzing and generating word forms in
morphologically rich languages. It uses Finite-State Transducers (FSTs) to

represent the mapping between surface forms (how words appear in text) and lexical
forms (the underlying morpheme structure).

2. Key Concepts
A. Surface Level

e The actual word form as it appears in the text.

e Example: "walking"

B. Lexical Level
e The decomposition of the word into a stem and morphemes (with grammatical

tags).

o Example: "walk+V+PP" (where +V = verb, +PP = present participle)

3. Finite-State Transducer (FST)

An FST is an automaton that maps an input symbol to an output symbol, handling both
analysis and generation:

e Analysis: Converts surface — lexical form

e« Generation: Converts lexical — surface form

Formal Definition:

An FST is defined as a 6-tuple:
(Qs Zl! ZZ! qO! Fs 6)

Where:

o Q =finite set of states

e X, =input alphabet (e.g., surface characters)

e X, = output alphabet (e.g., morphemes)

e (o = start state

o F = set of final states

¢ & = transition function (maps pairs from %; x 2, to states)

4. Working of Two-Level Model

The model uses two FSTs:

A. Lexical Mapping Transducer

Maps morphemes and grammatical features to surface characters.
B. Morphotactic Transducer

Ensures correct ordering and combination of morphemes.

5. Example: Morphological Parsing of “walking”
Surface Form:

walking

Lexical Form:

walk+V+PP
(walk = stem, +V = verb tag, +PP = present participle tag)

Step-by-Step Analysis:
Surface w a | k i

Lexical w a | k +V

e The FST maps i+n+g to present participle (+PP)

o ltrecognizes walk as the verb stem

+PP

« The morpheme boundary is implicit in the transition

6. Visualization of FST Operation
Lexical: w a 1 k +V +PP

AT U\ T S

Surface: w a 1 k i n g

Each pair (input:output) represents a transition in the FST:

e w:w,a:a,1:1,k:k — stem

e +V:i, +PP:ng — grammatical features realized as suffix

b. Write cyk algotithm for CFG

CYK ALGORITHM
Letw=wiw2w3_..wn
andwl0=w,wn+1=0

/I Initialization step
foriz=1tondo
for all rules A — wi do
chart[i, i] := [A]

/I Recursive step
forj:=2tondo
fori:=1ton-j+1do
begin
charifi,j] = 0
fork:=itoj-1do
chartfi, j] := chartfi, j] u { A| A — BC is a production and
B € chart[i, k] and C € chart[k+1, j] }
end

if S € chart[1, n] then accept else reject

To give a b«ltr\lnderuuﬁng;l’lhe whole idea,
3 we k
example. Consider the following simplificd grammar in CN:';O‘ .

VP — Verb NP Noun —» girl
NP = Det Noun Noun —» essay
Det — an | the

The sentence 10 be parsed is: The girl wrote an essay.

Table 4.4 contains entries after 4 complete scan of the algorithm. The
entry in the [1,a)th cell contains a start symbol which indicates (hat :S" =
w,...l.e., the parse is successful. It is possible for a cell 1o have multiple

cninies.,
Table 44 Segquence of states created in e chart he CYK -
- by dmuﬁammom.
1 P 3 R - -
] Det = The NI* <» Det Noan S NrFve
2 | Noun — Gint
3| Ve — wroee VI* <» Vaib NP
4| Det <» an NP = Det Nowa
5 | Noen = essay

I For the given context Free Grammar (CrU)

S— AB/BC
A—> BA/a™ "

C Aﬁr AN .)
C. Ch-:ck whether the string (W) = ‘ababa’ is valid or not.

Step-by-Step Derivation Attempt
Let’s try top-down derivation starting from S and attempt to derive ""ababa'.

Try Derivation 1: S > AB
We'll try:
S= AB
We aimfor:w=ababa
We need:

e A= ?gives prefix

e B = ?gives suffix

Expand A:
A - a (try terminal first)

Then:

A=a

Now: need B = baba

Check if B can generate “baba”

Expand B:
B->CC|b
Try B= CC
Need CC = baba
Let’s try:
e FirstC=b
e SecondC=a
But then that gives: ba — not long enough.
Try other expansions.
Try:
e C=>AB
o A=>a
o B=b
=>C=>AB=>ab
So:
C = ab, so CC= abab
Not good; we need baba
Try:
e FirstC>a
e Second C=ba

o C=AB
= A=>a
» B=b
= AB=ab

Still doesn’t help.
Too many trials - try bottom-up parse.

Bottom-Up Parse of "ababa"

We’ll try to reduce the string "a b a b a" back to start symbol S.
Step 1: Mark terminals

w=ababa

Try grouping rightmost parts.

Try reducing:
e a—>C(sinceC-a)
e Sorightmosta—> C

Now:ababC

Next:

b->B
CC->B(B->CQ)
So try:

abaB

- Now "abaB"
Try:
"a"=A(A->a)
Now:AbaB

- Try B - CC? No good

Try “AB” = C (C - AB)

So“AB”"=C

So far: Ca B - maybe we’re going backward
Let’s track it clearly:

Bottom-Up Reduction
String:ababa

-> label terminals from right:
a—>C

>ababC

b->B

>abaBC

. AB->C(C- AB)
->abCC
CC->B(B->CQ)
—>abB

b->B

—->aBB

BA->?

Can’t reduce B B directly
Try:

a—>A

- ABB

B B = ?? No production
Try:

B->b

—>aBba

Try A - BA?

Try:

Final attempt — let's look for right derivation

Rightmost Derivation
Let’s try deriving ababa:
Start: S > AB

We need to get: ababa from AB
Try:

A->a,soA>a

Need B = baba

Try:

B->CC

> EachC->?

Try:

CG~—>a

C;—>ba

CG;=>AB=ab

So:

CG=>a

CG;=>AB=ab
So:B=>CC=aab=aab X
Try:

G=>AB=ab

C=>a

= aba=aba
SoB=CC=> aba

Now A = a

So AB = a aba =aaba X
Try:

A= BA

B=b

A=a

=>A=>BA=ba

Now B = ba

So AB = ba ba =baba X
Still not matching.

Successful Parse
Let’s try:

S=AB

A= BA

B=b

A=a

SoA=>BA=ba

Now AB = ba B
NowB = CC= G C;

CG=>a

C=>a

SoB=>CC=>aa

Now total string:
S=>AB=>BAB=>baaa

X

Eventually, the correct derivation is:
S= AB

A=a

B=CC

CG=>b

C=>a

So:B=CC= ba

Then: AB=>aba=ababa

+ Matches the string: ababa

Final Answer:
Yes, the string "ababa" is valid and can be derived from the given grammar.

4,
a. explain topdown and bottom up parsing with example
Top-down Parsing

As the name suggests, top-down parsing starts its search from the root node S and works
downwards towards the leaves. The underlying assumption here is that the input can be
derived from the designated start symbol, S, of the grammar. The next step is to find all sub-
trees which can start with S. To generate the sub-trees of the second-level search, we
expand the root node using all the grammar rules with S on their left hand side. Likewise,
each non-terminal symbol in the resulting sub-trees is expanded next using the grammar
rules having a matching non-terminal symbol on their left hand side. The right hand side of
the grammar rules provide the nodes to be generated, which are then expanded recursively.
As the expansion continues, the tree grows downward and eventually reaches a state where
the bottom of the tree consists only of part-of-speech categories. At this point, all trees
whose leaves do not match words in the input sentence are rejected, leaving only trees that

represent successful parses. A successful parse corresponds to a tree which matches exactly
with the words in the input sentence.

Sample grammar
e S >NPVP
e S S>VP
e NP - Det Nominal
e NP - NPPP
e Nominal = Noun
e Nominal - Nominal Noun
e VP Verb
e VP - Verb NP
e VP > Verb NP PP
e PP - Preposition NP
e Det - this | that | a | the
e Noun - book | flight | meal | money
e Verb - book | include | prefer
e Pronoun =1 | he | she | me | you

e Preposition - from | to | on | near | through

Consider the grammar shown in Table 4.2 and the sentence

Paint the door. 4.7)
Level | s
s 3
Level 1l /\ l
NP VP
Level 111 ve
S S S 5 S S
X A\ “X. SN | I
NP VP NP VP NP VP NP VP Ve VP
AN 2o 7
Det Nominal Prosoun Det Noun PP Noun Verb NP \ed

S
The correct parze tree |
vp

%

Verb NP

L AN

Paimt Det Nomimal

the Nowm

door
Figure 4.4 A lop-down search space

A top-down search begins with the start symbol of the grammar. Thus, the first level (ply)
search tree consists of a single node labelled S. The grammar in Table 4.2 has two rules with
S on their left hand side. These rules are used to expand the tree, which gives us two partial
trees at the second level search, as shown in Figure 4.4. The third level is generated by
expanding the non-terminal at the bottom of the search tree in the previous ply. Due to
space constraints, only the expansion corresponding to the left-most non-terminals has been
shown in the figure. The subsequent steps in the parse are left, as an exercise, to the
readers. The correct parse tree shown in Figure 4.4 is obtained by expanding the fifth parse
tree of the third level.

Bottom-up Parsing

A bottom-up parser starts with the words in the input sentence and attempts to construct a
parse tree in an upward direction towards the root. At each step, the parser looks for rules in
the grammar where the right hand side matches some of the portions in the parse tree
constructed so far, and reduces it using the left hand side of the production. The parse is
considered successful if the parser reduces the tree to the start symbol of the grammar.
Figure 4.5 shows some steps carried out by the bottom-up parser for sentence Paint the
door.

level | Pamt the door

Level 1) Noun Det Noun Verb Det Noun
| | | | |
Faint the door the o
Level I Nominal Nominal Nommal
| |
Nova Det Noun Det Noun
| | | | |
Pant the door the door
Lavel 1V NP NP
”\-‘_. ,' .
Nomxal /" Notninal vy /" Nommal
| / ’ | / .
Nowna Da Noun Veab Det Noun
| | | | | |
Paint ke door Paint the Sonnt
The convect parse tree S
for the wntenee '
vp
Verb NP
| .
Paimt Det Nosnal
| |
the Noen

door

Figure 4.5 A betiomep search space for sentence (4.7)

Each of these parsing strategies has its advantages and disadvantages. As the top-down
search starts generating trees with the start symbol of the grammar, it never wastes time
exploring a tree leading to a different root. However, it wastes considerable time exploring S
trees that eventually result in words that are inconsistent with the input. This is because a
top-down parser generates trees before seeing the input. On the other hand, a bottom-up
parser never explores a tree that does not match the input. However, it wastes time
generating trees that have no chance of leading to an S-rooted tree. The left branch of the
search space in Figure 4.5 that explores a sub-tree assuming paint as a noun, is an example
of wasted effort. We now present a basic search strategy that uses the top-down method to
generate trees and augments it with bottom-up constraints to filter bad parses.

b. listout disadvantages of CFG in NLP

Disadvantages of Context-Free Grammar (CFG) in NLP

Context-Free Grammar (CFG) is a formalism used to describe the syntactic structure of
languages using a set of production rules. While CFGs are useful in modeling the
hierarchical structure of natural language sentences, they have several limitations when
applied to Natural Language Processing (NLP). These limitations arise primarily because

natural languages are not fully context-free, and CFGs fail to capture many aspects of
real-world language use.

1. 1. Inability to Handle Context-Sensitive Constructs
Explanation:

CFGs cannot handle constructions that require agreement or context sensitivity, such as
subject-verb agreement, gender agreement, or pronoun resolution.

Example:
e "She eats"
e "Sheeat" X

CFG cannot enforce agreement between subject ("she") and verb ("eats") because it
lacks memory of the subject's number.

Impact:

CFG generates both grammatical and ungrammatical forms unless additional constraints
are imposed externally.

L. 2. Ambiguity Handling is Weak
Explanation:

CFGs often overgenerate multiple parse trees for the same sentence, leading to
syntactic ambiguity. They do not inherently rank or prefer one parse over another.

Example:
e Sentence: "l saw the man with the telescope."
o Ambiguity:
1. lused a telescope to see the man.
2. The man | saw had a telescope.
Impact:

e CFG does not help in selecting the semantically correct parse, requiring statistical or
semantic models for disambiguation.

. 3. No Support for Semantics
Explanation:

CFG models form but not meaning. It cannot represent or interpret the semantics of
sentences.

Example:

CFG can generate:

e "Colorless green ideas sleep furiously." (grammatical form, no meaning)
Impact:

e CFG cannot determine sentence truth conditions, thematic roles, or logical forms,
which are critical for tasks like question answering or machine translation.

1. 4. Rigid and Complex for Real-World Grammar
Explanation:

Modeling natural language with CFG requires an enormous number of rules to handle
exceptions, idioms, and flexibility in syntax.

Example:

e Optional components (e.g., modifiers):
“The boy [who ran] [quickly]”
“The boy”

To account for all variations, many rules must be written, leading to grammar explosion.
Impact:

o CFG becomes inefficient and unmaintainable for wide-coverage grammars.

. 5. Inadequate for Non-Projective Dependencies
Explanation:

CFG assumes projective trees, but some syntactic constructions in natural language are
non-projective, especially in free word order languages (like Hindi, Russian).

Example (in dependency grammar):

e “Usne roti khayi jo maine banayi thi.”
(He ate the bread that | had made.)

CFG fails to represent such crossing dependencies naturally.

1. 6. No Probabilistic Information
Explanation:

Standard CFG does not include any mechanism for encoding probabilities or frequencies
of rule applications.

Impact:
e Cannot capture preferences like:

o “He saw the dog with a telescope” -> telescope is more likely instrument than
attachment to dog.

e Hence, Probabilistic CFG (PCFG) is introduced as an extension.

1. 7. Lack of Integration with Semantic Roles or Pragmatics
Explanation:

CFG lacks knowledge of semantic roles, intentions, and pragmatic context, which are
essential for real-world language understanding.

Impact:
CFG alone cannot handle:
e Ellipsis: “l will go, and you?”

e Anaphora: “John loves his dog.”

c.illustrate espelling and error detection in wordlevel analysis

1.

Spelling Error Detection and Correction

In computer-based information systems, especially those involving text entry or
automatic recognition systems (like OCR or speech recognition), errors in typing and
spelling are a major source of variation between input strings.

Common Typing Errors (80% are single-error misspellings):

1. Substitution: Replacing one letter with another (e.g., cat = bat).

2. Omission: Leaving out a letter (e.g., blue = bue).

3. Insertion: Adding an extra letter (e.g., car = caar).

4. Transposition: Switching two adjacent letters (e.g., form = from).

5. Reversal errors: A specific case of transposition where letters are reversed.

A. Typographical Errors

These are manual errors made during keyboard typing. They are among the most
frequent spelling mistakes. Common subtypes include:

e Substitution: One character is incorrectly replaced.
Example: cat > bat

e Omission: A character is unintentionally left out.
Example: blue - bue

e Insertion: An extra character is added mistakenly.
Example: car = caar

o Transposition: Two adjacent characters are switched.
Example: form = from

B. OCR (Optical Character Recognition) Errors

These occur when printed or handwritten text is digitized using OCR software. Recognition
inaccuracies lead to errors like:

o Character Substitution: Confusing similar-looking characters.
Example:0 > 0,1 <> 1,rn <> m

e Omission or Duplication: Letters skipped or repeated.
Example: commitee instead of committee

e Spacing Errors: Missing or extra spaces.
Example: bookstore - book store

C. Phonetic (Speech Recognition) Errors

These errors arise when spoken input is transcribed incorrectly due to phonetic similarity
between words. They are common in speech recognition systems.

e Example: their instead of there, to instead of too, no instead of know

Such errors produce real words, making detection difficult without context.
Minimum Edit Distance

The minimum edit distance is the number of insertions, deletions and substitutions
required to change one string to another. For example, the minimum edit distance
between tutor and tumor is 2: we substitute ‘m’ for ‘t’ and insert ‘u’ before ‘r’. Edit
distance can be represented as a binary function, ed, which maps two strings to their edit
distance. Ed is symmetric. For any two strings, s and t, ed(s,t) is always equal to ed(t,s).

Edit distance can be viewed as a string alignment problem. By aligning two strings, we can
measure the degree to which they match. There may be more than one possible
alignment between two strings.

The alighment shown here, between tutor and tumour, has a distance of 2.
t u t O - r

t u m O u r
Dynamic Programming algorithms can be quite useful for finding minimum edit distance
between two sequences. Dynamic programming refers to a class of algorithms that apply
a table-driven approach to solve problems by combining solutions to sub-problems. The
dynamic programming algorithm for minimum edit distance is implemented by creating
an edit distance matrix.

The matrix has one row for each symbol in the source string and one column for each
matrix in the target string.

The (i,j)th cell in this matrix represents the distance between the first i character of the
source and the first j character of the target string.

The value in each cell is computed in terms of 3 possible paths.

Jdm[r =1, j| + insert_cost,
dist[i, j) = {dist|i =1, j - 1] + subsi_cos 1] seurce, ,target, |
]dic![i. J = 1]+ delete_cast

The substitution will be 0 if the ith character in the source mathes with jth character in the

target

o —

Input: Two stings, Yaml ¥

Ouiput: The ininimum edit divtance hetween Xand ¥

7t lepgth X)

= length' ¥)

Foog ¢« (3 15 =i

] U

forj:: D ado

dist|0,d «- 5

for i = O to m do

for j= 015k do

il Ld = minf disli-1 4 + insert_cost,

distfs-15-1] + subsi_cose! X, Y,
dist]i,j-ll + delel_cost }

! L uJ;.u ulr
i onlz 3 | 4] s 6
-ﬁ* ' - ..1
1J ARLERETANEE R
nl3isle]a]a 3'4*
t; ARSEZENETE $
Isbal sl 2 lsti] 3 |

- r.‘- i
SESEIEEEREIE W

Figure 3.14 Computing minimum ed dislance

5.

a. Explain working of naive bayes algorithm
Naive Bayes Classifier for Text Classification
Introduction

The Naive Bayes classifier is a probabilistic learning algorithm based on Bayes’ Theorem. It
is widely used in text classification tasks such as spam detection, sentiment analysis, and
topic categorization due to its simplicity, efficiency, and effectiveness.

The core idea is to compute the posterior probability of a document belonging to a
particular class, given the words in the document. The classifier then assigns the document
to the class with the highest posterior probability.

Bayes’ Theorem

Bayes’ Theorem allows us to compute the probability of a class ¢ given a document d as:

P(dl|e) - P(c)

P(cld) = P

Since P(d) is constant for all classes, the classification rule simplifies to:

¢ = argmax P(d|c) - P(c) (1)

Feature Representation: Bag-of-Words Model

In text classification, documents are typically represented using the bag-of-words (BoW)
model. This model ignores the order of words and treats each document as an unordered
multiset (bag) of words.

For example, the sentence:
“I love this movie”
is represented simply as a frequency distribution:

e [:1

e Jlove:1l

e this: 1

¢ movie: 1

Let a document d be represented by features fi, fs, ..., fn, where each feature corresponds to the presence
or count of a word in the vocabulary.

Naive Bayes Assumptions
1. Bag-of-Words Assumption

The classifier does not consider the order or position of words. It only considers the
frequency of each word in the document.

2. Conditional Independence Assumption

It assumes that features (words) are conditionally independent given the class. That is, the
probability of seeing one word in a document is independent of seeing any other word,
given the class.

P(f1, far s fule) = [P(file) (2)
i=1

Derivation of the Final Classification Equation

Using Bayes’ Theorem and the independence assumption, we derive the final classification
formula.

From Equation (1):

¢ = argmax P(d|c) - P(c)

Using the conditional independence assumption (Equation 2):
n
P(dic) = [[P(file)
i—1

Substitute into Equation (1):

n

¢ = argmax P(c) - [[P(file) (3)
i=1

For computational efficiency and to prevent numerical underflow, we work in log-space:
n
¢ = arg max log P(c) + Z log P(f;|e) (4)
=
i—1

Equation (4) is the final equation used in Naive Bayes text classification, which computes the log posterior

probability for each class and assigns the document to the class with the highest value.

é = arg max P(d|e) - P(e)

Using the conditional independence assumption (Equation 2):
P(d|c) = H P(file)

Substitute into Equation (1):

n

&= argmax P(c) - [P(filc) (3)

i—1
For computational efficiency and to prevent numerical underflow, we work in log-space:
¢ = arg max log P(c Z log P(file) (4)
i—1

Equation (4) is the final equation used in Naive Bayes text classification, which computes the log posterior

probability for each class and assigns the document to the class with the highest value.

é = arg max P(d|e) - P(e)

Using the conditional independence assumption (Equation 2):
P(d|c) = H P(file)

Substitute into Equation (1):

n

¢ = argmax P(c) - [] P(file) (3)

i—1
For computational efficiency and to prevent numerical underflow, we work in log-space:
6= arg max log P(c ZlogP file) (4)
=1
Equation (4) is the final equation used in Naive Bayes text classification, which computes the log posterior

probability for each class and assigns the document to the class with the highest value.

Equation (4) is the final equation used in Naive Bayes text classification, which computes
the log

b. | Suppose you have a dataset of “Weather Conditions’
target variable ‘Play’ given below:

SINo. | Outlook

nnu COTTGjruriing

Play
1 | Rainy
{ 2 | Sunny q‘:_ :
\73 | Overcast | Yes
3 1

Sunny

Rainy

Sunny
Owercast

Overcasl \)

-TM
articular
U above dataset, decide W‘h:thcr you should play or notonap
sing

Theorem.
with weather 18 “Sunn in {_Er 5
da - —lirations of Naive Bn:.res :135&1 il

b.

To solve this problem using Bayes Theorem, we want to find
To solve this problem using Bayes Theorem, we want to find

P(Play = Yes | Outlook = Sunny)

and P(Play = No | Outlook = Sunny)
We'll use:

P P(BIde-()é)I’(A)

Let's first extract the dataset from the table.

Dataset Summary:

Outlook Play
Rainy Yes
Sunny Yes
Overcast Yes
Overcast Yes
Sunny No
Rainy Yes
Sunny Yes
Overcast Yes
Rainy No
Sunny No
Sunny No
Rainy Yes
Overcast Yes
Overcast No

Step 1: Count Totals
¢ Total samples = 14
e Play=Yes>9

e Play=No—->5

Step 2: Prior Probabilities

P(Play=Yes) = 134, P(Play=No) = %

Step 3: Likelihoods
Number of Sunny days = 5
e Sunny & Play = Yes — 2

e Sunny & Play = No — 3

So,

2
P(Sunny|Play=Yes) = 3’ P(Sunny|Play=No) =

ol w

Step 4: Evidence (P(Sunny))

P(Sunny) =

N

Step 5: Apply Bayes' Theorem

P(Sunny|Play=Yes) - P(Play=Yes) 2.2
P(Sunny) -5

3 5

P(Play=No|Sunny) = 21

5
14

P(Play=Yes|Sunny) =

=3/5

-

Final Decision:

P(Play=Yes|Sunny) = - = 0.4, P(Play=No|Sunny) = - = 0.6

ol N
o w

¢ Answer: You should not play when it's Sunny, based on Naive Bayes (since 0.6 > 0.4).

c.write the applications of Naive bayes classifier.

Applications of Naive Bayes: Spam Detection and Language ldentification

The Naive Bayes classifier, due to its simplicity, speed, and robustness with high-dimensional
data, has been successfully applied to a variety of text classification tasks. Two prominent
applications include spam detection and language identification, where it leverages
statistical patterns in text features.

1. Naive Bayes in Spam Detection
Objective
Spam detection is a binary classification task where each email is classified as either:

e Spam (unsolicited, often harmful messages), or

e Not Spam (legitimate email)

Naive Bayes Approach

e Each email is represented as a bag-of-words.

e The classifier learns the probability of a message being spam based on the presence
or frequency of certain words or patterns.

¢ =arg max _P(e)- H P(wi|e)

ce{spam,ham}

Example Features Used

« Word/Phrase Features:
e Phrases like “winner”, “free money”, “100% guaranteed”
« Words in all caps (e.g., URGENT)

» Character Patterns:
o Use of excessive punctuation: 11!, $33

e Unusual spellings: viagra, prize

HTML/Structural Features:
e« HTML-only emails
¢ Low text-to-image ratio

Metadata Features:

¢ Unusual sender address

e Forged headers or domains

Example
A spam email might contain:
“Congratulations! You are a lucky winner. CLICK HERE to claim your prize FREE of charge.”

Such emails contain tokens strongly associated with the spam class, and Naive Bayes
assigns high posterior probability to the spam label.

2. Naive Bayes in Language Identification
Objective

Language identification is a multi-class classification task, where the goal is to determine the
language of a given text sample.

Naive Bayes Approach

¢ Instead of using whole words, the model often relies on character-level n-grams
(subword features).

e Each language is modeled as a class, and the classifier determines which language
model best explains the character patterns in the input.

>

*=arg max P(c)- H P(n-gram;|c)

c={languages}

Example Features Used
¢ Character n-grams (1-4 grams):
e “the”, “"ent”, “und”, “que”, etc.
e Language-specific patterns like “le” (French), “‘der” (German), “na” (Hindi)
¢« Common words or stopwords:
e ‘el”, "y" (Spanish), “and”, “the” (English)
* Punctuation and diacritics:
e Use of characters like é, A, ¢ indicating Romance languages
¢ Unicode ranges:

e Scripts like Devanagari, Cyrillic, Arabic can be language-specific

Example
Given the text:

“Das ist ein guter Tag.”

” VAN (PN B (4 7 I/t
’

Character trigrams such as “das”, “ist”, “ein”, “gut”, “tag” are more likely under the German

language model.

6.

a. illustrate optimizing for sentimental analysis
4.4 Optimizing for Sentiment Analysis

Binary Naive Bayes

Instead of using raw frequencies, we often use binary features indicating word presence.
This reduces bias introduced by repeated terms and increases robustness in sentiment
classification.

Sentiment Lexicons

Lexicons are curated lists of words annotated with their sentiment polarity.

e General Inquirer: Annotates words with dozens of labels including “positive”,

” u

“negative”, “strong”, etc.

”

e Opinion Lexicon: Divides words into positive (e.g., “love”, “great”) and negative (e.g.,
“bad”, “terrible”).

These lexicons can be used to:

¢ Initialize feature weights

e Enhance feature selection

e Interpret models more transparently
b. How can you use naive bayes for variety of text classification
Spam Detection using Naive Bayes

In spam classification, the Naive Bayes classifier uses the presence or frequency of specific
words to determine if a message is spam or not.

¢ Certain words like “free”, “win”, “credit”, “offer”, and “cash” are statistically more
likely to appear in spam emails.

¢ Naive Bayes computes:

P(Spam|Words) o« P(Words|Spam) - P(Spam)

¢ The model is trained on labeled corpora (datasets with messages marked as spam or ham) to learn the
probability distribution of words in each class.

* During prediction, it uses the learned probabilities to classify new, unseen messages as spam or ham.
Use case: Email filtering, SMS spam detection.
Language ldentification using Naive Bayes

In this task, the goal is to identify the language of a given text snippet, especially when the
text is short.

¢ Instead of using full words, character-level n-grams (e.g., trigrams like "the", "qui",
"ent") are used.

¢ Naive Bayes computes the probability of the character n-grams appearing in different
language models.

e [t calculates:

P(Language|Trigrams) o P(Trigrams Language) - P(Language)
e The model predicts the language whose probability is highest for the given set of trigrams.
Feature Selection in Naive Bayes

In text classification, there are usually thousands of possible words/features, most of which
may not help the classification task.

To improve efficiency and accuracy, feature selection techniques are used to retain only the
most informative features:

1. Mutual Information (Ml)

¢ Measures how much information a feature (word) contributes to making the correct
classification.

o Higher Ml indicates the word is strongly associated with a particular class.
2. Chi-square Test (x2 test)
¢ Measures the independence between the feature and the class label.

e A high chi-square value indicates a strong association between the feature and the
class.

3. Information Gain (IG)
e Measures the reduction in entropy when a feature is used to split the data.

¢ High information gain means the feature helps to significantly reduce uncertainty in
classification.

Use case: Text classification, sentiment analysis, topic modeling.

c.explain different types of language modelling using Naive bayes

1.

Naive Bayes as a Language Model
1. Introduction

The Naive Bayes classifier, though commonly viewed as a tool for text classification, can
also be interpreted as a language model—specifically, a class-conditional unigram
language model. In this view, Naive Bayes estimates the likelihood of a sentence by
assuming that each word is generated independently given a particular class.

This interpretation is especially useful in text classification tasks such as sentiment
analysis, where we aim to compare how likely a sentence is under different language
models (e.g., one for positive sentiment and one for negative sentiment).

2. Generative Interpretation of Naive Bayes

Naive Bayes is a generative model, meaning it models the process by which data is generated:
1. Aclass ¢ is chosen from a prior distribution P(c).

2. A document (or sentence) d is generated word-by-word from a class-specific language model P(w;|c
This gives the joint probability:
P(d,c) = P(e) - P(d|e)
To classify a document, we compute:

P(c|d) < P(c) - P(d|c)

3. Unigram Language Model Assumption

In the language modeling view, Naive Bayes assumes that words in the sentence are generated

independently given the class. This is equivalent to using a unigram language model for each clas
n
P(wy, w2, ..., wn|c) = HP(wi c)
i—1
Thus, each class ¢ defines a unigram probability distribution over the vocabulary.

4. Assigning Sentence Probabilities

To compute the probability of an entire sentence under a Naive Bayes language model for a given class ¢,
we treat each word as conditionally independent given the class. This is equivalent to using a unigram

language model per class.
n
P(sentence | ¢) = H P(w; | ¢)
i=1

This equation means that we multiply the individual word probabilities for each word in the sentence, as

estimated from the training data for class c.

Example

Consider the sentence:
“I love this fun film”

We are given the following Naive Bayes word probabilities for the positive (+) and negative (-) classe

Word P(w; | +) P(w; | =)
| 0.1 0.2

love 0.1 0.001

this 0.01 0.01

fun 0.05 0.005

film 0.01 0.1

Now we compute the sentence probability for each class by multiplying the word probabilities.

For Positive Class (+):

P(sentence | +) = 0.1-0.1-0.01-0.05-0.01 =5 x 1077

For Negative Class (-):

P(sentence | —) = 0.2-0.001-0.01-0.005-0.1 =1 x 107°
Interpretation
Since:

P(sentence | +) = 5 x 107" > P(sentence | —) =1 x 107*

we conclude that the sentence is more likely to have been generated by the positive class model. Thi

suggests that the sentiment of the sentence “I love this fun film” is likely positive.

5. Relationship to Classification

Although this is just the likelihood part P(d|c), Naive Bayes also multiplies this by the prior P(¢) during

classification:
P(c|ld) < P(e) - P(d|ec)

Thus, even though we compute sentence probabilities per class, the final classification depends on both th

sentence likelihood and the class prior.

7.
a. Explain design features of IR
Design Features in Information Retrieval

Information Retrieval (IR) systems aim to efficiently locate relevant documents or
information from large datasets. Several key design features play a crucial role in enhancing
the performance, efficiency, and relevance of such systems. These include Indexing, Stop
Word Elimination, Stemming, and understanding word distributions through Zipf’s Law.

1. Indexing

Indexing is the process of organizing data to enable rapid search and retrieval. In IR, an
inverted index is commonly used. This structure maps each term in the document collection
to a list of documents (or document IDs) where that term occurs. It typically includes
additional information like term frequency, position, and weight (e.g., TF-IDF score).
Efficient indexing allows the system to avoid scanning all documents for every query,
dramatically reducing search time and computational cost. Index construction involves
tokenizing documents, normalizing text, and storing index entries in a sorted and optimized
structure, often with compression techniques to reduce storage requirements.

2. Eliminating Stop Words

Stop words are extremely common words that appear in almost every document, such as
"the", "is", "at", "which", "on", and "and". These words usually add little value to
understanding the main content or differentiating between documents.

Removing stop words reduces the size of the index, speeds up the search process, and
minimizes noise in results. However, careful handling is required because some stop words
may be semantically important depending on the domain (e.g., "to be or not to be" in
literature, or "in" in legal texts). Most IR systems use a predefined stop word list, though it
can be customized based on corpus analysis.

3. Stemming

Stemming is a form of linguistic normalization used to reduce related words to a common
base or root form. For example:

nmn mn

e '"connect", "connected", "connection", "connecting" - "connect"

Stemming improves recall in IR systems by ensuring that different inflected or derived forms
of a word are matched to the same root term in the index. This is particularly important in
languages with rich morphology.

Common stemming algorithms include:

o Porter Stemmer: Lightweight and widely used, based on heuristic rules.

e Snowball Stemmer: An improvement over Porter, supporting multiple languages.

e Lancaster Stemmer: More aggressive but sometimes over-stems words.

Stemming is different from lemmatization, which uses vocabulary and grammar rules to
derive the base form.

4. Zipf's Law

Zipf’s Law is a statistical principle that describes the frequency distribution of words in
natural language corpora. It states that the frequency f of any word is inversely proportional
toitsrankr:

foc1/r

This means that the most frequent word occurs roughly twice as often as the second most
frequent word, three times as often as the third, and so on.

For example, in English corpora, words like "the", "of", "and", and "to" dominate the
frequency list. Meanwhile, the majority of words occur rarely (called the "long tail").

In IR, Zipf’s Law justifies:

e Stop word elimination (high-frequency terms contribute little to relevance)
e TF-IDF weighting (rare terms are more informative)

e Optimizing index structures for space and search

Understanding this law helps in designing efficient indexing and retrieval strategies that
focus on the more informative, lower-frequency words.

b.Mention major issues in IR.

Major Issues in Information Retrieval

Modern Information Retrieval (IR) systems face numerous challenges due to the complexities of natural
language, user behavior, and large-scale data processing. The following are key issues that impact the
accuracy, efficiency, and scalability of IR systems.

1. Vocabulary Mismatch
Definition:

Vocabulary mismatch occurs when users express their information needs using terms different from
those used in relevant documents. This leads to relevant documents not being retrieved due to term
mismatch.

Example:

A user searches for “automobile,” but the relevant document contains only the term “car.”

— The system fails to retrieve the document despite it being semantically relevant.
Strategies to Handle:

e Query Expansion:

0

Use thesauri or WordNet to include synonyms and semantically related terms.

(8]

Example: Expand “automobile” to include “car,” “vehicle,” etc.
e Relevance Feedback:

o User marks relevant documents; system reformulates the query using new terms found in
them.

e Latent Semantic Indexing (LSI):

= Projects terms and documents into a semantic space that captures latent relationships
among words.

2. Polysemy and Ambiguity

Polysemy refers to words that have multiple meanings (e.g., “bank” = riverbank or financial institution).
Ambiguity arises when the system cannot determine the correct sense of a query term.

Impact:

e A query like “interest rate at the bank™ may retrieve documents about riverbanks if disambiguation
fails.

Strategies to Handle:
e Word Sense Disambiguation (WSD):
o Use resources like WordNet to determine the intended sense based on context.
e Contextual Language Models:
= Employ models like BERT, which use sentence-level context to resolve ambiguity.
e Part-of-Speech Tagging and Named Entity Recognition (NER):

o Clarifies meaning by analyzing syntactic and semantic roles.

3. Scalability and Performance
Definition:

With the explosive growth of web and digital content, IR systems must scale to manage millions or
billions of documents without degrading performance.

Challenges:
e Real-time indexing and retrieval.
e Memory and storage efficiency.

e Distributed system performance and load balancing.

Strategies to Handle:
e Inverted Index Structures:
o Efficiently map terms to documents.
o Distributed and Parallel Processing:
o Use frameworks like MapReduce, Apache Lucene, or Elasticsearch.
e Incremental Indexing:
o Updates index without rebuilding the entire structure.
e Compression Techniques:

= Reduce index size using delta encoding, block compression, etc.

4. Evaluation and Relevance
Definition:
Assessing retrieval effectiveness is difficult due to the subjective nature of relevance.
Strategies to Handle:
e Use standard metrics like:
o Precision, Recall, F1-Score, MAP, NDCG.
e Benchmark datasets:

o TREC, LETOR collections.

e User Feedback Systems:

= Incorporate click data, dwell time, and explicit feedback to improve relevance scoring.

5. User Behavior Modeling
Definition:
Users often submit short or vague queries, making it hard to infer their true intent.
Strategies to Handle:
e Query Suggestion Systems:
o Suggest refined or related queries.
e Session-based Retrieval:
o Track user sessions to understand context.
e Personalization:

= Tailor results using user profiles, search history, or location.

6. Integration with Natural Language Processing (NLP)

Definition:

IR systems need to understand semantic and syntactic structure to improve retrieval.
Challenges:

e Handling complex linguistic phenomena like coreference, anaphora, and negation.

Strategies:
e Incorporate NLP techniques like:
o POS tagging
= Dependency parsing
o Named entity recognition

o Semantic role labeling
c.how does stemming affects performance of an IR system

Stemming is the process of reducing inflected or derived words to their base or root form,

VA4

known as the stem. For example, words like “running”, “runs”, and “ran” may all be reduced

to the stem “run”.
Impact on IR System Performance:

1. Improved Recall:

8.

o Stemming increases recall by grouping different forms of a word under the

same root.

o This helps retrieve more relevant documents that use various morphological
forms of the same word.

o Example: A query for “connect” will also match documents containing
“connected”, “connection”, or “connecting”.

2. Reduced Index Size:

o By conflating multiple word forms to a single stem, the number of distinct

terms in the index is reduced.

o This leads to a smaller and more compact inverted index, improving storage

efficiency.
3. Possible Decrease in Precision:

o Stemming can sometimes overgeneralize, conflating semantically different
words with the same stem (known as overstemming).

o Example: “universe” and “university” might both be reduced to “univers”,
which can decrease precision by retrieving unrelated documents.

4. Faster Retrieval:

o With fewer terms in the index, query processing becomes faster, enhancing
overall system responsiveness.

5. Language Dependency:

o The effectiveness of stemming depends on the morphological structure of
the language and the stemming algorithm used (e.g., Porter Stemmer,

Snowball Stemmer).

a. Explain wordnet and list the applications of wordnet

WordNet: A Lexical Database for English

1. Introduction

WordNet is a lexical knowledge base of English developed at Princeton University under the
leadership of George A. Miller. It combines the structure of a dictionary with the semantic relations of
a thesaurus. WordNet is widely used in Natural Language Processing (NLP) and Information
Retrieval (IR) tasks for word sense understanding, semantic reasoning, and linguistic resource
enrichment.

2. Structure of WordNet

Unlike traditional dictionaries, WordNet groups words into sets of cognitive synonyms, known as
synsets, and organizes them using semantic relations.

2.1 Synsets (Synonym Sets)
e A synsetis a set of synonymous words or phrases that express the same concept.
e Each synset represents a distinct meaning or sense of a word.

e Synsets are accompanied by:

(8]

A gloss (a dictionary-style definition),

(8]

Usage examples.

Example:
Word: "bank™

Sense Synset Gloss

1 {bank, depository, financial An institution where people deposit money
institution}

2 {bank, riverbank} The land alongside a river

2.2 Semantic Relations in WordNet

WordNet organizes synsets through various semantic relationships, which are useful for semantic
analysis, query expansion, and disambiguation.

a) Hypernym / Hyponym
e Hypernym: A more general concept (superclass).

e Hyponym: A more specific concept (subclass).

Example:
e Vehicle is a hypernym of car, bus, and bicycle.

e Caris a hyponym of vehicle.

b) Meronym / Holonym
e Meronym: A part of something.

e Holonym: The whole to which parts belong.

Example:
e Wheelis a meronym of car.

e Caris a holonym of wheel.

c) Troponym (for verbs)

e Specifies manner or specific way of performing an action.

Example:
e To whisperis a troponym of {fo speak.

e To Sprintis a troponym of to run.

d) Antonym

e Expresses opposite meaning between two words.

Example:
e Hot — Cold

e Buy « Sell

e) Entailment (verbs)

e [f one verb entails another, the first action presupposes the second.

Example:
e Snore entails sleep.

e [f someone snores, they must be sleeping.

f) Similar-to (adjectives)

e Adjectives in WordNet may be linked by “similar to” relationships instead of hierarchy.

3. Applications of WordNet

WordNet serves as a foundational tool in many NLP and IR tasks.

3.1 Word Sense Disambiguation (WSD)

Definition: WSD is the process of determining the correct meaning of a word in context when the word
has multiple senses.

How WordNet helps:
e Provides synsets for all senses.

e Offers glosses, examples, and semantic relations to compare context.

e Algorithms like Lesk Algorithm use gloss overlap to disambiguate.

Example:
Sentence: “He sat by the bank of the river.”

— WordNet helps select the “riverbank™ synset based on surrounding words like river or
water.

3.2 Query Expansionin IR

Definition: Adding semantically related terms to a user’s query to improve recall and retrieve more
relevant documents.

How WordNet helps:
e Adds synonyms, hypernyms, or related terms.

e Helps bridge the vocabulary gap between query and document terms.

Example:
Query: “car safety”
— Expanded to include “vehicle protection”, “automobile safety”, etc.

This improves the chances of retrieving documents that mention "automobile” instead of just “car.”
b.illustrate the LSTM model
Long Short-Term Memory (LSTM) Model

Long Short-Term Memory (LSTM) is an improved form of Recurrent Neural Network (RNN)
proposed by Hochreiter and Schmidhuber in 1997. LSTM networks are particularly effective
at learning long-term dependencies in sequential data, making them suitable for
applications like language modeling, speech recognition, and time series forecasting.

LSTM Architecture

LSTM introduces a memory cell that preserves information over long periods. This cell is
regulated by three gates:

Gate Function
Forget Gate Decides what information to discard from the memory
Input Gate Decides what new information to store in the memory

Output Gate Decides what part of the memory is output

Ct-l

: - Sigmoid
S!g “function

t |
! L AR i ;
[s LT |

]]
T ' :

=Tanh

: : : : : tanh : fanh function
1 (A o 1 :
1 il Foa 1 H
1 1! 'y L] 1 H — Point by point
1 il U 1 : multiplication
1 il B 1 i
. T C; 1o O,] :
1 X 1! U 1 i _ Point by point
! Sig : | sig tanh | : Sig : addition
| (] O 1 !
1 11]])
i (] o |

~ connections

Forget gate Input Gate Output Gate

rF L
wi | |] |
. » t—- —t —l—hi }_’_ Vector

Working of Each Gate

1. Forget Gate

Removes irrelevant information from the cell state.

ff = U(I/‘ff . iht l’IY] -+ bf)
o If f; = 0, forget the information.
e If f; = 1, keep the information.

2. Input Gate

Adds new useful information to the cell state.

iy = o(W; - [hy_1, 7] + b;)
C; = tanh(W, - [hs 1, z¢] + b.)

Update cell state:
Ci=fi®Ci1+it @ Cy
3. Output Gate
Determines what to output from the current memory cell.
or = (W, - [he_1,x¢] + b,)
hf =0;® tiulh((/‘f)

c.Explain the fuzzy model in IR
Fuzzy Model

Overview

The Fuzzy Model is an extension of classical set-based models in Information Retrieval (IR).
Instead of treating documents as strict sets of terms (where a term is either present or not),
the fuzzy model considers documents as fuzzy sets of terms, allowing for graded
membership.

In this model, each term has a membership value in the range [0,1][0, 1][0,1], which
indicates the degree of importance or relevance of that term in a particular document. A
value close to 1 suggests strong presence or high importance, while a value near 0 indicates
low or no importance.

In this model, each term has a membership value in the range [0, 1], which indicates the degree of
importance or relevance of that term in a particular document. A value close to 1 suggests strong presence

or high importance, while a value near 0 indicates low or no importance.

Key Features of the Fuzzy Model

1. Partial Matching:

e Unlike the Boolean model, which only allows exact matches (terms either present or absent), the
fuzzy model enables partial matches.

e This is more realistic in practice since documents that do not contain all query terms might still be
relevant.

2. Ranked Retrieval:
¢ Documents can be ranked based on their degree of match with the query.

e Higher-ranking documents are more relevant due to higher cumulative membership values of the

query terms.
3. Soft Logic:
e Traditional Boolean operators (AND, OR) are replaced with fuzzy logic operators:
* AND is modeled using the minimum function:
marp(z) = min(p,(z), pp(z))
* OR s modeled using the maximum function:

paop(z) = max(pa(z), pp(x))

* This allows for graded interpretation of logic rather than binary (true/false) results.

How It Works

e Each document D is represented as a vector of membership values for terms:

D = {#(tl* D), #(t21 D)~ esey #(tﬂy D)}
e Similarly, a query @ is also treated as a fuzzy set of terms.

e The similarity between a document and a query is computed based on the degree of membership
overlap, allowing for ranking of documents.

Solved Example:
Given:
* Documents:
* d, = {information, retrieval, query}
* d, = {retrieval, query, model}
« d, = {information, retrieval}
« Memberships:
* info(t,):d, = 1/3,d; = 1/2
e model(t;): d> = 1/3

e retrieval(t):d, =1/3,d,=1/3,ds = 1/2

Query = t; A ty (model AND retrieval)
Use min operator:

e dumin(0,1/3) =0

e dyxmin(1/3,1/3)=1/3

e dymin(0,1/2) =0

- Result: Only d; is retrieved.

Advantages of Fuzzy Model
¢ Handles vagueness and uncertainty in user queries.
¢ Improves retrieval quality in situations where exact matching is too strict.

¢ More human-like reasoning, since people often think in terms of degrees rather than
absolutes.

9.

a. lllustrate details of encoder-decoder model in Machine translation(MT)

Encoder-Decoder Architecture in Machine
Translation

Introduction
The Encoder-Decoder architecture is a fundamental design used in Neural Machine Translation (NMT)
systems. It is designed to translate a sentence from a source language to a target language using a
sequence-to-sequence model. This architecture uses two components:

e Encoder: Understands the source sentence.

e Decoder: Generates the translated target sentence.

The model learns the probability distribution:
Plys, ¥3; -+ Unl®i; 22, ---3Zn)

Where z), ..., T, is the input sentence and ¥, , ..., ¥ is the output translation.

1. Encoder Component

Function:

The encoder processes the input sentence (source language) and encodes it into a contextual

representation.

Working:
» The input sentence £ = [y, Z2, ..., Ty| is tokenized and converted into vector embeddings.

* These embeddings are passed through multiple self-attention layers (in Transformer models) or

recurrent layers (in RNN/LSTM-based models).

* The output is a context vector or sequence h — [hy, ha, ..., h,] that captures the semantic meaning

of the entire input sentence.

2. Decoder Component

Function:

The decoder generates the output sentence (target language) one word at a time using the context
provided by the encoder.

Working:

* It takes the encoder’s output (context vector) and starts generating the target sentence from a special
<START> token.

e Ateachstep{, it:
¢ Looks at previously generated words y1, y2, ..., ¥¢-1.
« Applies masked self-attention to prevent peeking into future words,
« Applies cross-attention to focus on relevant encoder outputs,
e Predicts the next word ;.

* This process continues until the model predicts the <enp> token.

3. Encoder-Decoder Interaction

e The decoder doesn't operate in isolation—it attends to the encoder's output using a cross-attention
mechanism.

e This allows the decoder to focus on relevant parts of the source sentence at each decoding step.

e Attention scores determine which source words are most relevant for generating the current target
word.

4. Training the Model

e Objective: Minimize the cross-entropy loss between predicted and actual target sequences.

e Teacher Forcing is used: the correct target word from training data is fed to the decoder at each step
during training.

e Subword tokenization methods (like BPE or WordPiece) are applied to handle rare and compound
words.

(Decoder B

)
)
\
\
-

cross-attention "eg ,i
fé = == 5] :‘E ‘:‘é

S ke g e
—ne | . B9 = =
== = =

The green witch arrived

il

)]
e i

&

£
cm———i—
R
:
—— - — -
£

\ Encoder)

b. Explain Lexical divergences in MT.

Language Divergences in Machine Translation

Machine Translation (MT) involves converting text from a source language to a target language using
computational techniques. One of the major challenges in MT arises from language divergences —
systematic differences in grammar, structure, and usage between languages. Understanding these
divergences is essential for building accurate translation systems. The major types of divergences include
word order typology, lexical divergences, morphological typology, and referential density.

1. Word Order Typology

Definition:
Word order typology refers to the arrangement of subject (S), verb (V), and object (O) in basic sentences
across languages.

Types:

e SVO (Subject-Verb-Object): English, French, Mandarin
Example: "She eats an apple.”

e SOV (Subject-Object-Verb): Hindi, Japanese
Example: "ag 94 @Id1 §" (Literal: "She apple eats")

e VSO (Verb-Subject-Object): Arabic, Irish
Example: "Eats she an apple.”

MT Challenge:
Translating between languages with different word orders requires structural reordering during generation.
For instance, English to Japanese translation must move the verb to the end of the sentence.

2. Lexical Divergences

Definition:
Lexical divergence refers to differences in word meanings, context usage, or conceptual mappings
across languages.

Types and Examples:

e Polysemy:
Example: The English word "bass” can refer to a fish or a musical instrument.
In Spanish: "lubina” (fish) vs. "bajo” (instrument).

e Lexical Gaps:
Example: English lacks a direct word for the Hindi concept “adarsh balak” (ideal child).

e Context-dependent meanings:
Example: "Leg”in English can be:

o0

patte (animal leg)

o)

pied (furniture leg)

(8]

étape (leg of a journey) in French.

e Verb-framed vs. Satellite-framed languages:

o0

Spanish: "entrar” (verb = motion)

0

English: "run in" (verb = manner, particle = direction)

MT Challenge:
Requires context-aware translation and handling of one-to-many or many-to-one word mappings.

3. Morphological Typology

Definition:
Morphological typology classifies languages based on how they form words using morphemes (smallest
units of meaning).

Types:

e |solating Languages (e.g., Vietnamese):
One morpheme per word. Words are not inflected.

e Agglutinative Languages (e.g., Turkish):
Words are formed by stringing together morphemes, each with a clear meaning.

e Fusional Languages (e.g., Russian):
Morphemes are fused together; a single morpheme may encode multiple grammatical categories.

e Polysynthetic Languages (e.g., Inuktitut):
One complex word may represent an entire sentence.

MT Challenge:
MT systems must handle complex word segmentation and composition. Subword tokenization
techniques like Byte Pair Encoding (BPE) or WordPiece are used to manage this.

4. Referential Density

Definition:
Referential density measures how often a language explicitly expresses pronouns or refers to entities.

Categories:
e Hot Languages (e.g., English):
Use pronouns frequently and explicitly.
Example: "He went to the market.”
e Cold Languages (e.g., Japanese, Chinese):

Often omit pronouns (pro-drop).
Example in Japanese: "f7 - 7" ("[He/She] went") — subject implied.

MT Challenge:
When translating from a cold language to a hot one, the system must infer missing pronouns and insert
them accurately.

10.

a. Explain automatic evaluation in various forms. List out ethicl issues raised in MT.
a. Automatic Evaluation in Various Forms

Introduction

Automatic evaluation of Machine Translation (MT) systems is essential for measuring the
quality of translated output without relying on human judgment for every translation. These
methods are fast, scalable, and consistent, making them suitable for both development and
benchmarking of MT systems.

1. Types of Automatic Evaluation Metrics

1.1 BLEU (Bilingual Evaluation Understudy)
* Nature: Precision-based metric.
* Working:

e Measures n-gram overlap (from unigram to 4-gram) between system output and one or more

reference translations.
* Uses clipped counts to prevent overcounting repeated words.
e Applies a brevity penalty to penalize overly short translations.
e Limitations:
* Ignores recall.
e Sensitive to tokenization.
* Does not handle paraphrasing or reordering well.

e Less effective for short sentences.

1.2 chrF (Character n-gram F-score)
* Nature: Based on F-score over character n-grams.
* Advantages: Works well for morphologically rich languages.
* Limitations:
* Ignores semantic meaning.

e Focuses only on local character-level matches.

1.3 METEOR

* Nature: Uses synonym matching, stemming, and alignment.

e Advantages: Considers both precision and recall.

¢ Limitations: Computationally more expensive than BLEU.

1.4 TER (Translation Edit Rate)

* Nature: Measures the number of edits required to change a system translation into the reference.

e Limitations: Penalizes valid alternative phrasings.

2. Statistical Significance in MT Evaluation

To assess whether observed differences between MT systems are real and not due to chance, we use:

a. Bootstrap Resampling
e Resamples the test set multiple times.

* Calculates metric scores and determines confidence intervals.

b. Randomization Test
e Swaps outputs across systems to simulate null hypothesis.
e Tests whether score difference is statistically significant.
Example:

If System A scores BLEU 31.2 and System B scores 30.8, and in 95% of bootstrap samples A is better, the
difference is statistically significant.

b. Ethical Issues in Machine Translation (MT)

While MT offers enormous benefits, it also raises several ethical concerns that must be addressed:

Ethical Issue Description
Bias and Discrimination MT systems may learn and propagate societal biases (e.g., gender, race).
Misinformation Poor translations may lead to misinterpretation, especially in sensitive domains like

medicine, law, or diplomacy.

Data Privacy Use of confidential or private data during training without proper consent.
Lack of Accountability When errors occur, it's hard to attribute responsibility (system vs. developer).
Cultural Insensitivity Loss of cultural nuances and context in translation may lead to offensive or

misleading interpretations.

Digital Divide Low-resource languages may receive poor support, increasing language inequality.

b. explain the approaches for detailing with low-resource situations in MT.

Machine Translation in Low-Resource
Languages

1. Introduction

Most of the world’s languages lack sufficient parallel corpora for training high-quality Machine
Translation (MT) models. These are referred to as low-resource languages. Unlike English or French,
they do not have large-scale aligned datasets.

To overcome this data sparsity, researchers use data augmentation techniques and multilingual
modeling.

2. Strategy 1: Data Augmentation using Backtranslation
What is Backiransiation?
Backtranslation is a technique where monolingual data in the target language is translated into the

source language using a reverse translation model. This creates synthetic parallel data to train the
actual forward MT model.

Steps in Backtranslation:
1. Train a target-to-source MT model using available bitext.
2. Use this model to translate monolingual target-language sentences into the source language.
3. Create synthetic sentence pairs: (synthetic source, real target).
4. Add these pairs to the original training data.

5. Retrain the source-to-target model with the expanded dataset.

Example:
e Suppose we have limited English — Hindi data but a lot of Hindi-only monolingual text.
e Step 1: Train a Hindi-to-English model with existing data.
e Step 2: Translate Hindi sentences into synthetic English.

e Step 3: Use these synthetic English-Hindi pairs to train a better English-to-Hindi MT system.

Benefits of Backtranslation:
e Uses abundant monolingual data.
e Helps the model learn target language fluency.
e Improves performance even without real bitext.

e Effective even when synthetic translations are imperfect.

3. Strategy 2: Multilingual Models

What are Multilingual Models?

Multilingual models are trained on parallel data from multiple language pairs in a single unified
model. These models can transfer knowledge across languages, benefiting low-resource languages by
sharing representations with high-resource ones.

Architecture:
e The model is given:
= Alanguage tag (token) indicating the source and target languages.
o A shared vocabulary across all languages (via subword tokenization).
e During training:
c Input: [LANG_SRC] sentence

¢ Output: [LANG_TGT] translation

Example:

e Train a single model on:
English-French, English—-German, English—Hindi, English—Swabhili

e Even if Hindi-Swahili is not trained, the model might zero-shot translate between them using
shared structures and token patterns.

Benefits of Multilingual MT:
e Parameter sharing across languages.
e Improves low-resource performance via transfer learning.
e Enables zero-shot translation (e.g., Hindi — Swahili without direct pairs).

e Reduces model count (single model for many languages).

Challenges in Low-Resource MT
e Lack of high-quality monolingual data.
e Bias due to English-centric training.
e Involvement of native speakers is often limited.

e Need for participatory design and better evaluation methods.

