

Internal Test -II May 2025 QP & ANSWER KEY

Sub:	Biology for Computer Engineers								BBOC407
Date:	23/ 05 / 25	Duration:	90 mins	Max Marks:	50	Sem:	4 TH	Branch:	AIDS

Note: Answer any five questions with neat diagram:

Q.No.	Question	(
Q.NO.	Question	Marks	СО	RBT
1	 Explain the function of lungs as a purification system 1. Gas Exchange (Removal of Carbon Dioxide) Main Function: Remove carbon dioxide (CO₂) from the blood. Why it matters: CO₂ is a waste product of cellular metabolism. If it builds up in the body, it becomes toxic. How it happens: Deoxygenated blood rich in CO₂ reaches the lungs via the pulmonary arteries. CO₂ diffuses from the blood into the alveoli (air sacs) and is then exhaled. 2. Oxygenation of Blood Main Function: Absorb oxygen (O₂) from inhaled air. Why it matters: Oxygen is essential for energy production in body cells. How it happens: Oxygen from inhaled air diffuses into the blood in the alveoli. Oxygen-rich blood returns to the heart to be pumped throughout the body. 		CO3	L1
	 Filtering Small Blood Clots & Air Bubbles Function: Trap small emboli (blood clots, air bubbles) that could be dangerous if they reached the brain or heart. Why it matters: Prevents blockages in critical organs. How it happens: The lung's capillary network acts as a biological filter. Defense Against Inhaled Toxins & Microbes Function: Filter dust, pathogens, and pollutants from inhaled air. How it happens: Cilia and mucus in the respiratory tract trap and move particles out. 			

	Alveolar macrophages destroy microbes that reach the deep			
	lungs.			
	5. Chemical Processing & Detoxification			
	 Function: Modify or break down certain substances in the blood, including: 			
	 Hormones (e.g., inactivating bradykinin) 			
	 Drugs and toxins (to a limited extent) 			
	The lungs contribute to metabolic homeostasis.			
	Function Purpose			
	CO₂ removal Eliminate metabolic waste			
	O ₂ absorption Supply oxygen to blood			
	Filtering emboli Prevent dangerous blockages			
	Airborne pathogen defense Prevent respiratory infections			
	Chemical processing Assist in detoxification			
2	 Define ECG. Briefly explain the design of a stent in the coronary artery ECG (Electrocardiogram) is a medical test that records the electrical activity of the heart over a period of time using electrodes placed on the skin. Detects abnormal heart rhythms (arrhythmias) Identifies heart attacks (myocardial infarctions) Monitors heart health over time Design of a Stent in the Coronary Artery: A stent is a tiny mesh-like tube made of metal or polymer that is inserted into a narrowed or blocked coronary artery to keep it open and restore normal blood flow to the heart muscle. 	[10]	CO3	L2
	Structure of a Coronary Stent:			
	 Material: Usually made of stainless steel, cobalt-chromium alloy, or biodegradable polymer. Shape: Cylindrical, mesh or lattice-like structure that can expand. Types: Bare-metal stents (BMS) – simple metal mesh. Drug-eluting stents (DES) – coated with drugs to prevent artery re-narrowing. Bioabsorbable stents – dissolve over time after healing. 			

	How It Works (Design Functionality):			
	, , , , , , , , , , , , , , , , , , , ,			
	 Compressed on a balloon catheter and inserted into the artery. 			
	When positioned correctly, the balloon is inflated, expanding the			
	stent.			
	The stent presses against the artery walls, holding them open.			
	4. The balloon is removed, and the stent remains permanently in place.			
	Importance:			
	 Used in angioplasty to treat coronary artery disease (CAD). 			
	Helps reduce the risk of heart attacks by maintaining blood supply to			
	the heart.			
	Explain the 3D printing of skin and bone in detail			
	3D printing of skin and bone is a revolutionary application of bioprinting			
	technology, combining biology, engineering, and medicine to create customized			
	living tissues 3D skin printing involves layer-by-layer deposition of bio-inks			
	containing cells, growth factors, and biomaterials to create skin tissue that can			
	replicate epidermis, dermis, and sometimes hypodermis.			
	Process Steps:			
	1. Cell Collection			
	 Skin cells (like keratinocytes, fibroblasts) are harvested from 			
	the patient or a donor.			
	2. Bio-ink Preparation			
	 Cells are mixed with hydrogels like collagen, gelatin, or alginate 			
	to form a printable bio-ink.			
3	3. 3D Printing	[10]	CO4	L1
	 A specialized bioprinter deposits the bio-ink layer-by-layer to 			
	form:			
	Epidermis (outer layer) Degree is (residule compositive tissue layer)			
	 Dermis (middle connective tissue layer) Optionally: Vascular structures 			
	 Optionally: Vascular structures Maturation in Bioreactor 			
	The printed skin is kept in a bioreactor that mimics body			
	conditions (e.g., temperature, nutrients) to promote tissue			
	development.			
	5. Transplantation			
	 Once matured, the printed skin is grafted onto the wound or 			
	burn site.			
	Applications of 3D Printed Skin:			

- Burn and wound healing
- Drug and cosmetic testing (avoids animal testing)
- Skin disease modeling
- Personalized skin grafts

3D Printing of Bone:3D bone printing creates scaffolds or full bone structures using materials that mimic natural bone's strength and porosity. These structures are often seeded with stem cells to regenerate functional bone.

Process Steps:

- 1. Imaging and Modeling
 - CT or MRI scans of the patient's bone defect are used to create a custom 3D model.
- 2. Material Selection
 - o Bio-inks or powders like:
 - Hydroxyapatite
 - Calcium phosphate
 - Tricalcium phosphate (TCP)
 - Biodegradable polymers (e.g., PLA, PCL)
- 3. 3D Printing of Scaffold
 - The bioprinter builds the structure layer-by-layer, allowing for:
 - Porosity for vascularization
 - Load-bearing strength
- 4. Cell Seeding
 - Mesenchymal stem cells (MSCs) or osteoblasts are added to promote bone growth.
- 5. Implantation and Integration
 - The printed bone is implanted, and over time, it integrates with the patient's natural bone through osteointegration.

Applications of 3D Printed Bone:

- Repair of bone defects from trauma, cancer, or congenital diseases
- Facial and jawbone reconstruction
- Dental implants
- Orthopedic implants
- Bone graft substitutes

Key Advantages

Feature Skin Printing Bone Printing

Customization Matches wound area Matches defect shape

Biocompatibility Patient-derived cells Natural bone-like materials

Speed Fast wound coverage Quick scaffold production

Regeneration Promotes healing Promotes new bone growth

4	Explain the AI process for disease diagnosis and its various applications in the medical field AI Function Medical Use Image analysis -Tumor detection in X-rays, MRIs Prediction models -Heart disease, diabetes risk Pattern recognition -Diagnosing rare diseases Virtual assistants -Basic symptom checking Robotics -Precision surgery Genomic analysis -Personalized cancer therapy	[10]	CO5	L2
5	Explain briefly a. Bio Remediation b. Bio-Mining a. Bio-Remediation Definition: Bio-remediation is the process of using microorganisms (like bacteria and fungi) to remove or neutralize pollutants from a contaminated site (soil, water, or air). Key Points: • Microbes break down harmful substances into less toxic or harmless products. • Used for oil spills, heavy metal contamination, pesticide removal, etc. • Types: • In-situ: Treatment at the site of contamination. • Ex-situ: Contaminated material is removed and treated elsewhere. Example: Using Pseudomonas bacteria to clean oil spills in oceans. b. Bio-Mining Definition: Bio-mining is the use of microorganisms to extract metals from ores and mining waste, especially low-grade ores. Key Points: • Bacteria like Thiobacillus ferrooxidans and Acidithiobacillus oxidize metal sulfides to release metals like copper, gold, or uranium. • Environment-friendly alternative to traditional mining.	[10]	CO4	L1

	Slower I	but less	polluting.				
	Example: Extracting copper from copper sulfide ores using Thiobacillus ferrooxidans.						
	Summary :						
	Concept		Bio-Remediation	Bio-Mining			
	Purpose Clear		oollution	Extract metals			
	Organisms Bacteria, fungi		ia, fungi	Bacteria (e.g., Thiobacillus)			
	Application Oil sp		ls, pesticide cleanup	Mining low-grade ores			
	Eco-impact	Reduce damag	es environmental e	Minimizes chemical use in mining			
	Discuss the eye	as a can	nera system				
	designed to cap detailed compa	oture, fo irison ar	cus, and process ligi	era system because both are ht to form clear images. Here's a w the eye functions as a natural			
	Eye Component		Camera Equivalent	Function			
	Cornea & Aqueous Humor		Camera lens cover	Focus incoming light			
	Lens		Adjustable camera lens	Fine-tunes focus (accommodation)			
	Iris		Aperture (shutter)	Controls light entry by adjusting pupil size			
6	Pupil		Aperture hole	Allows light into the eye	[10]	CO3	L1
	Retina		Camera sensor/film	Captures image as electrical signals			
	Optic Nerve		Data cable	Sends image signals to the brain			
	Sclera		Camera body/casing	Provides structure and protection			
	Vitreous Humor		Maintains shape and light transmission				
	Detailed Function						
	1. Light Entry and Control						
	 Eye: Light enters through the cornea and then the pupil (controlled by the iris). 						

 Camera: Light enters through the lens and aperture, which adjusts to light levels.

2. Focusing Light

- Eye Lens: Changes shape to focus objects at different distances (accommodation) using ciliary muscles.
- Camera Lens: Adjusts its focal length using a mechanical or digital zoom/focus system.

3. Image Capture

- Retina: Light-sensitive layer that contains rods (for dim light) and cones (for color vision). It converts light into nerve signals.
- Camera Sensor/Film: Captures light and stores the image electronically or chemically.

4. Signal Transmission

- Optic Nerve: Transfers electrical signals to the visual cortex in the brain for image processing.
- Camera Cable or Memory: Transfers data to a screen, computer, or memory card.

Features Shared by Both

Feature Human Eye Camera

Autofocus Lens curvature adjustment Motor-controlled lens

Aperture Control Iris adjusts pupil size Adjustable f-stop

Light Sensitivity Rods and cones ISO sensitivity

Image Processing Brain interprets signals Software/processor in camera

Differences

- The eye adapts continuously and automatically to changes in lighting and focus.
- The camera requires manual or digital adjustment unless it's fully automated.
- The eye processes depth and motion in real-time, while a camera captures static frames (unless it's a video camera).