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MODULE -1
l.a.  Explain the challenges faced in machine learning. 8M)

1. Problems-Machine learning can deal with the ‘well-posed’ problems where specifications
are complete and available. Computers cannot solve ‘ill-posed” problems.

Consider one simple example (shown in Table 1.3):

Table 1.3: An Example

Input (x,, x)
1,1

2.1
31
4,1
51 5
Can a model for this test data be multiplication? That is, y = x, x x,. Well! It is true! But, this is
equally true that y may be y = x, + x,, or y = x,*2. So, there are three functions that fit the data.
This means that the problem is ill-posed. To solve this problem, one needs more example to
check the model. Puzzles and games that do not have sufficient specification may become an
ill-posed problem and scientific computation has many ill-posed problems.

| R

2. Huge data — This is a primary requirement of machine learning. Availability of a quality
data is a challenge. A quality data means it should be large and should not have data
problems such as missing data or incorrect data.

3. High computation power — With the availability of Big Data, the computational resource
requirement has also increased. Systems with Graphics Processing Unit (GPU) or even Tensor
Processing Unit (TPU) are required to execute machine learning algorithms. Also, machine
learning tasks have become complex and hence time complexity has increased, and that
can be solved only with high computing power.

4. Complexity of the algorithms — The selection of algorithms, describing the algorithms,
application of algorithms to solve machine learning task, and comparison of algorithms
have become necessary for machine learning or data scientists now. Algorithms have
become a big topic of discussion and it is a challenge for machine learning professionals to
design, select, and evaluate optimal algorithms.

5. Bias/Variance — Variance is the error of the model. This leads to a problem called bias/
variance tradeoff. A model that fits the training data correctly but fails for test data, in
general lacks generalization, is called overfitting. The reverse problem is called underfitting
where the model fails for training data but has good generalization. Overfitting and
underfitting are great challenges for machine learning algorithms.



1.b.  Explain the types of data in Big Data. (M)

2.1.1 Types of Data

In Big Data, there are three kinds of data. They are structured data, unstructured data, and
semi-structured data.

Structured Data

In structured data, data is stored in an organized manner such as a database where it is available
in the form of a table. The data can also be retrieved in an organized manner using tools like SQL.

The structured data frequently encountered in machine learning are listed below:

Record Data A dataset is a collection of measurements taken from a process. We have a collection
of objects in a dataset and each object has a set of measurements. The measurements can be arranged
in the form of a matrix. Rows in the matrix represent an object and can be called as entities, cases,
or records. The columns of the dataset are called attributes, features, or fields. The table is filled
with observed data. Also, it is better to note the general jargons that are associated with the dataset.
Label is the term that is used to describe the individual observations.

Data Matrix It is a variation of the record type because it consists of numeric attributes.
The standard matrix operations can be applied on these data. The data is thought of as points or
vectors in the multidimensional space where every attribute is a dimension describing the object.

Graph Data It involves the relationships among objects. For example, a web page can refer to
another web page. This can be modeled as a graph. The modes are web pages and the hyperlink is
an edge that connects the nodes.

Ordered Data Ordered data objects involve attributes that have an implicit order among them.
The examples of ordered data are:

1. Temporal data — It is the data whose attributes are associated with time. For example,
the customer purchasing patterns during festival time is sequential data. Time series data
is a special type of sequence data where the data is a series of measurements over time.

2. Sequence data - It is like sequential data but does not have time stamps. This data involves
the sequence of words or letters. For example, DNA data is a sequence of four characters
-ATGC.

3. Spatial data — It has attributes such as positions or areas. For example, maps are spatial
data where the points are related by location.

Unstructured Data

Unstructured data includes video, image, and audio. It also includes textual documents, programs,
and blog data. It is estimated that 80% of the data are unstructured data.

Semi-Structured Data

Semi-structured data are partially structured and partially unstructured. These include data like
XML/JSON data, RSS feeds, and hierarchical data.

1.c.  Describe the four types of data analytics. (6M)



Data analysis and data analytics are terms that are used interchangeably to refer to the same
concept. However, there is a subtle difference. Data analytics is a general term and data analysis
is a part of it. Data analytics refers to the process of data collection, preprocessing and analysis.
It deals with the complete cycle of data management. Data analysis is just analysis and is a part of
data analytics. It takes historical data and does the analysis. Data analytics, instead, concentrates
more on future and helps in prediction.

There are four types of data analytics:

1. Descriptive analytics
2. Diagnostic analytics
3. Predictive analytics
4. Prescriptive analytics

Descriptive Analytics It is about describing the main features of the data. After data collection
is done, descriptive analytics deals with the collected data and quantifies it. It is often stated that
analytics is essentially statistics. There are two aspects of statistics — Descriptive and Inference.
Descriptive analytics only focuses on the description part of the data and not the inference part.

Diagnostic Analytics It deals with the question —‘Why?’. This is also known as causal analysis,
as it aims to find out the cause and effect of the events. For example, if a product is not selling,
diagnostic analytics aims to find out the reason. There may be multiple reasons and associated
effects are analyzed as part of it.

Predictive Analytics It deals with the future. It deals with the question — ‘What will happen
in future given this data?’. This involves the application of algorithms to identify the patterns to
predict the future. The entire course of machine learning is mostly about predictive analytics and
forms the core of this book.

Prescriptive Analytics It is about the finding the best course of action for the business
organizations. Prescriptive analytics goes beyond prediction and helps in decision making by
giving a set of actions. It helps the organizations to plan better for the future and to mitigate the
risks that are involved.

OR
2.a.  Briefly explain supervised and unsupervised learning. 8M)
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2.b. Explain skewness and kurtosis. (6M)



2.5.4 Shape

Skewness and Kurtosis (called moments) indicate the symmetry/asymmetry and peak location of
the dataset.

Skewness

The measures of direction and degree of symmetry are called measures of third order. Ideally,
skewness should be zero as in ideal normal distribution. More often, the given dataset may not
have perfect symmetry (consider the following Figure 2.8).

(a) (b)
Figure 2.8: (a) Positive Skewed and (b) Negative Skewed Data
The dataset may also either have very high values or extremely low values. If the dataset has
far higher values, then it is said to be skewed to the right. On the other hand, if the dataset has far

more low values then it is said to be skewed towards left. If the tail is longer on the left-hand side
and hump on the right-hand side, it is called positive skew. Otherwise, it is called negative skew.

The given dataset may have an equal distribution of data. The implication of this is that if the
data is skewed, then there is a greater chance of outliers in the dataset. This affects the mean and
median. Hence, this may affect the performance of the data mining algorithm. A perfect symmetry
means the skewness is zero. In the case of skew, the median is greater than the mean. In positive
skew, the mean is greater than the median.

Generally, for negatively skewed distribution, the median is more than the mean.
The relationship between skew and the relative size of the mean and median can be summarized
by a convenient numerical skew index known as Pearson 2 skewness coefficient.

3 x (¢ — median)
g

(2.12)

Also, the following measure is more commonly used to measure skewness. Let X, X, ---, X,
be a set of ‘N’ values or observations then the skewness can be given as:

1_N(x,—py
S L s 213
% .BZ] >3 (2.13)
Here, p is the population mean and o is the population standard deviation of the univariate

data. Sometimes, for bias correction instead of N, N — 1 is used.
Kurtosis

Kurtosis also indicates the peaks of data. If the data is high peak, then it indicates higher
kurtosis and vice versa.

Kurtosis is the measure of whether the data is heavy tailed or light tailed relative to normal
distribution. It can be observed that normal distribution has bell-shaped curve with no long tails.
Low kurtosis tends to have light tails. The implication is that there is no outlier data. Let x , x,, ---, x,,
be a set of ‘N’ values or observations. Then, kurtosis is measured using the formula given below:

N

2(x, —X)'/N

[ T — (2.14)
o-l

It can be observed that N — 1 is used instead of N in the numerator of Eq. (2.14) for
bias correction. Here, X and o are the mean and standard deviation of the univariate data,
respectively.



2.c.  Describe the different types of data visualization techniques. oM)

2.5.1 Data Visualization

To understand data, graph visualization is must. Data visualization helps to understand data.
It helps to present information and data to customers. Some of the graphs that are used in
univariate data analysis are bar charts, histograms, frequency polygons and pie charts.

The advantages of the graphs are presentation of data, summarization of data, description of
data, exploration of data, and to make comparisons of data. Let us consider some forms of graphs
now:

Bar Chart A Bar chart (or Bar graph) is used to display the frequency distribution for variables.
Bar charts are used to illustrate discrete data. The charts can also help to explain the counts of
nominal data. It also helps in comparing the frequency of different groups.

The bar chart for students' marks {45, 60, 60, 80, 85} with Student ID = {1, 2, 3, 4, 5} is shown
below in Figure 2.3.
Student marks
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Figure 2.3: Bar Chart

Pie Chart These are equally helpful in illustrating the univariate data. The percentage frequency
distribution of students’ marks {22, 22, 40, 40, 70, 70, 70, 85, 90, 90} is below in Figure 2.4.
Student marks

Figure 2.4: Pie Chart

It can be observed that the number of students with 22 marks are 2. The total number of
students are 10. So, 2/10 x 100 = 20% space in a pie of 100% is allotted for marks 22 in Figure 2.4.



Histogram It plays an important role in data mining for showing frequency distributions.
The histogram for students’ marks {45, 60, 60, 80, 85} in the group range of 0-25, 26-50, 51-75,
76-100 is given below in Figure 2.5. One can visually inspect from Figure 2.5 that the number of
students in the range 76-100 is 2.

3 Student marks

25

25 50 75 100
Marks Group Range

Figure 2.5: Sample Histogram of English Marks

Histogram conveys useful information like nature of data and its mode. Mode indicates the
peak of dataset. In other words, histograms can be used as charts to show frequency, skewness
present in the data, and shape.

Dot Plots These are similar to bar charts. They are less clustered as compared to bar charts,
as they illustrate the bars only with single points. The dot plot of English marks for five
students with ID as {1, 2, 3, 4, 5} and marks {45, 60, 60, 80, 85} is given in Figure 2.6. The advantage
is that by visual inspection one can find out who got more marks.

Student marks

Marks

N| esoseoeososssossecssse

Wis ¢ on o om o on o om o o o

Bliwt tmi 1w 1w m tw rw
Ve eooeecenocoosccscncncscscscasns

-l eseessasssmommsane

Student ID

Figure 2.6: Dot Plots

MODULE -2

3.a.  Explain the types of continuous probability distribution. (6M)



1. Normal Distribution — Normal distribution is a continuous probability distribution.
This is also known as gaussian distribution or bell-shaped curve distribution. It is the
most common distribution function. The shape of this distribution is a typical bell-shaped
curve. In normal distribution, data tends to be around a central value with no bias on left
or right. The heights of the students, blood pressure of a population, and marks scored in
a class can be approximated using normal distribution.

PDF of the normal distribution is given as:

(x=p)?

e 20 (2.24)

f(x, pn,0%) =
2nc?

Here, it is mean and o is the standard deviation. Normal distribution is characterized
by two parameters — mean and variance.

Mostly, one uses the normal distribution curve of mean 0 and a SD of 1. In normal
distribution, mean, median and mode are same. The distribution extends from —0 to -+o.
Standard deviation is how the data is spread out.

One important concept associated with normal distribution is z-score. It can be
computed as:

x— U
(0]

Z= - When p is zero and o'is 1, z-score is same as x. This is useful to normalize

the data.

Most of the statistical tests expect data to follow normal distribution. To check it,
normality tests are used. Normality test of the data can be done by Q-Q plot where CDF
of one random variable follows CDF of normal distribution. Then, quantity of one distri-
bution is plotted against other distributions. If they are same, then the plot closely follows
the straight line from bottom-left to top-right.

2. Rectangular Distribution — This is also known as uniform distribution. It has equal
probabilities for all values in the range a, b. The uniform distribution is given as follows:

fora<x<b
PX=x)=1b-a (2.25)

0 Otherwise

3. Exponential Distribution — This is a continuous uniform distribution. This probability
distribution is used to describe the time between events in a Poisson process. Exponential
distribution is another special case of Gamma distribution with a fixed parameter of 1.
This distribution is helpful in modelling of time until an event occurs.

The PDF is given as follows:

Ay A
flx, 2)= {ge T B (2.26)

Here, x is a random variable and A is called rate parameter. The mean and standard

deviation of exponential distribution is given as §, where, 8 = T

3.b. Briefly explain about confusion matrix and ROC curve. (8M)



The Confusion Matrix

Confusion matrix is a simple table used to measure how well a classification model is performing. It
compares the predictions made by the model with the actual results and shows where the model was
right or wrong. This helps you understand where the model is making mistakes so you can improve it.
It breaks down the predictions into four categories:

True Positive (TP): The model correctly predicted a positive outcome i.e the actual outcome
was positive.

True Negative (TN): The model correctly predicted a negative outcome i.e the actual outcome
was negative.

False Positive (FP): The model incorrectly predicted a positive outcome i.e the actual outcome
was negative. It is also known as a Type I error.

False Negative (FN): The model incorrectly predicted a negative outcome i.e the actual
outcome was positive. It is also known as a Type II error.

Confusion Matrix
Actually Actually
Positive (1) | Negative (0) TPR
Predicted frue False
Positive (1) Positives Positives
(TPs) (FPs)
Predicted Fals_e Tru'_e
Negative (0) Negatives Negatives
(FNs) (TNs) FPR

Fig. Confusion Matrix Fig. ROC Curve

The Receiver Operator Characteristic (ROC) Curve

AUC-ROC curve is a graph used to check how well a binary classification model works. It helps us to
understand how well the model separates the positive cases like people with a disease from the negative

cases like people without the disease at different threshold level. It is a plot of the percentage of true

positives on the Y-axis against false positives on the X-axis.

It shows how good the model is at telling the difference between the two classes by plotting:

True Positive Rate (TPR): how often the model correctly predicts the positive cases also
known as Sensitivity or Recall.

False Positive Rate (FPR): how often the model incorrectly predicts a negative case as
positive.

Specificity: measures the proportion of actual negatives that the model correctly identifies. It
is calculated as 1 — FPR.

The higher the curve the better the model is at making correct predictions. AUC-ROC is effective when:

The dataset is balanced and the model needs to be evaluated across all thresholds.



False positives and false negatives are of similar importance.

These terms are derived from the confusion matrix which provides the following values:

True Positive (TP): Correctly predicted positive instances
True Negative (TN): Correctly predicted negative instances
False Positive (FP): Incorrectly predicted as positive

False Negative (FN): Incorrectly predicted as negative

Accuracy Metrics used in both Confusion Matrix and ROC Curve

1.

Accuracy: It shows how many predictions the model got right out of all the predictions. It gives
idea of overall performance but it can be misleading when one class is more dominant over the
other. For example, a model that predicts the majority class correctly most of the time might
have high accuracy but still fail to capture important details about other classes.

Precision: It focuses on the quality of the model’s positive predictions. It tells us how many of
the “positive” predictions were actually correct. It is important in situations where false
positives need to be minimized such as detecting spam emails or fraud.

Recall: It measures how good the model is at predicting positives. It shows the proportion of
true positives detected out of all the actual positive instances. High recall is essential when
missing positive cases has significant consequences like in medical tests. It is also known as
Sensitivity or True Positive Rate.

F1-Score: It combines precision and recall into a single metric to balance their trade-off. It is
the harmonic mean of precision and recall. It provides a better sense of a model’s overall
performance particularly for imbalanced datasets. It is helpful when both false positives and
false negatives are important though it assumes precision and recall are equally important but,
in some situations, one might matter more than the other.

Specificity: It is another important metric in the evaluation of classification models particularly
in binary classification. It measures the ability of a model to correctly identify negative
instances. Specificity is also known as the True Negative Rate.

False Positive Rate: It shows how many of the actual negative cases were predicted as positive.

Metric Formula

Accuracy TP+ TN

TP+ TN+ FP + FN
Precision TP

TP + FP

Recall/Sensitivity/True Positive Rate (TPR) TP

3.c.

TP+ FN
False Positive Rate (FPR) FP

FP+TN

Specificity/True Negative Rate (TNR) ™ OR 1-FPR

TN+FP
F1-Score/F-Measure 2 X Precision X Recall 2TP

OR
Precision + Recall 2TP + FP+ FN

Let the data points be (2) and (;) Apply PCA and find the transformed data.(6M)



INe10) s VA Let the data points be (2) and (;) Apply PCA and find the transformed data.

Again, apply the inverse and prove that PCA works.
Solution: One can combine two vectors into a matrix as follows:

The mean vector can be computed as Eq. (2.53) as follows:
2+1
_ 2 (15
F=lex7 |~ (6.5)
2
As part of PCA, the mean must be subtracted from the data to get the adjusted data:

_— 2-15) ( 05
1 \6-65) |05
P 1-15) (05
2 |\7-65) | 05
One can find the covariance for these data vectors. The covariance can be obtained using

Eq. (2.54):
read) 0.5 0.25 —0.25
" =\ _05)®® 5= 25 025

—0.5 0.25 —0.25
m, = (-05 05) =
0.5 -025 025

The final covariance matrix is obtained by adding these two matrices as:
c=( oz on)

The eigen values and eigen vectors of matrix C can be obtained (left as an exercise) as 4, = 1,

A, = 0. The eigen vectors are [_3 and G) The matrix A can be obtained by packing the

eigen vector of these eigen values (after sorting it) of matrix C. For this problem, A = (_: :J :

The transpose of 4, AT = (—1 ﬂ is also the same matrix as it is an orthogonal matrix. The matrix

can be normalized by diving each elements of the vector, by the norm of the vector to get:
L &
AEE:
¥
V2 V2
One can check that the PCA matrix A is orthogonal. A matrix is orthogonal is A = A and
AA =1

e T
T

£

The transformed matrix y using Eq. (2.55) is given as:

SH%P
»-aﬁlln-t

2 2

y=Ax(x-m)



Recollect that (x—m) is the adjusted matrix.

y=A(x—m)=

One can check the original matrix can be retrieved from this matrix as:

{(AY xyl+m
[ 1emi )
—— —= 1 1
x=ATy+m= \/15\/15[_75-:/—5— (15)
— —[|L 0o o
V2 2
18810
5‘2 (15\ _(21)
L 67)
p O

Therefore, one can infer the original is obtained without any loss of information.

OR
4.a.  Explain non-parametric density estimation. (6M)

Density Estimation

Let there be a set of observed values x, x,, ---, x, from a larger set of data whose distribution is not
known. Density estimation is the problem of estimating the density function from an observed data.
The estimated density function, denoted as, p(x) can be used to value directly for any unknown
data, say x, as p(x,). If its value is less than g, then x, is not an outlier or anomaly data. Else, it is
categorized as an anomaly data.

There are two types of density estimation methods, namely parametric density estimation and
non-parametric density estimation.
Non-parametric Density Estimation A non-parametric estimation can be generative
or discriminative. Parzen window is a generative estimation method that finds p(x | ©) as
conditional density. Discriminative methods directly compute p(© | x) as posteriori probability.
Parzen window and k-Nearest Neighbour (KNN) rule are examples of non-parametric density
estimation. Let us discuss about them now.



Parzen Window Let there be ‘n” samples, X = {x, x,, ---, x,}

The samples are drawn independently, called as identically independent distribution.
Let R be the region that covers ‘k’ samples of total “n’ samples. Then, the probability density function
is given as:

p=kin (2.38)
The estimate is given as:
k/n
P == (2:39)

where, V is the volume of the region R. If R is the hypercube centered at x and h is the length of
the hypercube, the volume V is k? for 2D square cube and k2 for 3D cube.

The Parzen window is given as follows:

X —X A |x:‘k_xk| 1
¢[ rh ]: 1 if —h <E- (2.40)

0 otherwise

The window indicates if the sample is inside the region or not. The Parzen probability density
function estimate using Eq. (2.40) is given as:

p(x) = v

1)

i=1 h

This window can be replaced by any other function too. If Gaussian function is used, then it
is called Gaussian density function.

KNN Estimation The KNN estimation is another non-parametric density estimation method.
Here, the initial parameter k is determined and based on that k-neighbours are determined.
The probability density function estimate is the average of the values that are returned by
the neighbours.

4.b. Explain (i) Training (ii) Testing and (iii) Validation Sets and (iv) Unbalanced
Datasets. (8M)

2.2.2  Training, Testing, and Validation Sets

We now need three sets of data: the training set to actually train the algorithm, the validation
set to keep track of how well it is doing as it learns, and the test set to produce the final
results. This is becoming expensive in data, especially since for supervised learning it all has
to have target values attached (and even for unsupervised learning, the validation and test
sets need targets so that you have something to compare to), and it is not always easy to
get accurate labels (which may well be why you want to learn about the data). The area of
semi-supervised learning attempts to deal with this need for large amounts of labelled data;
see the Further Reading section for some references.

Clearly, each algorithm is going to need some reasonable amount of data to learn from
(precise needs vary, but the more data the algorithm sees, the more likely it is to have seen
examples of each possible type of input, although more data also increases the computational
time to learn). However, the same argument can be used to argue that the validation and



Training Testing Validation

FIGURE 2.6 The dataset is split into different sets, some for training, some for validation,
and some for testing.

test sets should also be reasonably large. Generally, the exact proportion of training to
testing to validation data is up to you, but it is typical to do something like 50:25:25 if vou
have plenty of data, and 60:20:20 if you don’t. How you do the splitting can also matter.
Many datasets are presented with the first set of datapoints being in class 1, the next in
class 2, and so on. If you pick the first few points to be the training set, the next the test
set, ete., then the results are going to be pretty bad, since the training did not see all the
classes. This can be dealt with by randomly reordering the data first, or by assigning each
datapoint randomly to one of the sets, as is shown in Figure 2.6.

If you are really short of training data, so that if yvou have a separate validation set there
is a worry that the algorithm won’t be sufficiently trained; then it is possible to perform
leave-some-out, multi-fold cross-validation. The idea is shown in Figure 2.7. The dataset is
randomly partitioned into K subsets, and one subset is used as a validation set, while the
algorithm is trained on all of the others. A different subset is then left out and a new model
is trained on that subset, repeating the same process for all of the different subsets. Finally,
the model that produced the lowest validation error is tested and used. We've traded off
data for computation time, since we've had to train K different models instead of just one.
In the most extreme case of this there is leave-one-out cross-validation, where the algorithm
is validated on just one piece of data, training on all of the rest.



Inputs

Targets

Training 1 Testing 1  Validation 1
o !
Validation 2 Tra.lﬁing 2 Testing 2

FIGURE 2.7 Leave-some-out, multi-fold cross-validation gets around the problem of data
shortage by training many models. It works by splitting the data into sets, training a
model on most sets and holding one out for validation (and another for testing). Different
models are trained with different sets being held out.

2.2.6 Unbalanced Datasets

Note that for the accuracy we have implicitly assumed that there are the same munber
of positive and negative examples in the dataset (which is known as a balanced dataset).
However, this is often not true (this can potentially cause problems for the learners as well,
as we shall see later in the book). In the case where it is not, we can compute the balanced
accuracy as the sum of sensitivity and specificity divided by 2. However, a more correct
measure is Matthew's Correlation Coefficient, which is computed as:

4TP x #TN — #FP x #£FN

MCOC =
VF#TP + #FP)(#TP + #FN)(#TN + #FP)(#TN + #FN)

(2.9)

If any of the brackets in the denominator are 0, then the whole of the denominator is
set to 1. This provides a balanced aceuracy computation.

1 2 4
4.c.  Find the LU decomposition of the given matrix. A=|3 3 2 (6M)
3 4 2
Find LU decomposition of the given matrix:
124
A=|332
342

Solution: First, augment an identity matrix and apply Gaussian elimination. The steps are as
shown in:



[100][124

010[[332
001342

[100][1 2 4]
310]|lo-3-10 R, =R, -3R
0013 4 2 |

[100][1 2 4]
310//0-3-10 R,=R,-3R
3010 -2 -10]

10012 4

2
310f0-3-10] [R=R-ZR,
g=alle 62
! 3

Now, it can be observed that the first matrix is L as it is the lower triangular matrix whose
values are the determiners used in the reduction of equations above such as 3, 3 and 2/3.
The second matrix is U, the upper triangular matrix whose values are the values of the reduced
matrix because of Gaussian elimination.

100 1 2 4
L=|3 10|andU=|0 -3 10}
2 10
= 9 s
3 3 00 3
MODULE -3
S5.a.  Explain about linear regression. (6M)

5.3 INTRODUCTION TO LINEAR REGRESSION

In the simplest fox:m, I':he linear regression model can be created by fitting a line among the scattereg
data points. The line is of the form given in Eq. (5.2).
y=a,+a,xx+e (5.2)
Here, a, is the. intercept which represents the bias and a, represents the slope of the line. Theg,
are called regression coefficients. ¢ is the error in prediction '
The assumptions of linear regression are listed as follows:
1. The observations (y) are random and are mutually independent.

2. The difference between the predicted and true values is called an error. The error is als,

mutually independent with the same distributions such as normal distribution with zero
mean and constant variables.

3. The distribution of the error term is independent of the joint distribution of explanatory
variables.

4. The unknown parameters of the regression models are constants.



The idea of linear regression is based on Ordinary Least Square (OLS) approach. This methoq
is also known as ordinary least squares method. In this method, the data points are modelleq
using a straight line. Any arbitrarily drawn line is not an optimal line. In Figure 5.4, three data

ints and their errors (e, e, e,) are shown. The vertical distance between each point and the
line (predicted by the approximate line equation y = a, + a,x) is called an error. These individual
errors are added to compute the total error of the predicted line. This is called sum of residuals,
The squares of the individual errors can also be computed and added to give a sum of squared
error. The line with the lowest sum of squared error is called line of best fit.

y-axis

X-axis

Figure 5.4: Data Points and their Errors
In another words, OLS is an optimization technique where the difference between the data
points and the line is optimized.
Mathematically, based on Eq. (5.2), the line equations for points (x,, x,, ..., x,) are:
Y, =@, +ax) +e

Y,=(a,+ax,) +e,

y,=(a,+ax)+e, (53)
In general, the error is given as: ¢, =y, - (a,+ax) . (54)
This can be extended into the set of equations as shown in Eq. (5.3).

5.b. Consider the training dataset given in the below table. Use weighted k-NN to

determine the class. Given the test instance (7.6, 60, 8) [Assign k=3]. 8M)
SI. No. | CGPA Assessment Project Submitted Result
1 9.2 85 8 Pass
2 8 80 7 Pass
3 8.5 81 8 Pass
4 6 45 5 Fail
5 6.5 50 4 Fail
6 8.2 72 7 Pass
7 5.8 38 5 Fail
8 8.9 91 9 Pass




Consider the same training dataset given in Table 4.1. Use Weighted k-NN and

determine the class.

Solution:

Step 1: Given a test instance (7.6, 60, 8) and a set of classes {Pass, Fail}, use the training dataset to
classify the test instance using Euclidean distance and weighting function.

Assign k = 3. The distance calculation is shown in Table 4.5.

Table 4.5: Euclidean Distance

Assessment Project Result Euclidean Distance
Submitted

J(62-7.6)" +(85-60)" +(8-8)
=25.05115

% ® - ¢ o J(E-7.6) +(80-60)" +(7-8)’
=20.02898

3. 85 81 8 Pass o e
=21.01928

(Continued)

Assessment Project Result Euclidean Distance

Submitted

5 Fai
e \/7 7.6) +(45- 60) +(5-8)’
=15.38051
% e & 4 Fail :
ﬂ 7.6) +(50-60)" +(4-8)
=10.82636
6 B2 =2 7 Pass 2
\Fz 7.6) +(72- 60)" +(7-8)
- =12.05653
% : 38 5 ==
o J(5:8-7.6)' +(38-60)" +(5-8)’
L s =22.27644
8. 89 91 9 P T
= J(89-7.6)" +(91-60) +(9-8)’
S =31.04336 -

Step 2: Sort the distances in the ascending order and select the first 3 nearest training data instances
to the test instance. The selected nearest neighbors are shown in Table 4.6.

Table 4.6: Nearest Neighbors

Instance Euclidean Distance Class
4 15.38051 Fail
5 10.82636 Fail
6 12.05653 Pass




Step 3: Predict the class of the test instance by weighted voting technique from the 3 selected

nearest instances.

¢ Compute the inverse of each distance of the 3 selected nearest instances as shown in

Table 4.7.

Table 4.7: Inverse Distance

Instance Euclidean Distance Inverse Distance Class
4 15.38051 0.06502 Fail
5 10.82636 0.092370 Fail
6 12.05653 0.08294 Pass

¢ Find the sum of the inverses.
Sum = 0.06502 + 0.092370 + 0.08294 = 0.24033

* Compute the weight by dividing each inverse distance by the sum as shown in
Table 4.8.

Table 4.8: Weight Calculation

Class

Instance Euclidean Distance Inverse Distance Weight = Inverse
distance/Sum
15.38051 0.06502 0.270545 Fail
10.82636 0.092370 0.384347 Fail
6 12.05653 0.08294 0.345109 Pass

e Add the weights of the same class.

Fail = 0.270545 + 0.384347 = 0.654892

Pass = 0.345109
* Predict the class by choosing the class with the maximum vote.
The class is predicted as ‘Fail’.

S.c.
Learning.

Explain the differences between Instance-based Learning and Model-based
(6M)

4.1.1 Differences Between Instance- and Model-based Learning

An instance is an entity or an example in the training dataset. It is described by a set of features or
attributes. One attribute describes the class label or category of an instance. Instance-based methods
learn or predict the class label of a test instance only when a new instance is given for classification
and until then it delays the processing of the training dataset.

It is also referred to as lazy learning methods since it does not generalize any model from the
training dataset but just keeps the training dataset as a knowledge base until a new instance is
given. In contrast, model-based learning, generally referred to as eager learning, tries to generalize the
training data to a model before receiving test instances. Model-based machine learning describes
all assumptions about the problem domain in the form of a model. These algorithms basically learn
in two phases, called training phase and testing phase. In training phase, a model is built from the
training dataset and is used to classify a test instance during the testing phase. Some examples of
models constructed are decision trees, neural networks and Support Vector Machines (SVM), etc.

The differences between Instance-based Learning and Model-based Learning are listed in
Table 4.1. '

Table 4.1: Differences between Instance-based Learning and Model-based Learning



Instance-based Learning Model-based Learning

Lazy Learners Eager Learners
Processing of training instances is done only during | Processing of training instances is done ‘during
testing phase training phase

(Continued)

Instance-based Learning Model-based Learning

No model is built with the training instances before | Generalizes a model with the training instances
it receives a test instance before it receives a test instance
Predicts the class of the test instance directly from | Predicts the class of the test instance from the model
the training data built

T 2
Slow in testing phase Fast in testing phase
Learns by making many local approximations Learns by creating global approximation

Instance-based learning also comes under the category of memory-based models which normally
compare the given test instance with the trained instances that are stored in memory. Memory-
based models classify a test instance by checking the similarity with the training instances.
Some examples of Instance-based learning algorithms are:
k*Nearest Neighbor (k-NN)
. Variants of Nearest Neighbor learning
. Locally Weighted Regression
Learning Vector Quantization (LVQ)
. Self-Organizing Map (SOM)
. Radial Basis Function (RBF) networks

In this chapter, we will discuss about certain instance-based learning algorithms such as
k-Nearest Neighbor (k-NN), Variants of Nearest Neighbor learning, and Locally Weighted
Regression learning.

Self-Organizing Map (SOM) and Radial Basis Function (RBF) networks are discussed along
with the concepts of artificial neural networks discussed in Chapter 10 since they could be referred
only after the understanding of neural networks.

These instance-based methods have serious limitations about the range of feature values taken.
Moreover, they are sensitive to irrelevant and correlated features leading to misclassification of
instances.

O WA W N

OR
6.a. Explain about logistic regression. (6M)

Definition: Logistic Regression is a supervised learning algorithm used for classification problems,
particularly binary classification, where the output is a categorical variable with two possible outcomes
(e.g., yes/no, pass/fail, spam/not spam). It can be viewed as an extension of linear regression.

Purpose: Logistic Regression predicts the probability of a categorical outcome and maps the prediction
to a value between 0 and 1. It works well when the dependent variable is binary.

Core Concept: Logistic Regression models the probability of a particular response variable. For
instance, if the predicted probability of an email being spam is 0.7, there is a 70% chance the email is
spam.

Applications:



e Email classification: Is the email spam or not?
e Student admission prediction: Should a student be admitted or not based on scores?
e Exam result classification: Will the student pass or fail based on marks?

Challenges:

e Linear regression can predict values outside the range of 0 to 1, which is unsuitable for
probabilities.

e Logistic Regression overcomes this by using a sigmoid function to map values to the range [0,

1.

Sigmoid Function: The sigmoid function (also called the logit function) is used to map any real number
to the range [0, 1]. It is an S-shaped curve and is mathematically represented as:

logit(x) = o(x) = e

Here, x is the independent variable and e is the Euler number (e = 2.71828).

Logistic Regression

s
|

5-Curve Predicted Y Lies

Y s
\ within
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X
Independent Variable
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|

Fig: Logistic Regression Curve/Sigmoid Curve

6.b. Consider the data provided in the below table and fit it using the second order
polynomial. (8M)

X Y
1 1
2 4
3 9
4

15



Table 5.8: Sample Data

1

2 4
3 9
4 15

Solution: For applying polynomial regression, computation is done as shown in Table 5.9.
Here, the order is 2 and the sample i ranges from 1 to 4.
Table 5.9: Computation Table

[
[y
=

1 1 1 1

2 4 8 4 16 8 16

3 9 27 9 81 27 81

4 15 60 16 240 64 256
2x,=10| Ty,=29 | Txy,=96 |5x* =30| Taty, =338 | Tx* =100 | Tx! =354

It can be noted that, N = 4, Ty = 29, Yxy, =96, Tx*y = 338. When the order is 2, the matrix
using Eq. (5.28) is given as follows:

4 10 30|[a 29
10 30 100||a |=| 96

30 100 354 a, 338
Therefore, using Eq. (5.29), one can get coefficients as:
ag| ([4 10 30" [20] (-075
a |=[10 30 100| x| 9 |=| 095|.
a, 30 100 354 338 0.75

This leads to the regression equation using Eq. (5.26) as:
y=-0.75+0.95 x + 0.75 x?

6.c. Explain nearest centroid classifier with an example. (6M)

4.4 NEAREST CENTROID CLASSIFIER

A simple alternative to k-NN classifiers for similarity-based classification is the Nearest Centroi'd
Classifier. It is a simple classifier and also called as Mean Difference classifier. The idea of this
classifier is to classify a test instance to the class whose centroid/mean is closest to that instance.

S

Algorithm 4.3: Nearest Centroid Classifier

Inputs: Training dataset T, Distance metric d, Test instance ¢
Output: Predicted class or category
1. Compute the mean/centroid of each class.

2. Compute the distance between the test instance and mean/centroid of each class
- (Euclidean Distance).

3. Predict the class by choosing the class with the smaller distance.

e




PETIEE®RHE Consider the sample data shown in Table 4.9 with two features x and y. The target
classes are ‘A’ or ‘B’. Predict the class using Nearest Centroid Classifier.
Table 4.9: Sample Data

GG it b ]

w»
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Solution:
Step 1: Compute the mean/centroid of each class. In this example there are two classes called ‘A’
and ‘B".
Centroid of class ‘A’ = 3+ 5+4,1+2+3)3=(12, 6)/3= (4 2)
: =(7+6+8,6+7+5)/3=(21,18)/3=(7,6)
Now given a test instance (6, 5), we can predict the class.
Step 2: Calculate the Euclidean distance between test instance (6, 5) and each of the centroid,

Buc_Dist(6, 5); (4,2)] = /(6 -4) +(5-2)" = V13 =36

Buc_Dist((6, 5); (7, 6)] = /(6-7)' +(5-6)' = v2 =1414

The test instance has smaller distance to class B. Hence, the class of this test instance is Predicteq
as ‘B’

Centroid of class ‘B’

MODULE -4
7.a.  Explain pre-pruning and post-pruning. Compare both methods. (6M)
Pre-Pruning (Early Stopping)

Sometimes, the growth of the decision tree can be stopped before it gets too complex, this is called pre-
pruning. It is important to prevent the overfitting of the training data, which results in a poor
performance when exposed to new data. Pre-pruning results in a simpler tree that is less likely to overfit
the training facts. Some common pre-pruning techniques include:

e  Maximum Depth: It limits the maximum level of depth in a decision tree.

e  Minimum Samples per Leaf: Set a minimum threshold for the number of samples in each leaf
node.

¢ Minimum Samples per Split: Specify the minimal number of samples needed to break up a
node.

e Maximum Features: Restrict the quantity of features considered for splitting.
Post-Pruning (Reducing Nodes)

After the tree is fully grown, post-pruning involves removing branches or nodes to improve the model's
ability to generalize. Post-pruning simplifies the tree while preserving its accuracy. Some common post-
pruning techniques include:



¢ Cost-Complexity Pruning (CCP): This method assigns a price to each subtree primarily based

on its accuracy and complexity, then selects the subtree with the lowest fee.

e Reduced Error Pruning: Removes branches that do not significantly affect the overall

accuracy.

e Minimum Impurity Decrease: Prunes nodes if the decrease in impurity (Gini impurity or
entropy) is beneath a certain threshold.

e Minimum Leaf Size: Removes leaf nodes with fewer samples than a specified threshold.

Comparison: Pre-Pruning vs. Post-Pruning

Aspect Pre-Pruning

Tree Growth Tree stops growing early based on
conditions

Risk Risk of underfitting if stopping criteria

are too strict

Computation

Control Requires careful tuning of stopping

criteria

Interpretability =~ Smaller and simpler tree from the start

Faster, as the tree is not grown fully

Post-Pruning

are pruned

complexity

validation results

complexity and accuracy

Tree grows fully, and then unnecessary branches

Risk of overfitting initially, but pruning reduces

Slower, requires growing and pruning the tree

More control over pruning decisions based on

Tree is simplified after pruning, balancing

7.b.  Assess a student’s performance during his course of study and predict whether a
student will get a job offer or not in his final year of the course. The training dataset 7
consists of 10 data instances with attributes such as ‘CGPA’, ‘Interactiveness’, ‘Practical
Knowledge’ and ‘Communication Skills’. The target class attribute is ‘Job Offer’. (10M)

I\SI:;. CGPA | Interactiveness KI; r:vcvtllec(;‘gle Comnslll(lil:::atwn Job Offer
1 >9 Yes Very Good Good Yes
2 =8 No Good Moderate Yes
3 >9 No Average Poor No
4 <8 No Average Good No
5 >8 Yes Good Moderate Yes
6 >9 Yes Good Moderate Yes
7 <8 Yes Good Poor No
8 >9 No Very Good Good Yes
9 >8 Yes Good Good Yes
10 >8 Yes Average Good Yes



Solution:

Step 1:

Calculate the Entropy for the target class ‘Job Offer’.
Entropy_Info(Target Attribute = Job Offer) = Entropy_Info(7, 3) =

3. 3
&
[10 %8:10 * 10'%8: 75

J = ~(-0.3599 + ~0.5208) = 0.8807
Iteration 1:
Step 2:
Calculate the Entropy_Info and Gain(Information_Gain) for each of the attribute in the training
dataset.
Tab*l; 6.4 shows the number of data instances classified with Job Offer as Yes or No for the attribute
CGPA.
Table 6.4: Entropy Information for CGPA

CGPA  Job Offer = Yes Job Offer = No Total Entropy

29 3 1 4
28 4 0 4 0
<8 0 2 2 0

Entropy_Info(T, CGPA)
4[ 8.3 1. 1] &[ &, 4 o, o] 20, 0 2. 2
=—{-210g,2-Lyop 11, 4f &, 4 0, 0| 2f 0 0 2, 2
10[ g 8y 4°824]*10[ 4 %8y 4l°gZ4]+10[ 2'%8:3 2l°822]

- '46 (03111 +0.4997) + 0+ 0

=0.3243
Gain (CGPA) = 0.8807 — 0.3243
=0.5564

Table 6.5 shows the number of data instances classified with Job Offer as Yes or No for the
attribute Interactiveness.
Table 6.5: Entropy Information for Interactiveness

ob Offe e ob Offe 0 0 op

YES 5 1 6
NO 2 2 +
. 6[ 5, 5 4T 3. 2 3.2
E Info(T, Interacti =2 25 2
ixopy. Hdo(T Intersciyeries) 10[ 6 b1~ 61826] 10[ 1%:3 1%

6
= —1-6(0.2191 + 0.4306) + E(0.4997 + 0.4997)
= 0.3898 + 0.3998 = 0.7896

Gain(Interactiveness) = 0.8807 - 0.7896
=0.0911
Table 6.6 shows the number of data instances classified with Job Offer as Yes or No for the
attribute Practical Knowledge.



Table 6.6: Entropy Information for Practical Knowledge

Very Good 2 0 2 0

Average 1 2 3
Good 4 1 5

Entropy_Info(T, Practical Knowledge)

] . al 1.1 2.. 2] 5[ 4. 4 ]
~210 1 a1 21og, = - <1
10[ 6" 2°5=2] 10[ 31%8:3 3°823] 10[ 5 825 5 %5

5
= 2(0) + ~=(0.5280 + 0. 5.
O+ 10( +0.3897) + (02574 + 0.4641)
- 0+0.2753 + 0.3608
- 0.6361

Gain(Practical Knowledge) = 0.8807 - 0.6361
=0.2446

Table 6.7 shows the number of data instances classified with Job Offer as Yes or No for the
attribute Communication Skills.

Table 6.7: Entropy Information for Communication Skills

Communication Skills Job Offer = Yes Job Offer =No  Total

Good 4 1 5
Moderate 3 0 3
Poor 0 2 2

Entropy_Info(T, Communication Skills)

s[ 4, & 1. 1] 3] 38, 3 2[ 0,0 2. 2
w] Ao & g 2l o) By 2t g Dy D S &
10[ 5 B2 51°825]+10[ 3 B3 31 323] 10[ 2 81 2 322]

5 3 2
=—(0. K —— —(0
10(05280+03897)+ 10(0)+ 10( )

= 0.3609
Gain(Communication Skills) = 0.8813 - 0.36096
=0.5203
The Gain calculated for all the attributes is shown in Table 6.8:
Table 6.8: Gain

CGPA 0.5564
Interactiveness 0.0911
Practical Knowledge 0.2246
Communication Skills 0.5203




The best split attribute is CGPA since it has the maximum gain. So, we choose CGPA as the
root node. There are three distinct values for CGPA with outcomes 29, 28 and <8. The entropy
value is 0 for 28 and <8 with all instances classified as Job Offer = Yes for 28 and Job Offer = No for
<8. Hence, both 28 and <8 end up in a leaf node. The tree grows with the subset of instances with

CGPA 29 as shown in Figure 6.3.
29 KCG_PA\ <8

Yes | Good Moderate Yes

No Very good Good Yes ’

Figilre 6.3: Decision Tree After Iteration 1
Now, continue the same process for the subset of data instances branched with CGPA > 9.
Iteration 2:
In this iteration, the same process of computing the Entropy_Info and Gain are repeated with the
subset of training set. The subset consists of 4 data instances as shown in the above Figure 6.3.
Entropy_Info(T) = Entropy_Info(3, 1) =

—-Elo 3+llo L
RE gz4 4 gz4

= ~(-03111 + -0.4997)
=0.8108
: 2[ 2. 2 0; 0] 2[4, 1 1. T
Entropy_Info(T, Interactiveness) = -;[——2-1052 i Elog2 E:I + Z[-Elogz . Elog’ -Z-J
=0+ 0.4997 |
Gain(Interactiveness) = 0.8108 — 0.4997 3

=0.3111
Entropy_Info(T, Practical Knowledge)

2 22 0, Bl 1 040 L 1l U Lo 000
=2[_Elog’5"2-log‘5]+4[ 1log21 1og21 +4 1log21 1log21

=0



Gain(Practical Knowledge) = 0.8108

Entropy_Info(T, Communication Skills)

RN U TN S M RS ]
=0

Gain(Communication Skills) = 0.8108

The gain calculated for all the attributes is shown in Table 6.9.

Table 6.9: Total Gain

Interactiveness 0.3111
Practical Knowledge 0.8108
Communication Skills 0.8108

Here, both the attributes ‘Practical Knowledge’ and ‘Communication Skills” have the same

Gain. So, we can either construct the decision tree using ‘Practical Knowledge’ or ‘Communication
Skills”. The final decision tree is shown in Figure 6.4.

7.c.

7

Average

Figure 6.4: Final Decision Tree

Explain Entropy and Gini Index. 4M)



Entropy

Entropy is the measure of randomness in data. Randomness signifies the heterogeneity of labels. Decision trees
split the data in manner that leads to decrease in entropy. Thus Decision Trees aim to divide the data with
heterogenous labels into subsets/sub-regions of data with homogenous labels. Thus with each division level of
homogeneity increases and entropy decreases. In fact entropy is the cost function that decision trees employ as
basis of splitting the data, if the the split leads to decrease in entropy then it's carried out else not.

For a dataset with 4 labels- say a, b, ¢, d — with probability of occurrence of each label being p, q, r, s respectively,
then the entropy of the data would be given by the following equation:

E = —P =log(p) — q *log(q) — r *log(r) — s * log (s)

For a dataset with n classes, the formula would be:

E = —Zp*log(p)
=1

Where p is the probability of occurrence of each class.

Gini Impurity
According to Wikipedia, ‘Gini impurity is a measure of how often a randomly chosen element from the set would be
incorrectly labelled if it was randomly labelled according to the distribution of labels in the subset’

Like entropy, Gini Impurity too is a measure of randomness of data. Randomness signifies the heterogeneity of
labels. Decision trees split the data in manner that leads to decrease in Gini Impurity. Thus Decision Trees aim to
divide the data with heterogenous labels into subsets/sub-regions of data with homogenous labels. Thus with
each division level of homogeneity increases and Gini Impurity decreases. In fact Gini Impurity is the cost function
that decision trees employ as basis of splitting the data, if the the split leads to decrease in Gini Impurity then it's
carried out else not.
Higher the GINI value, higher is the homogeneity of the data instances.
Gini_Index(T) is computed as given in Eq. (6.13).
Gini_Index(T) = 1- X", P? (6.13)
where,
P be the probability that a data instance or a tuple ‘d’ belongs to class C.. It is computed as:
P,= INo. of data instances belonging to class il/ITotal no of data instances in the training
dataset T'

GINI Index assumes a binary split on each attribute, therefore, every attribute is considered as
a binary attribute which splits the data instances into two subsets S, and §,.

OR

8.a.  Using the above Table — 7.b., assess a student’s performance using Naive Bayes’
algorithm with the dataset. Predict whether a student gets a job offer or not in his final
year of the course. (10M)



BELLUEERAY Assess a student’s performance using Naive Bayes algorithm with the dataset

provided in Table 8.1. Predict whether a student gets a job offer or not in his final year of the course,
Table 8.1: Training Dataset

S.No. CGPA Interactiveness Practical Knowledge Communication Skills Job Offer
1 29 Yes Very good Good Yes
2. 28 | No Good Moderate Yes
3. 29 | No Average Poor No
4. <8 |No Average Good No
5. 28 Yes Good Moderate Yes
6. 29 Yes Good Moderate Yes
7 <8 Yes Good Poor No
8. 29 No Very good Good Yes
9. 28 Yes Good Good Yes

10 28 Yes Average Good Yes

Solution: The training dataset T consists of 10 data instances with attributes such as ‘CGPA’,
‘Interactiveness’, ‘Practical Knowledge’ and ‘Communication Skills’ as shown in Table 8.1. The
target variable is Job Offer which is classified as Yes or No for a candidate student.

Step 1: Compute the prior probability for the target feature ‘Job Offer’. The target feature ‘Job
Offer has two classes, ‘Yes” and ‘No’. It is a binary classification problem. Given a student instance,
we need to classify whether ‘Job Offer = Yes’ or ‘Job Offer = No'.

From the training dataset, we observe that the frequency or the number of instances with ‘Job
Offer = Yes’ is 7 and ‘Job Offer = No’ is 3.

The prior probability for the target feature is calculated by dividing the number of instances
belonging to a particular target class by the total number of instances.

Hence, the prior probability for ‘Job Offer = Yes is 7/10 and ‘Job Offer = No is 3/10 as shown
in Table 8.2.



Table 8.2: Frequency Matrix and Prior Probability of Job Offer

Job Offer Classes
Yes 7
No 3

Probability Value
P (Job Offer = Yes) = 7/10
P (Job Offer = No) = 3/10

No. of Instances

step 2: Compute Frequency matrix and Likelihood Probability for each of the feature.
Step 2(a): Feature - CGPA

Table 8.3 shows the frequency matrix for the feature CGPA.
Table 8.3: Frequency Matrix of CGPA

CGPA Job Offer = Yes Job Offer = No
29 3 1
28 4 0
<8 0 2

Total 7 3

Table 8.4 shows how the likelihood probability is calculated for CGPA using conditional
probability.
Table 8.4: Likelihood Probability of CGPA

ob Ofte 0
P (CGPA 29 | Job Offer = No) = 1/3
P (CGPA 28 | Job Offer = No) = 0/3
P (CGPA <8 | Job Offer = No) = 2/3

ob O
29 | P(CGPA 29 | Job Offer = Yes) = 3/7
28 P (CGPA 28 | Job Offer = Yes) = 4/7
<8 P (CGPA <8 | Job Offer = Yes) = 0/7

As explained earlier the Likelihood probability is stated as the sampling density for the
evidence given the hypothesis. It is denoted as P (Evidence | Hypothesis), which says how likely
is the occurrence of the evidence given the parameters.

It is calculated as the number of instances of each attribute value and for a given class value
divided by the number of instances with that class value.

For example P (CGPA 29 | Job Offer = Yes) denotes the number of instances with ‘CGPA 29’
and ‘Job Offer = Yes divided by the total number of instances with ‘Job Offer = Yes'.

From the Table 8.3 Frequency Matrix of CGPA, number of instances with ‘CGPA 29’ and ‘Job
Offer = Yes’ is 3. The total number of instances with “Job Offer = Yes’ is 7. Hence, P (CGPA 29 | Job
Offer = Yes ) = 3/7.

Similarly, the Likelihood probability is calculated for all attribute values of feature CGPA.
Step 2(b): Feature - Interactiveness

Table 8.5 shows the frequency matrix for the feature Interactiveness.

Table 8.5: Frequency Matrix of Interactiveness

Interactiveness

Job Offer = Yes

Job Offer = No

YES 5 1
NO 2 2
Total 7 3




Table 8.6 shows how the likelihood

tional probability.

Table 8.6: Likelihood Probability of Interactiveness

Interactiveness

P (Job Offer = Yes)

probability is calculated for Interactiveness using condi-

P (Job Offer = No)

YES P (Interactiveness = Yes | Job Offer = Yes) | P (Interactiveness = Yes | Job Offer
- 5/7 - No) - 1[3

NO P (Interactiveness = No | Job Offer = Yes) | P (Interactiveness =No | Job Offer
=2/7 = No)=2/3

Step 2(c): Feature - Practical Knowledge
Table 8.7 shows the frequency matrix for the feature Practical Knowledge.
Table 8.7: Frequency Matrix of Practical Knowledge

Practical Knowledge

Job Offer = Yes

Job Offer = No

Very Good 2 0
Average 1 2
Good 4 1
Total 7 3

Table 8.8 shows how the likelihood probability is calculated for Practical Knowledge using
conditional probability.

Table 8.8: Likelihood Probability of Practical Knowledge

Practical Knowledge

P (Job Offer = Yes)

P (Job Offer = No)

Very Good P (Practical Knowledge = Very | P (Practical Knowledge = Very
Good | Job Offer = Yes) = 2/7 Good | Job Offer = No) = 0/3

Average P (Practical Knowledge = Average | P (Practical Knowledge = Average
| Job Offer = Yes) = 1/7 | Job Offer = No) = 2/3

Good P (Practical Knowledge = Good | P (Practical Knowledge = Good
| Job Offer = Yes) = 4/7 | Job Offer = No) = 1/3

Step 2(d): Feature - Communication Skills
Table 8.9 shows the frequency matrix for the feature Communication Skills.

Table 8.9: Frequency Matrix of Communication Skills

Communication Skills Job Offer = Yes Job Offer = No
Good 4 1
Moderate 3 0
Poor 0 2
Total 7 3

Table 8.10 shows how the likelihood probability is calculated for Communication Skills using
conditional probability.



Table 8.10: Likelihood Probability of Communication Skills

Communication Skills

P (Job Offer = Yes)

P (Job Offer = No)

P (Communication Skills = Poor
| Job Offer = Yes) = 0/7

Good P (Communication Skills = Good | P (Communication Skills = Good
| Job Offer = Yes) = 4/7 | Job Offer = No) =1/3

Moderate P (Communication Skills = P (Communication Skills =
Moderate | Job Offer = Yes) = 3/7 | Moderate | Job Offer = No) = 0/3

Poor P (Communication Skills = Poor |

Job Offer = No) = 2/3

Step 3: Use Bayes theorem Eq. (8.1) to calculate the probability of all hypotheses.

Given the test data = (CGPA 29, Interactiveness = Yes, Practical knowledge = Average, Commu-
nication Skills = Good), apply the Bayes theorem to classify whether the given student gets a Job
offer or not.

P (Job Offer = Yes | Test data) = (P(CGPA 29 | Job Offer = Yes) P (Interactiveness = Yes | Job
Offer = Yes) P (Practical knowledge = Average | Job Offer = Yes) P (Communication Skills = Good |
Job Offer = Yes) P (Job Offer = Yes)))/(P (Test Data))

We canignore P (Test Data) in the denominator since it is common for all cases to be considered.

Hence, P (Job Offer = Yes | Test data) = (P(CGPA 29 |Job Offer = Yes) P (Interactiveness = Yes
| Job Offer = Yes) P (Practical knowledge = Average | Job Offer = Yes) P (Communication Skills =
Good | Job Offer = Yes) P (Job Offer = Yes)

=3/7 x 57 x 1/7 x 4/7 x 7/10

=0.0175

Similarly, for the other case ‘Job Offer = No’,

We compute the probability,

P (Job Offer = No| Test data) = (P(CGPA 29 |Job Offer =No) P (Interactiveness = Yes | Job Offer
= No) P (Practical knowledge = Average | Job Offer = No) P (Communication Skills = Good | Job
Offer =No) P (Job Offer = No))/(P(Test Data)).

P (CGPA 29 |Job Offer = No) P (Interactiveness = Yes | Job Offer = No) P (Practical knowledge
= Average | Job Offer = No) P (Communication Skills = Good | Job Offer = No) P (Job Offer = No)

=1/3x1/3 x2/3 x1/3 x3/10

=0.0074
Step 4: Use Maximum A Posteriori (MAP) Hypothesis, I,,,, Eq. (8.2) to classify the test object to
the hypothesis with the highest probability.

Since P (Job Offer = Yes | Test data) has the highest probability value, the test data is classified
as ‘Job Offer = Yes'.

8.b. Explain Maximum A Posteriori (MAP) Hypothesis, /Ay4r and Maximum
Likelihood (ML) Hypothesis, /1. (6M)

Maximum A Posteriori (MAP) Hypothesis, h,,,,

Given a set of candidate hypotheses, the hypothesis which has the maximum value is considerea
the maximum probable hypothesis or most probable hypothesis. This most probable hypothesis is calte«
the Maximum A Posteriori Hypothesis h,,, .. Bayes theorem Eq. (8.1) can be used to find the h,,, ..

h,, .. = max,_, P(Hypothesish| Evidence E)

P(Eviderice E | Hypothesis h) P(Hypothesis h)
et P(Evidence E)
= max,_,, P(Evidence E | Hypothesis h) P(Hypothesis h)

= max
(82)

Maximum Likelihood (ML) Hypothesis, h,,

Given a set of candidate hypotheses, if every hypothesis is equally probable, only P (E | k) is used
to find the most probable hypothesis. The hypothesis that gives the maximum likelihood for P (E | h)
is called the Maximum Likelihood (ML) Hypothesis, h,,, .

h,, = max,, P(Evidence E | Hypothesis h) (8.3)



8.c.  Explain Bayes’ optimal classifier. (4M)

8.3.3 Bayes Optimal Classifier

Bayes optimal classifier is a probabilistic model, which in fact, uses the Bayes theorem to find the
most probable classification for a new instance given the training data by combining the predic-
tions of all posterior hypotheses, This is different from Maximum A Posteriori (MAP) Hypothesis,
h,..p Which chooses the maximum probable hypothesis or the most probable hypothesis.

Here, a new instance can be classified to a possible classification value C, by the following
Eq. (8.4). -

=max. 2, ,P(C, | h)P(h | T) (8.4)
L

BElUERRE Given the hypothesis space with 4 hypothesis h,, h,, h, and h,. Determine if the
patient is diagnosed as COVID positive or COVID negative using Bayes Optimal classifier.

Solution: From the training dataset T, the posterior probabilities of the four different hypotheses
for a new instance are given in Table 8.12.

Table 8.12: Posterior Probability Values

P(h,|D P (COVID Positive | h) P (COVID Negative | h)
0.3 0 1
0.1 1 0
02 1 0
0.1 1 0

h,,, chooses h, which has the maximum probability value 0.3 as the solution and gives the result
that the patient is COVID negative. But Bayes Optimal classifier combines the predictions of h,, h,
and h, which is 0.4 and gives the result that the patient is COVID positive.

%, ., P(COVID Negative Ih)P(, 1T) =0.3x1=03
%, ., P(COVID Positive |h)P(h, 1T)=0.1x1+0.2x1+0.1x1=04

Therefore, max_ ... Postvn, coVID Negane) 2on oy P(C, 11 )P (B, 1T) = COVID Positive.
Thus, this algorithm, diagnoses the new instance to be COVID positive.

e

MODULE -5
9.a. Explain the types of artificial neural networks. (8M)
10.5 TYPES OF ARTIFICIAL NEURAL NETWORKS

ANNs consist of multiple neurons arranged in layers. There are different types of ANNs
that differ by the network structure, activation function involved and the learning rules used.
In an ANN, there are three layers called input layer, hidden layer and output layer. Any general
ANN would consist of one input layer, one output layer and zero or more hidden layers.



10.5.1 Feed Forward Neural Network

This is the simplest neural network that consists of neurons which are arranged in layers and
the information is propagated only in the forward direction. This model may or may not contain
a hidden layer and there is no back propagation. Based on the number of hidden layers they
are further classified into single-layered and multi-layered feed forward networks. These ANNs
are simple to design and easy to maintain. They are fast but cannot be used for complex learning.
They are used for simple classification and simple image processing, etc. The model of a
Feed Forward Neural Network is shown in Figure 10.7.

Input layer Hidden layer Output layer
Figure 10.7: Model of a Feed Forward Neural Network

10.5.2 Fully Connected Neural Network

Fully connected neural networks are the ones in which all the neurons in a layer are connected
to all other neurons in the next layer. The model of a fully connected neural network is shown in

Figure 10.8.

Input layer Hidden layer Output layer
Figure 10.8: Model of a Fully Connected Neural Network

10.5.3 Multi-Layer Perceptron (MLP)

This ANN consists of multiple layers with one input layer, one output layer and one or more
hidden layers. Every neuron in a layer is connected to all neurons in the next layer and thus
they are fully connected. The information flows in both the directions. In the forward direction,
the inputs are multiplied by weights of neurons and forwarded to the activation function of the



neuron and output is passed to the next layer. If the output is incorrect, then in the backward
direction, error is back propagated to adjust the weights and biases to get correct output. Thus,
the network learns with the training data. This type of ANN is used in deep learning for coqplex
classification, speech recognition, medical diagnosis, forecasting, etc. They are comparatively
complex and slow. The model of an MLP is shown in Figure 10.9.

Input layer Hidden layer Output layer
Figure 10.9: Model of a Multi-Layer Perceptron

10.5.4 Feedback Neural Network

Feedback neural networks have feedback connections between neurons that allow information
flow in both directions in the network. The output signals can be sent back to the neurons in the
same layer or to the neurons in the preceding layers. Hence, this network is more dynamic during
training. The model of a feedback neural network is shown in Figure 10.10.

""""""""" 1 Feedback

0

Input layer Hidden layer Output layer

Figure 10.10: Model of a Feedback Neural Network

9.b. Explain Grid-based approach. (8M)

13.6 GRID-BASED APPROACH

Grid-based approach is a space-based approach. It partitions space into cells, the given data is fitted
on the cells for cluster formation.
There are three important concepts that need to be mastered for understanding the grid-based
schemes. They are:
1. Subspace clustering
2. Concept of dense cells
3. Monotonicity property



Subspace Clustering

Grid-based algorithms are useful for clustering high-dimensional data, that is, data with many
attributes. Some data like gene data may have millions of attributes. Every attribute is called a
dimension. But all the attributes are not needed, as in many applications one may not require all
the attributes. For example, an employee’s address may not be required for profiling his diseases.
Age may be required in that case. So, one can conclude that only a subset of features is required.
For example, one may be interested in grouping gene data with similar characteristics or organs
that have similar functions.

Finding subspaces is difficult. For example, N dimensions may have 2¥! subspaces. Exploring
all the subspaces is a difficult task. Here, only the CLIQUE algorithms are useful for exploring

the subspaces. CLIQUE (Clustering in Quest) is a grid-based method for finding clustering in
subspaces. CLIQUE uses a multiresolution grid data structure.

Concept of Dense Cells

CLIQUE partitions each dimension into several overlapping intervals and intervals it into cells.
Then, the algorithm determines whether the cell is dense or sparse. The cell is considered dense if it
exceeds a threshold value, say . Density is defined as the ratio of number of points and volume of the
region. In one pass, the algorithm finds the number of cells, number of points, etc. and then combines
the dense cells. For that, the algorithm uses the contiguous intervals and a set of dense cells.

< Algorithm 13.5: Dense Cells )

Step 1: Define a set of grid points and assign the given data points on the grid.

Step 2: Determine the dense and sparse cells. If the number of points in a cell exceeds the threshold
value 7, the cell is categorized as dense cell. Sparse cells are removed from the list.

Step 3: Merge the dense cells if they are adjacent.

\Step 4: Form a list of grid cells for every subspace as output. >

Monotonicity Property

CLIQUE uses anti-monotonicity property or apriori property of the famous apriori algorithm.
It means that all the subsets of a frequent item should be frequent. Similarly, if the subset is
infrequent, then all its supersets are infrequent as well. Based on the apriori property, one can
conclude that a k-dimensional cell has r points if and only if every (k - 1) dimensional projections
of this cell have atleast r points. So like association rule mining that uses apriori rule, the candidate
dense cells are generated for higher dimensions. The algorithm works in two stages as shown

below.
Algorithm 13.6: CLIQUE
Stage 1:

Step 1: Identify the dense cells.
Step 2: Merge dense cells ¢, and ¢, if they share the same interval.

(Continued)
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Step 3: Generate Apriori rule to generate (k + 1) cell for higher dimension. Then, check
whether the number of points cross the threshold. This is repeated till there are no
dense cells or new generation of dense cells.

Stage 2:

Step 1: Merging of dense cells into a cluster is carried out in each subspace using maximal
regions to cover dense cells. The maximal region is an hyperrectangle where all cells
fall into.

Step 2: Maximal region tries to cover all dense cells to form clusters.

In stage two, CLIQUE starts from dimension 2 and starts merging. This process is
Conhued till the n-dimension. y

Advantages of CLIQUE

1. Insensitive to input order of objects
2. No assumptions of underlying data distributions
3. Finds subspace of higher dimensions such that high-density clusters exist in those subspaces

Disadvantage

The disadvantage of CLIQUE is that tuning of grid parameters, such as grid size, and finding
optimal threshold for finding whether the cell is dense or not is a challenge.

10.c. What are the popular applications of artificial neural networks?

10.9 POPULAR APPLICATIONS OF ARTIFICIAL NEURAL NETWORKS

ANN learning mechanisms are used in many complex applications that involve modelling of
non-linear processes. ANN is a useful model that can handle even noisy and incomplete data,
They are used to model complex patterns, recognize patterns and solve prediction problems like
humans in many areas such as:
1. Real-time applications: Face recognition, emotion detection, self-driving cars, navigation
systems, routing systems, target tracking, vehicle scheduling, etc.
2. Business applications: Stock trading, sales forecasting, customer behaviour modelling,
Market research and analysis, etc.
3. Banking and Finance: Credit and loan forecasting, fraud and risk evaluation, currency
price prediction, real-estate appraisal, etc.
4. Education: Adaptive learning software, student performance modelling, etc.
5. Healthcare: Medical diagnosis or mapping symptoms to a medical case, image interpre-
tation and pattern recognition, drug discovery, etc.
6. Other Engineering Applications: Robotics, aerospace, electronics, manufacturing, commu-
nications, chemical analysis, food research, etc. ‘

OR

10.a. Explain the concept of perceptron and learning theory.



10.4 PERCEPTRON AND LEARNING THEORY

The first neural network model ‘Perceptron’, designed by Frank Rosenblatt in 1958, is a linear
binary classifier used for supervised learning. He modified the McCulloch & Pitts Neuron model by
combining two concepts, McCulloch-Pitts model of an artificial neuron and Hebbian learning rule
of adjusting weights. He introduced variable weight values and an extra input that represents bias
to this model. He proposed that artificial neurons could actually learn weights and thresholds
from data and came up with a supervised learning algorithm that enabled the artificial neurons to
learn the correct weights from training data by itself. The perceptron model (shown in Figure 10.5)
consists of 4 steps:

1. Inputs from other neurons

2. Weights and bias

3. Net sum

4. Activation function

Threshold
Bilas [}
[Error}
v § —

Input  x

J_' *; Output

Activation function

i
\)\'; 0
Summation
function

Figure 10.5: Perceptron Model

Thus, the modified neuron model receives a set of inputs x,x,,...,x_, their associated weights
w,,w,,...,w, and a bias. The summation function ‘Net-sum’ Eq. (10.13) computes the weighted
sum of the inputs received by the neuron.

Net-sum = ix,w (10.13)
i ' 1

After computing the ‘Net-sum’, bias value is added to it and inserted in the activation function
as shown below:
f(x) = Activation function (Net-sum + bias) (10.14)
The activation function is a binary step function which outputs a value 1 if f(x) is above the
threshold value 6, and a 0 if f{x) is below the threshold value 6. Then, output of a neuron:

Y= {1 if f(x)2 6 (10.15)
0 if f(x) <8

Before learning how a neural network works, let us learn about how a perceptron model works.

10.b. Explain any 4 proximity measures.

Proximity measures determine similarity or dissimilarity among objects. Distance measures, also
known as dissimilarity measures indicate how different objects are. Similarity measures indicate how
alike objects are. Clustering algorithms need proximity measures to find the similarity or dissimilarity
among objects to group them. In clustering algorithms more distance equates to less similarity. Some
proximity measures are discussed below.



Quantltative Variables

some of the qualitative variables are discussed below.

guclidean Distance It is one of the most important and common distance measures. It is also
called as L, norm. It can be defined as the square root of squared differences between the coordi-
nates of a pair of objects,

The Euclidean distance between objects x, and X, with k features is given as follows:

Distance (x, x) = J‘}'."._‘(x‘ =z (13.1)

The advantage of Euclidean distance is that the distance does not change with the addition of
new objects. But the disadvantage is that if the units change, the resulting Euclidean or squared
Euclidean changes drastically. Another disadvantage is that as the Euclidean distance involves
a square root and a square, the computational complexity is high for implementing the distance
for millions or billions of operations involved.

City Block Distance City block distance is known as Manhattan distance. This is also known as
boxcar, absolute value distance, Manhattan distance, Taxicab or L, norm. The formula for finding
the distance is given as follows:

Distance (x, x) = i
k=1

x, = %, (132)

Chebyshev Distance Chebyshev distance is known as maximum value distance. This is the
absolute magnitude of the differences between the coordinates of a pair of objects. This distance is
called supremum distance or L__ or L_norm. The formula for computing Chebyshev distance is
given as follows:

(13.3)

Distance (x, x) = mkaxlxk - xﬁl

F

el LR ERE Suppose, if the coordinates of the objects are (0, 3) and (5, 8), then what is the
Chebyshev distance?

Solution: The Euclidean distance using Eq. (13.1) is given as follows:

Distance (x,, x ) = (0 — 5)* + (3 - 8)?
=50 =7.07

The Manhattan distance using Eq. (13.2) is given as follows:

Distance (x, x) = |(0 - 5) + (3 - 8) =10
The Chebyshev distance using Eq. (13.3) is given as follows:

Max {0 -5, |3 - 8]} =Max (5,5} =5

®
Minkowski Distance In general, all the above distance measures can be generalized as:

1
Distance (x, x) = (le“ -x ﬁl']' (13.4)

This is called Minkowski distance, Here, r is a parameter. When the value of ris 1, the :disl:ance
measure is called city block distance. When the value of r is 2, the distance measure is called
Euclidean distance. When, r is o, then this is Chebyshev distance.



Binary Attributes

Binary attributes have only two values. Distance measures discussed above cannot be applied to
find distance between objects that have binary attributes. For finding the distance among objects
with binary objects, the contingency Table 13.3 can be used. Let x and y be the objects consisting
of N-binary objects. Then, the contingency table can be constructed by counting the number of
matching of transitions, 0-0, 0-1, 1-0 and 1-1.

Table 13.3: Contingency Table

Attributes Matching 0 1

0 a b
1 c d

In other words, ‘@’ is the number of attributes where x attribute is 0 and y attribute is 0.
‘b is the number of attributes where x attribute is 0 and y attribute is 1, ‘c’ is the number of
attributes where x attribute is 1 and y attribute is 0 and ‘d’ is the number of attributes where
x attribute is 1 and y attribute is 1.

simple Matching Coefficient (SMC) SMC is a simple distance measure and is defined as the
ratio of number of matching attributes and the number of attributes. The formula is given as:

_a+d (13.5)
a+b+c+d
The values of a, b, ¢, and d can be observed from the Table 13.4.

Jaccard Coefficient Jaccard coefficient is another useful measure for and is given as follows:

d
- 136
J b+c+d Uas)
F
If the given vectors are x = (1, 0, 0) and y = (1, 1, 1) then find the SMC and Jaccard
coefficient?

Solution: It can be seen from Table 13.2 that, a=0,b=2,c=0andd=1.

The SMC using Eq. (13.5) is given as :%1%1- =0+1/3=0.33

Jaccard coefficient using Eq. (13.6)is given as | = =1/3=0.33

Y
Hamming Distance Hamming distance is another useful measure that can be used for
knowing the sequence of characters or binary values. It indicates the number of positions at
which the characters or binary bits are different.

For example, the hamming distance between x = (101)and y = (110)is 2 as x and y differ
in two positions. The distance between two words, say wood and hood is 1, as they differ in only
one character. Sometimes, more complex distance measures like edit distance can also be used.

b+c+d




categorical Variables

[n many cases, categorical values are used. It is just a code or symbol to represent the values.
for example, for the attribute Gender, a code 1 can be given to female and 0 can be given to male.

To calculate the distance between two objects represented by variables, we need to find only
whether they are equal or not. This is given as:

1 ifx#y

0 ifx=y (=:7)

Distance (x, y) = {
ordinal Variables

Ordinal variables are like categorical values but with an inherent order. For example, designation
is an ordinal variable. If job designation is 1 or 2 or 3, it means code 1 is higher than 2 and code 2
is higher than 3. It is ranked as 1> 2 > 3,

Let us assume the designations of office employees are clerk, supervisor, manager and
general manager. These can be designated as numbers as clerk = 1, supervisor = 2, manager = 3
and general manager = 4. Then, the distance between employee X who is a clerk and Y who is a
manager can be obtained as:
|position (X) - position ()

n-1

Here, position (X) and position(Y) indicate the designated numerical value. Thus, the distance

between X (Clerk = 1) and Y (Manager = 3) using Eq. (13.8) is given as:

Distance (X, Y) = (13.8)

Distaice (X, 1) = |position (X) — position (Y)| " -3 _2_

0.66
n-1 4-1 3

Vector Type Distance Measures

For text classification, vectors are normally used. Cosine similarity is a metric used to measure
how similar the documents are irrespective of their size. Cosine similarity measures the cosine of

the angle between two vectors projected in a multi-dimensional space. The similarity function for
vector objects can be defined as:

; X, xY,
XY ! (13.9)

RF e i

=1 ! iwl

sim (X,Y) =

The numeration is the dot product of the vectors A and B: The denominator is the product of
the norm of vectors A and B. '
F

If the given vectors are A = {1, 1, 0} and B = {0, 1, 1}, then what is the cosine
similarity?

Solu:/ign: The dot product of the vectoris 1 x 0+ 1 x 1+0 x 1 = 1. The norm of the vectors A and
Bis 2.

. : e 1 1
So, the cosine similarity using Eq. (13.9) is given as —T ===05
V242 2

10.c. What are the applications of clustering? (4M)



Applications of Clustering

1. Grouping based on customer buying patterns
2. Profiling of customers based on lifestyle

@

In information retrieval applications (like retrieval of a document from a collection of
documents)

. Identifying the groups of genes that influence a disease

. Identification of organs that are similar in physiology functions
Taxonomy of animals, plants in Biology

. Clustering based on purchasing behaviour and demography

. Document indexing

© ® NS U o

. Data compression by grouping similar objects and finding duplicate objects

THE END



