

US

N

Internal Assessment Test 2 – May 2025

Su

b:
Database Management System

Sub

Cod

e:

BCS

403

Br

an

ch:

AINDS / CS (DS)

Date

:

24/05

/2025
Duration: 90 minutes Max Marks: 50 Sem IV

OB

E

Answer any FIVE Questions

1

What is the need for Normalization? Explain INF, 2NF, 3NF and BCNF

with examples?
10 CO4 L2

2

a Write an algorithm to find the closure of functional dependency 'F'.

b

R(ABCDEF) Check the highest Normal Form using closure Algorithm

?

 FD { AB->C,C->DE,E->F,F-

>A}.

10 CO4 L3

3 a Explain the basic data types available for attributes in sql? 5 CO3 L1

b

What is Cursor? Explain Implicit, Explicit cursor with suitable
examples and syntax?

5 CO3 L1

4 a Discuss the ACID properties of a database transaction 4 CO5 L2

b

Why is Concurrency control needed? Explain 2 phase locking
techniques with suitable example

6 CO5 L2

5

a

With a neat diagram, Explain the various states of a transaction

execution.

5 CO5 L2

b

 Check whether the below schedule is conflict serializable or not
 {b2, r2(X), b1, r1(X), w1(X), r1(Y), w1(Y), w2(X),

e1, c1, e2, c2}

5 CO6 L3

6

What is the CAP Theorem? Which of the three properties (consistency,
availability, partition tolerance) are most important in NOSQL

systems?

10 CO6 L3

1

What is Normalization and explain different types

Normalization: Database Design Theory – Introduction to Normalization
using Functional and Multivalued Dependencies: Informal design guidelines

for relation schema, Functional Dependencies, Normal Forms based on

Primary Keys, Second and Third Normal Forms, Boyce-Codd Normal Form,
Multivalued Dependency and Fourth Normal Form, Join Dependencies and

Fifth Normal Form.

10
CO

1
L1

2
a

Write an algorithm to find the closure of functional dependency 'F' ?

To find the closure of a set of functional dependencies F, we need to

determine the set of all attributes that can be functionally determined by

a given set of attributes. This is typically denoted as X+ for a set of

attributes X.

● Algorithm to Find the Closure of Functional Dependency F

● Input:

 A set of attributes X

 A set of functional dependencies F

● Output:

 The closure of X (denoted as X+)

Steps:

● Initialize the closure:

○ Start with the closure X+ containing all attributes in X.

● Iterate through functional dependencies:

○ For each functional dependency A → B in F, if A is a

subset of X+, add all attributes in B to X+.

● Repeat until no new attributes are added:

○ Continue the process until X+ no longer changes.

● Return the closure:

○ The final set X+ is the closure of X.

6
CO

2
L1

 b

R(ABCDEF) Check the highest Normal Form using closure Algorithm ?

 FD { AB->C,C->DE,E->F,F->A}.

Step 1: Candidate Key

 First, we need to determine the candidate key(s) for the relation. We

can do this by finding the closure of different attribute sets to see which

ones determine all attributes in the relation.

 Find Closure of AB:

○ Start with AB: {A,B}

○ AB→C:{A,B,C}

○ C→DE:{A,B,C,D,E}

○ E→F:{A,B,C,D,E,F}

○ Closure of AB is {A,B,C,D,E,F}. Hence, AB is a

candidate key.

● Since AB is a candidate key and it alone determines all

attributes, no other subsets are candidate keys.

● C.K🡺{AB

AB+=ABCDEF

 FB

FB+=FBACDE

 EB

EB+=EBFACD

 CB}

CB+=CBDEFA

● Step 2: Write All Prime Attributes

 {A,B,C,E,F}

● Step 3: Write All Non-Prime Attributes

 { D }

Step 4:-Finding FD’s

CO

4
L3

3 a

Explain the basic data types available for attributes in SQL?

. Numeric Data Types

Used to store numbers (both integers and floating-point numbers).

● INT / INTEGER: Whole numbers (e.g., 1, 100, -5).

● SMALLINT: Smaller range of integers, consumes less storage.

● BIGINT: Larger range of integers, for very large numbers.

● DECIMAL(p, s) / NUMERIC(p, s): Fixed-point numbers with

precision p (total digits) and scale s (digits after the decimal).

● FLOAT / REAL / DOUBLE PRECISION: Approximate,

floating-point numbers. Used for scientific or imprecise

calculations.

2. Character/String Data Types

Used to store text.

● CHAR(n): Fixed-length character string. Always stores exactly n

characters (padded with spaces if shorter).

● VARCHAR(n): Variable-length character string with a

maximum of n characters. More flexible than CHAR.

● TEXT (or CLOB): Large blocks of text. Used when the size of

the string may exceed VARCHAR lim

3. Date and Time Data Types

Used to store temporal data.

● DATE: Stores date values (year, month, day).

● TIME: Stores time of day (hour, minute, second).

● TIMESTAMP: Stores both date and time.

● INTERVAL: Represents a duration (e.g., 5 days, 3 hours).

4. Boolean Data Type

Used to store truth values.

● BOOLEAN: Stores TRUE, FALSE, or NULL.

5
CO

3
L

 B

In SQL and PL/SQL, a cursor is a pointer that allows you to retrieve,

manipulate, and traverse through rows returned by a query one at a time.

Cursors are essential when you need to process individual rows of a

query result, especially in procedural operations.

Types of Cursors in PL/SQL

1. Implicit Cursor

● Automatically created by Oracle/SQL engine for single SQL

statements such as SELECT INTO, INSERT, UPDATE,

DELETE.

● You don’t need to declare or open/close it.

● Managed internally.

🡺 Syntax & Example (Implicit Cursor):

DECLARE

 emp_name employees.first_name%TYPE;

 emp_id employees.employee_id%TYPE := 101;

BEGIN

 SELECT first_name INTO emp_name

 FROM employees

 WHERE employee_id = emp_id;

 DBMS_OUTPUT.PUT_LINE('Employee Name: ' || emp_name);

END;

● This uses an implicit cursor for the SELECT INTO statement.

🡺 Cursor Attributes (for implicit cursors):

● %FOUND: Returns TRUE if DML affected one or more rows.

● %NOTFOUND: Returns TRUE if DML affected no rows.

● %ROWCOUNT: Returns the number of rows affected.

● %ISOPEN: Always FALSE for implicit cursors.

2. Explicit Cursor

● Declared by the programmer when a query returns multiple

rows.

● Allows row-by-row processing using OPEN, FETCH, CLOSE.

CO

3
L1

 4 a

Discuss the ACID properties of a database transaction?

The ACID properties are a set of four key principles that ensure reliable
processing of database transactions. The acronym ACID stands for:

1. Atomicity

 Definition: A transaction is treated as a single, indivisible unit,

which either completes in full or does not happen at all.

 Example: If you transfer money from Account A to Account B,

the debit from A and credit to B must both succeed. If one fails,

the entire transaction is rolled back.

2. Consistency

 Definition: A transaction must bring the database from one

valid state to another, maintaining all integrity constraints.

 Example: If a database enforces that account balances must

never be negative, a transaction violating this rule will be

rejected.

3. Isolation

 Definition: Transactions should not interfere with each other.

Each transaction should behave as if it were the only one

running.

 Example: If two users update the same account balance at the

same time, their transactions should not conflict or result in

incorrect data.

4. Durability

 Definition: Once a transaction is committed, its effects are

permanent, even in the case of a system crash.

 Example: If a transfer is confirmed, the updated account

balances must be preserved after a power failure

4
CO

1
L2

Why is Concurrency control needed? Explain 2 phase locking techniques with

suitable example

Why is Concurrency Control Needed?

Concurrency control is required in database systems to ensure

correctness and consistency when multiple transactions execute

simultaneously. Without proper control, concurrent transactions can

lead to problems such as:

✅ Common Issues Without Concurrency Control:

1. Lost Update – Two transactions overwrite each other’s updates.

2. Dirty Read – One transaction reads uncommitted changes of

another.

3. Non-repeatable Read – A row is changed by another

transaction between reads.

4. Phantom Read – New rows added by one transaction appear in

another’s result set.

Concurrency control ensures:

 Isolation (I in ACID)

 Serializability (transactions appear as if executed one after

another)

🔐 Two-Phase Locking (2PL) Protocol

Two-Phase Locking (2PL) is a concurrency control technique that

ensures serializability by dividing the transaction’s lock operations into

two distinct phases:

🔸 Phase 1: Growing Phase

 The transaction acquires all the locks it needs (shared for read,

exclusive for write).

 It cannot release any lock during this phase.

🔸 Phase 2: Shrinking Phase

 Once the transaction releases its first lock, it cannot acquire

any new locks.

Once a lock is released, no new locks can be acquired.

🔐 Example of 2PL:

5

With a neat diagram, Explain the various states of a transaction

execution.

● BEGIN_TRANSACTION:-This marks the beginning of

transaction execution.

● READ or WRITE.:-These specify read or write operations on the

database items that are executed as part of a transaction.

● END_TRANSACTION. This specifies that READ and WRITE

transaction operations have ended and marks the end of

transaction execution.

● However, at this point it may be necessary to check whether the

changes introduced by the transaction can be permanently

applied to the database (committed) or whether the transaction

has to be aborted because it violates Serializability or for some

other reason.

● COMMIT_TRANSACTION. This signals a successful end of

the transaction so that any changes (updates) executed by the

transaction can be safely committed to the database and will not

be undone.

● ROLLBACK (or ABORT). This signals that the transaction has

ended unsuccessfully, so that any changes or effects that the

transaction may have applied to the database must be undone.

● Active State:

● Description: Transaction begins execution, able to perform

READ and WRITE operations on the database.

● Transition: Moves to the next state after starting execution.

Partially Committed State:

● Description: Transaction prepares to commit changes.

Additional checks may be performed by concurrency control

protocols.

● Commit Point: Ensures changes can be permanently recorded,

often by logging them in the system log.

● Transition: Moves to committed state if checks are successful.

Committed State:

● Description: Transaction successfully completes execution.

● Outcome: All changes made by the transaction are permanently

recorded in the database, even in case of system failure.

Failed State:

● Description: Transaction fails due to unsuccessful checks or

B

eCheck whether the below schedule is conflict serializable or not

{b2, r2(X), b1, r1(X), w1(X), r1(Y), w1(Y), w2(X), e1, c1, e2, c2}

To determine whether the given schedule is conflict serializable, we

need to:

1. Understand the operations and transactions involved.

2. Build a precedence graph (also known as a serializability graph).

3. Check for cycles — if the graph has no cycles, the schedule is

conflict serializable.

Step 1: Parse the schedule

Schedule:

{b2, r2(X), b1, r1(X), w1(X), r1(Y), w1(Y), w2(X), e1, c1, e2, c2}

Let’s break it down by transaction:

● T1: b1, r1(X), w1(X), r1(Y), w1(Y), e1, c1

● T2: b2, r2(X), w2(X), e2, c2

Step 2: Identify conflicting operations

Conflicts occur when:

1. Two operations are from different transactions.

2. They access the same data item.

3. At least one operation is a write.

We analyze all conflicting operations between T1 and T2:

● r2(X) (T2) vs w1(X) (T1): Read-Write conflict → T2 → T1

● r1(X) (T1) vs w2(X) (T2): Read-Write conflict → T1 → T2

● w1(X) (T1) vs w2(X) (T2): Write-Write conflict → T1 → T2

Step 3: Build the precedence graph

● From r2(X) → w1(X) ⇒ edge T2 → T1

● From r1(X) → w2(X) ⇒ edge T1 → T2

● From w1(X) → w2(X) ⇒ another edge T1 → T2

Now we have:

● T1 → T2

6

The CAP Theorem, proposed by Eric Brewer, states that in a distributed

database system, it is impossible to simultaneously guarantee all three of

the following properties:

1. Consistency (C):

 Every read receives the most recent write or an error.

 ➤ Same data across all nodes at any time.

2. Availability (A):

 Every request (read/write) gets a response (success or

failure), even if some nodes are down.

 ➤ System remains responsive.

3. Partition Tolerance (P):

 The system continues to operate even if there is a

communication breakdown between nodes in the network.

 ➤ Handles network failures gracefully.

 Consistency

 /\

 / \

 / \

Availability ---- Partition Tolerance

Combinations Allowed by CAP:

Combination Description

CP (Consistency +

Partition

Tolerance)

System remains consistent and tolerates network

failures, but may become unavailable during

partition.

AP (Availability +

Partition

Tolerance)

System is always available and partition-

tolerant, but may not always show the most

recent data (eventual consistency).

CA (Consistency +

Availability)

System is consistent and available only if there

is no network partition, which is unrealistic in

distributed systems.

 Most Important in NoSQL

NoSQL systems generally prioritize:

10
CO

3
L3

CI CCI HOD

