




 

Fourth Semester B.E/B.Tech. Degree 

Examination ,June/July 2025 

ARTIFICIAL INTELLIGENCE-BAD402 

Module – 1 

1. a. What are the four components to define a problem? Define them. 

(4 Marks | L1 | CO1) 

A problem can be defined formally by five components:- (Explained with example Romania) 

The initial state that the agent starts in_ For example, the initial state for our agent in Romania 

might be described as In(A rad) 

● A description of the possible actions available to the agent Given a particular state s, 

ACTIONS(s) returns the set of actions that can be executed in s. We say that each of these 

actions is applicable in 

s. For example, from the state Ir.(Arad), the applicable actions are { Go(Sibiu), Go(Timisoara), 

Go(Zerim1)}. 

● A description of what each action does; the formal name for this is the transition model, 

specified by a function REsuur(s, a) that returns the state that results from doing action a 

in state s. We also use the term successor to refer to any state reachable from a given state 

by a single action.2 For example, we have 

RESULT(In(Arad ), Go(Zerind )) = In(Zerind ) . 

● Together, the initial state, actions, and transition model implicitly define the state space of 

the problem—the set of all states reachable from the initial state by any sequence of actions. 

● The state space forms a directed network or graph in which the nodes are states and the 

links between nodes are actions. 

● {The map of Romania shown in Figure 3.2 can be interpreted as a state-space graph if we 

view each road as standing for two driving actions, one in each direction.) 

● A path in the state space is a sequence of states connected by a sequence of actions. 



 

 

● The goal test, which determines whether a given state is a goal state. Sometimes there is 

an explicit set of possible goal states, and the test simply checks whether the given state is 

one of them. The agent's goal in Romania is the singleton set { In(Bucharest)}. 

 

 

● path cost function that assigns a numeric cost to each path. The problem-solving agent 

chooses a cost function that reflects its own performance measure. For the agent trying to 

get to Bucharest, time is of the essence, so the cost of a path might be its length in 

kilometers. 

 

Assume that the cost of a path can be described as the guns of the costs of the individual actions 

along the path 3 The step cost of taking action a in state s to reach state s' is denoted by e(s, a, s'). 

The step costs for Romania are shown in Figure 3.2 as route distances. 

1b. Compare and contrast human intelligence to artificial intelligence with numerous 

examples and applications. 

(7 Marks | L4 | CO1) 

Human Intelligence (HI) and Artificial Intelligence (AI) are both forms of problem-solving 

capabilities, but they differ in origin, processing, flexibility, and learning. 



 

Aspect Human Intelligence Artificial Intelligence 

Origin 
Natural; evolved over millions of 

years. 

Man-made; developed through 

programming and machine learning. 

Learning ability 
Learns from experience, emotions, 

and abstract thinking. 

Learns from data and algorithms; lacks 

emotional understanding. 

Creativity 
Highly creative and innovative (e.g., 

art, music, storytelling). 

Limited creativity; can generate content 

based on training data (e.g., ChatGPT). 

Decision-

making 

Can make intuitive and emotional 

decisions. 
Makes logical, data-driven decisions. 

Generalization 
Can apply knowledge across domains 

(e.g., language, emotions, ethics). 

Works best within specific domains (e.g., 

image recognition, translation). 

Adaptability 
Easily adapts to new, unseen 

situations. 

Needs retraining or reprogramming for 

new tasks. 

Memory Limited and fallible memory. High storage and precise retrieval. 

Examples and Applications: 

1. Human Intelligence Examples: 

o A teacher understanding and adapting to each student’s needs. 

o A doctor diagnosing rare diseases based on experience and intuition. 

2. Artificial Intelligence Applications: 

o Medical Diagnosis: AI systems like IBM Watson help diagnose cancer using data. 

o Self-driving Cars: Tesla’s AI makes decisions based on sensor data and neural 

networks. 

o Voice Assistants: Siri and Alexa understand and respond to voice commands. 

o Recommendation Systems: Netflix or Amazon uses AI to suggest content/products. 

1c.Explain the following: 

i)PEAS 

ii)Simple reflex agent 

iii)Model based agent 

(9 Marks | L2 | CO1) 



 

i)Task environments, which are essentially the “problems” to which rational agents are the 

“solutions.” 

To specify the performance measure, the environment, and the agent’s actuators and sensors called 

the PEAS (Performance, Environment, Actuators, Sensors) description. 

In designing an agent, the first step must always be to specify the task environment as fully as 

possible. 

PEAS description of an automated taxi driver. 

 

The performance measure to which we would like our automated driver to aspire? Desirable 

qualities include getting to the correct destination; minimizing fuel con- sumption and wear and 

tear; minimizing the trip time or cost; minimizing violations of traffic laws and disturbances to 

other drivers; maximizing safety and passenger comfort; maximizing profits. Obviously, some of 

these goals conflict, so tradeoffs will be required.

 

What is the driving environment that the taxi will face? Any taxi driver must deal with a variety 

of roads, ranging from rural lanes and urban alleys to 12-lane freeways. The roads contain other 

traffic, pedestrians, stray animals, road works, police cars, puddles, and potholes. The taxi must 



 

also interact with potential and actual passengers.

 

ii)Simple reflex agents 

● The Simple reflex agents are the simplest agents. These agents take decisions on the basis 

of the current percepts and ignore the rest of the percept history. 

● These agents only succeed in the fully observable environment. 

● The Simple reflex agent does not consider any part of percepts history during their decision 

and action process. 

● The Simple reflex agent works on Condition-action rule, which means it maps the current 

state to action. Such as a Room Cleaner agent, it works only if there is dirt in the room. 

● Problems for the simple reflex agent design approach: 

● They have very limited intelligence 

● They do not have knowledge of non-perceptual parts of the current state 

● Mostly too big to generate and to store. 

● Not adaptive to changes in the environment. 

 



 

 

iii)Model-based reflex agent  

The Model-based agent can work in a partially observable environment, and track the situation. 

A model-based agent has two important factors: 

● Model: It is knowledge about "how things happen in the world," so it is called a Model-

based agent. 

● Internal State: It is a representation of the current state based on percept history. 

These agents have the model, "which is knowledge of the world" and based on the model they 

perform actions. 

Updating the agent state requires information about: 

● How the world evolves 



 

● How the agent's action affects the world.

 
 

● For the braking problem, the internal state is not too extensive— just the previous frame 

from the camera, allowing the agent to detect when two red lights at the edge of the vehicle 

go on or off simultaneously.  

● For other driving tasks such as changing lanes, the agent needs to keep track of where the 

other cars are if it can’t see them all at once. And for any driving to be possible at all, the 

agent needs to keep track of where its keys are. 

● Updating this internal state information as time goes by requires two kinds of knowledge 

to be encoded in the agent program. 

● First, we need some information about how the world evolves independently of the agent—

for example, that an overtaking car generally will be closer behind than it was a moment 

ago. 

● Second, we need some information about how the agent’s own actions affect the world—

for example, that when the agent turns the steering wheel clockwise, the car turns to the 



 

right, or that after driving for five minutes northbound on the freeway, one is usually about 

five miles north of where one was five minutes ago. 

● This knowledge about “how the world works”—whether implemented in simple Boolean 

circuits or in complete scientific theories—is called a model of the world. An agent that 

uses such a model is called a model-based agent. 

OR 

2a. What is AI? List out the applications of AI, state the characteristics of AI problem. 

(8 Marks | L1 | CO1) 

1.Views of AI fall into four categories: 

 . Thinking humanly 

 . Thinking rationally 

 . Acting humanly 

 . Acting rationally 

Thinking Humanly Thinking Rationally 

“The exciting new effort to make comput- ers think 

. .. machines with minds, in the full and literal 

sense.” (Haugeland, 1985) 

“The study of mental faculties through the use 

of computational models.” (Charniak and 

McDermott, 1985) 

“[The automation of] activities that

 we associate with human thinking, 

activities such 

as decision-making, problem solv-

 ing, learning .. .” (Bellman, 1978) 

“The study of the computations that make it 

possible to perceive, reason, and act.” 

(Winston, 1992) 

Acting Humanly Acting Rationally 

“The art of creating machines that per- form 

functions that require intelligence when performed 

by people.” (Kurzweil, 1990) 

“The study of how to make computers do things at 

which, at the moment, people are better.” (Rich and 

Knight, 1991) 

“Computational Intelligence is the study of the 

design of intelligent agents.” (Poole et al., 

1998) 

“AI . . . is concerned with intelligent be- havior 

in artifacts.” (Nilsson, 1998) 

Figure 1.1 Some definitions of artificial intelligence, organized into four categories. 



 

 

2.Applications of AI: 

AI is widely used across various domains. Some common applications include: 

1. Healthcare: AI helps in disease diagnosis, robotic surgeries, and drug discovery (e.g., IBM 

Watson). 

2. Finance: Fraud detection, stock market prediction, and algorithmic trading. 

3. Retail: Chatbots, recommendation systems (like Amazon or Flipkart). 

4. Transportation: Self-driving cars, traffic prediction, and route optimization. 

5. Manufacturing: Predictive maintenance, automation using robots. 

6. Agriculture: Crop monitoring using drones, yield prediction. 

7. Education: Intelligent tutoring systems, personalized learning. 

8. Security & Surveillance: Face recognition, behavior prediction. 

9. Gaming: Game AI that can compete with or assist players (e.g., AlphaGo). 

10. Smart Assistants: Siri, Alexa, Google Assistant use AI for natural language understanding. 

3. Characteristics of AI Problems  

AI problems differ from traditional computational problems. The key characteristics of AI 

problems are: 

1. Perception and Sensing: 

o AI systems need to interpret complex sensory inputs like images, speech, and 

gestures. 

o Ex: Autonomous cars must analyze road scenes using cameras and sensors. 

2. Incomplete and Uncertain Information: 

o AI often operates in incomplete, noisy, or dynamic environments. 

o Ex: Speech recognition in noisy rooms or planning with missing data. 

3. Heuristic Search: 

o Many AI problems are solved using heuristics or "rules of thumb" instead of exact 

algorithms. 

o Ex: Game playing agents like chess use heuristics for move evaluation. 



 

4. Knowledge Representation: 

o AI must represent knowledge in a structured form (facts, logic, graphs). 

o Ex: Expert systems use knowledge bases to simulate reasoning. 

5. Reasoning and Decision Making: 

o AI systems must make logical decisions even with limited information. 

o Ex: Medical diagnosis systems suggest treatments based on symptoms. 

6. Learning from Experience: 

o Many AI systems improve over time using machine learning. 

o Ex: A recommendation engine refines suggestions based on user feedback. 

7. Goal-Oriented Behavior: 

o AI agents are designed to achieve goals in an environment. 

o Ex: A robot vacuum cleans rooms autonomously based on a goal. 

8. Dealing with Natural Language: 

o AI systems must understand and generate human language. 

o Ex: Translation systems, chatbots, sentiment analysis. 

2b. Analyze and generalize what is a rational agent. 

(6 Marks | L4 | CO1) 

A rational agent is an intelligent system that always tries to do the right action to achieve the best 

possible outcome, based on what it knows and what it observes from the environment. It does not 

need to be perfect, but it should make the best decision using the information available at that time. 

Definition: 

A rational agent is one that, for every situation (called a percept sequence), selects an action 

that is expected to maximize its performance, based on: 

● What it has observed (percepts) 

● What it already knows about the environment 

● What actions it can perform 

PerformanceMeasure: 

This tells the agent what is considered "good" or "successful." 



 

For example, in a vacuum cleaner agent, a good performance measure could be "how many 

squares are clean over time" rather than just "how many times dirt was sucked." 

Omniscient: 

A rational agent doesn't know the future or see everything (not omniscient). 

It acts based on what it knows now, not what will happen later. 

For example, if a person crosses a road and gets hit by falling debris, it doesn’t mean the 

decision was irrational—it was based on the information available. 

GathersInformation: 

A rational agent will take actions just to get more information when needed. 

Example: Before crossing the road, a person looks both ways to ensure it's safe. That 

"looking" is a rational step. 

Learns and Adapts: 

A good rational agent can learn from its past experiences and improve its future actions. 

Example: A vacuum cleaner learns where dirt usually appears and cleans those areas first. 

Autonomy: 

A rational agent should not only rely on its designer's instructions. It should learn from its 

environment and act independently. 

More autonomy means better performance in new or unknown situations. 

Example: Vacuum Cleaner Agent 

Let’s say we have a vacuum-cleaning robot that: 

● Gets 1 point for every square that stays clean 

● Can move left, right, and clean 

If the robot knows where dirt is, and it cleans efficiently, it is rational. 

But if the robot keeps moving back and forth after cleaning everything—just wasting 

energy—it becomes irrational if movement costs points. 

A truly rational vacuum cleaner would stop moving once everything is clean, or check 

occasionally if new dirt appears. 

A rational agent is one that acts wisely to get the best possible result, based on: 

● Its observations 

● Its knowledge 

● Its abilities 



 

● And the goal it has to achieve (performance measure) 

It learns, adapts, gathers useful information, and works independently to perform well in 

different environments. Rationality is about making smart choices, not being perfect. 

2c. Explain the structure of agents and analyze characteristics of intelligent agents. 

(6Marks | L2 | CO1) 

1. The structure of agents 

Agent = Architecture + Program 

● AI Job: design an agent program implementing the agent function 

● The agent program runs on some computing device with physical sensors and actuators: 

the agent architecture 

● All agents have the same skeleton: 

● Input: current percepts 

● Output: action 

● Program: manipulates input to produce output. 

● The agent function takes the entire percept history as input 

● The agent program takes only the current percept as input. 

● if the actions need to depend on the entire percept sequence, the agent will have to 

remember the percepts 

The Table-Driven Agent 



 

The table represents explicitly the agent function Ex: the simple vacuum cleaner

 

Agents can be grouped into five classes based on their degree of perceived intelligence and 

capability. All these agents can improve their performance and generate better action over the time. 

These are given below: 

● Simple Reflex Agent 

● Model-based reflex agent 

● Goal-based agents 

● Utility-based agent 

● Learning agent 

CHARACTERISTICS of intelligent agents: 

Omniscience vs Rationality: 

● Omniscience means knowing the actual outcome of all actions in advance. 

● In reality, no agent can be omniscient, because it cannot predict the future with 100% 

certainty. 

● Instead, rational agents must act based on available information (percept history) and make 

decisions that maximize expected performance. 

● Example: A human crossing a street may get hit by a falling object unexpectedly. That 

doesn’t mean the person was irrational—just not omniscient. 

2. Learning: 



 

● A rational agent must learn from experience to improve its behavior. 

● It starts with some built-in or prior knowledge, but as it gathers percepts over time, it should 

update its internal model. 

● Agents that do not learn may repeat failed behaviors. 

Example: Insects like the sphex wasp and dung beetle fail to adapt when their plan is 

disrupted—they act without learning. 

● Learning enhances adaptability, making the agent more intelligent over time. 

3. Autonomy: 

● An agent is autonomous if it relies more on its own experiences rather than pre-

programmed knowledge. 

● Agents should learn and adapt in new or changing environments rather than just following 

fixed rules. 

● Example: A vacuum cleaner that learns where dirt usually appears will clean more 

effectively than one that follows a fixed path. 

● True autonomy develops over time: an agent may need some initial guidance but should 

become increasingly self-reliant. 

MODULE 2 

3. a. You are given two jugs, 5 liters one and 4 liters one. A pump which has unlimited water 

which you can use to fill the jug, and the ground on which water may be poured. Neither jug 

has any measuring markings on it. How can you get exactly 2 (two) liters of water in the 5 

(five) liters of jug? 

Unit: Apply water jug problem algorithm. 

(10 Marks | L3 | CO2) 

The water Jug Problem, as the name suggests, is a problem where two jugs of water are 

given, say one is a 4-litre one, and the other one is a 3-litre one, but none of the measuring 

markers is mentioned on any of it. There is a pump available to fill the jugs with water. 

How can you exactly pour 2 litres of water into a 4-litre jug? Assuming that both the jugs 

are empty, the task is to find a solution to pour 2-litre water into a 4-litre jug. Production 



 

Rules for the Water Jug Problem To solve the water jug problem, many algorithms 

can be used. These include:  

● Breadth-First Search: BFS or Breadth First Search visits the nodes in order of 

their distance from the starting node. This implies that it will visit the nearest 

node first.  

● Depth First Search: DFS or Depth First Search visits the nodes in order of their 

depth.  

In production rules for the water jug problem, let x denote a 4-litre jug, and y denote a 3-

litre jug, i.e. x=0,1,2,3,4 or y=0,1,2,3 

Start state (0,0) 

Goal state (2,n) from any n 

Start from the start state and end up at the goal state. Production rules for the water jug 

problem in AI are as follows:  

1. (x,y) is X<4 -> (4, Y)  Fill the 4-litre jug 

2. (x, y) if Y<3 -> (x, 3) Fill the 3-litre jug 

https://www.simplilearn.com/tutorials/data-structure-tutorial/bfs-algorithm
https://www.simplilearn.com/tutorials/data-structure-tutorial/dfs-algorithm


 

3. (x, y) if x>0 -> (x-d, d) Pour some water from a 4-litre jug 

4. (x, y) if Y>0 -> (d, y-d) Pour some water from a 3-litre jug 

5.  (x, y) if x>0 -> (0, y) Empty 4-litre jug on the ground 

6. (x, y) if y>0 -> (x,0) Empty 3-litre jug on the ground 

7. (x, y) if X+Y >= 4 and y>0 -> (4, 

y-(4-x 

Pour water from a 3-litre jug into a 4-litre 

jug until it is full 

8. (x, y) if X+Y>=3 and x>0 -> (x-(3-

y), 3)) 

Pour water from a 3-litre jug into a 4-litre 

jug until it is full 



 

9. (x, y) if X+Y <=4 and y>0 -> (x+y, 

0 

Pour all the water from a 3-litre jug into a 

4-litre jug 

10. (x, y) if X+Y<=3 and x>0 -> (0, x+ Pour all the water from a 4-litre jug into a 

3-litre jug 

11. (0, 2) -> (2, 0) Pour 2-litre water from 3-litre jug into 4-

litre jug 

12. (2, Y) -> (0, y) Empty 2-litre in the 4-litre jug on the 

ground. 

 

Problem Representation: 

● Jug A (5-liter jug) 

 

● Jug B (4-liter jug) 

 

● Allowed operations: 

 

1. Fill any jug completely 

 



 

2. Empty any jug 

 

3. Pour water from one jug to another until one is full or the other is empty 

 

We want exactly 2 liters in Jug A (5-liter jug). 

 Initial State: 

● (0, 0) → Jug A = 0L, Jug B = 0L 

Goal State: 

● (2, _) → Jug A = 2L, Jug B can have any amount 

Steps Using Algorithm (BFS/DFS-style approach): 

We use state representation as (Jug A, Jug B). 

Step 1: Fill 4L Jug 
 (0, 0) → (0, 4) 

Step 2: Pour 4L Jug into 5L Jug 
 (0, 4) → (4, 0) 

Step 3: Fill 4L Jug again 
 (4, 0) → (4, 4) 

Step 4: Pour 4L Jug into 5L Jug (only 1L fits, rest remains) 
 (4, 4) → (5, 3) 

Step 5: Empty 5L Jug 
 (5, 3) → (0, 3) 

Step 6: Pour 4L Jug into 5L Jug 
 (0, 3) → (3, 0) 

Step 7: Fill 4L Jug again 
 (3, 0) → (3, 4) 



 

Step 8: Pour 4L Jug into 5L Jug (only 2L fits) 
 (3, 4) → (5, 2) 

Step 9: Empty 5L Jug 
 (5, 2) → (0, 2) 

Step 10: Pour 4L Jug into 5L Jug 
 (0, 2) → (2, 0)  

Final Answer (Goal Reached): 

● (2, 0): Now the 5-liter jug has exactly 2 liters of water. 

Water Jug Algorithm Concept Explanation: 

The Water Jug Problem is a classic AI problem used to demonstrate: 

● State space representation 

 

● Search algorithms (DFS/BFS) 

 

● Problem-solving under constraints 

 

● Goal-based agent behavior 

b. Describe Depth First Search (DFS) search algorithm with an example. 

(10 Marks | L2 | CO2) 

Depth-first search always expands the deepest node in the current frontier of the search tree. The 

progress of the search is illustrated in Figure 3.16. The search proceeds immediately to the 

deepest level of the search tree, where the nodes have no successors. As those nodes are 

expanded, they are dropped from the frontier, so then the search “backs up” to the next deepest 

node that still has unexplored successors.The depth-first search algorithm is an instance of the 

graph-search algorithm in Figure 3.7; whereas breadth-first-search uses a FIFO queue, depth-first 

search uses a LIFO queue.A LIFO queue means that the most recently generated node is chosen 

for expansion. This must be the deepest unexpanded node because it is one deeper than its 

parent—which, in turn,was the deepest unexpanded node when it was selected.As an alternative 

to the GRAPH-SEARCH-style implementation, it is common to implement depth-first search 

with a recursive function that calls itself on each of its children in turn. (A recursive depth-first 

algorithm incorporating a depth limit is shown in Figure 3.17.)The properties of depth-first 



 

search depend strongly on whether the graph-search or tree-search version is used. The graph-

search version, which avoids repeated states and redundant paths, is complete in finite state 

spaces because it will eventually expand every node.The tree-search version, on the other hand, 

is not complete—for example, in Figure 3.6 the algorithm will follow the Arad–Sibiu–Arad–

Sibiu loop forever. Depth-first tree search can be modified at no extra memory cost so that it 

checks new states against those on the path from the root to the current node; this avoids infinite 

loops in finite state spaces but does not avoid the proliferation of redundant paths. In infinite 

state spaces, both versions fail if an infiniten non-goal path is encountered. For example, in 

Knuth’s 4 problem, depth-first search would keep applying the factorial operator forever.For 

similar reasons, both versions are nonoptimal. For example, in Figure 3.16, depth-first search 

will explore the entire left subtree even if node C is a goal node. If node J were also a goal node, 

then depth-first search would return it as a solution instead of C, which would be a better 

solution; hence, depth-first search is not optimal. 

The properties of depth-first search depend strongly on whether the graph-search or tree-search 

version is used. The graph-search version, which avoids repeated states and redundant paths, is 

complete in finite state spaces because it will eventually expand every node.The tree-search 

version, on the other hand, is not complete—for example, in Figure 3.6 the algorithm will follow 

the Arad–Sibiu–Arad–Sibiu loop forever. Depth-first tree search can be modified at no extra 

memory cost so that it checks new states against those on the path from the root to the current 

node; this avoids infinite loops in finite state spaces but does not avoid the proliferation of 

redundant paths. In infinite state spaces, both versions fail if an infinite non-goal path is 

encountered. For example, in Knuth’s 4 problem, depth-first search would keep applying the 

factorial operator forever.For similar reasons, both versions are nonoptimal. For example, in 

Figure 3.16, depth-first search will explore the entire left subtree even if node C is a goal node. If 

node J were also a goal node, then depth-first search would return it as a solution instead of C, 

which would be a better solution; hence, depth-first search is not optimal. 



 

 

The time complexity of depth-first graph search is bounded by the size of the state space(which 

may be infinite, of course). A depth-first tree search, on the other hand, may generate all of the 

O(bm) nodes in the search tree, where m is the maximum depth of any node; this can be much 

greater than the size of the state space. Note that m itself can be much larger than d (the depth of 

the shallowest solution) and is infinite if the tree is unbounded.So far, depth-first search seems to 

have no clear advantage over breadth-first search,so why do we include it? The reason is the 

space complexity. For a graph search, there is no advantage, but a depth-first tree search needs to 

store only a single path from the root to a leaf node, along with the remaining unexpanded 

sibling nodes for each node on the path. Once a node has been expanded, it can be removed from 

memory as soon as all its descendants have been fully explored. (See Figure 3.16.) For a state 

space with branching factor b and maximum depth m, depth-first search requires storage of only 

O(bm) nodes.Using the same assumptions as for Figure 3.13 and assuming that nodes at the 

same depth as the goal node have no successors, we find that depth-first search would require 

156 kilobytes instead of 10 exabytes at depth d = 16, a factor of 7 trillion times less space. This 

has led to the adoption of depth-first tree search as the basic workhorse of many areas of 

AI,including constraint satisfaction (Chapter 6), propositional satisfiability (Chapter 7), and logic 

programming (Chapter 9). For the remainder of this section, we focus primarily on the tree-

search version of depth-first search.A variant of depth-first search called backtracking search 

uses still less memory. In backtracking, only one successor is generated at a time rather than all 



 

successors; each partially expanded node remembers which successor to generate next. In this 

way, only O(m) memory is needed rather than O(bm). Backtracking search facilitates yet another 

memory-saving (and time-saving) trick: the idea of generating a successor by modifying the 

current state description directly rather than copying it first. This reduces the memory 

requirements to just one state description and O(m) actions. For this to work, we must be able to 

undo each modification when we go back to generate the next successor. For problems with large 

state descriptions, such as robotic assembly, these techniques are critical to success. 

OR 

4. a. Explain Breadth First Search (BFS) algorithm and apply BFS to find the solution for 

the above graph. Also find the optimum path and cost for the above graph. 

 (10 Marks | L3 | CO2) 

 (Fig Q4(a): Graph with nodes S, A, B, C, D, E, G and edges with weights) 

Breadth-First Search (BFS) is a search strategy that explores all nodes at the current depth before 

moving to the next level, using a First-In-First-Out (FIFO) queue to manage the frontier. This 

ensures that the shallowest unexpanded nodes are expanded first. One important feature of BFS 

is that the goal test is applied when nodes are generated rather than when they are expanded, 

allowing the algorithm to find a solution more efficiently by stopping as soon as the shallowest 

goal is found. BFS is complete, meaning it is guaranteed to find a solution if one exists at a finite 

depth and the branching factor is finite. It is also optimal when all actions have the same cost or 

when path cost increases with depth, as it always returns the shallowest (and hence least costly) 

solution. However, the major drawbacks of BFS lie in its time and space complexity. In the 

worst case, it generates O(b^d) nodes, where b is the branching factor and d is the depth of the 

shallowest solution. Its space complexity is also O(b^d), as it stores all generated nodes in 

memory. This exponential growth makes BFS impractical for large-depth problems, where 

memory becomes a greater constraint than time, emphasizing the need for more memory-

efficient strategies. 



 

 

 



 

 

b. Describe the iterative deepening depth first search with an example. 

 (10 Marks | L2 | CO2) 

IDS is a general strategy often used in combination with depth-first tree search, that finds the 

best depth limit. It does this by gradually increasing the limit—first 0, then 1, then 2, and so on—

until a goal is found.This will occur when the depth limit reaches d, the depth of the shallowest 

goal node. The algorithm is shown in Figure 3.18. Iterative deepening combines the benefits of 

depth-first and breadth-first search. Like depth-first search, its memory requirements are modest: 

O(bd) to be precise. Like breadth-first search, it is complete when the branching factor is finite 

and optimal when the path cost is a nondecreasing function of the depth of the node. Figure 3.19 

shows four iterations of ITERATIVE-DEEPENING-SEARCH on a binary search tree, where the 

solution is found on the fourth iteration. Iterative deepening search may seem wasteful because 

states are generated multiple times. It turns out this is not too costly. The reason is that in a 

search tree with the same (or nearly the same) branching factor at each level, most of the nodes 

are in the bottom level,so it does not matter much that the upper levels are generated multiple 

times. In an iterative deepening search, the nodes on the bottom level (depth d) are generated 

once, those on the 



 

 

 

next-to-bottom level are generated twice, and so on, up to the children of the root, which are 

generated d times. So the total number of nodes generated in the worst case is 

N(IDS)=(d)b + (d − 1)b2 + ··· + (1)bd , 

which gives a time complexity of O(bd)—asymptotically the same as breadth-first search. 

There is some extra cost for generating the upper levels multiple times, but it is not large. For 



 

example, if b = 10 and d = 5, the numbers are 

N(IDS) = 50 + 400 + 3, 000 + 20, 000 + 100, 000 = 123, 450 

N(BFS) = 10 + 100 + 1, 000 + 10, 000 + 100, 000 = 111, 110 . 

If you are really concerned about repeating the repetition, you can use a hybrid approach that 

runs breadth-first search until almost all the available memory is consumed, and then runs 

iterative deepening from all the nodes in the frontier. In general, iterative deepening is the 

preferred uninformed search method when the search space is large and the depth of the solution 

is not known.Iterative deepening search is analogous to breadth-first search in that it explores a 

complete layer of new nodes at each iteration before going on to the next layer. It would seem 

worthwhile to develop an iterative analog to uniform-cost search, inheriting the latter algorithm’s 

optimality guarantees while avoiding its memory requirements. The idea is to use increasing 

path-cost limits instead of increasing depth limits. The resulting algorithm, called iterative 

lengthening search, is explored in Exercise 3.17. It turns out, unfortunately, that iterative 

lengthening incurs substantial overhead compared to uniform-cost search. 

Module – 3 

5. a. Compare blind search and heuristic search algorithm in detail. 

 (6 Marks | L4 | CO3) 

Feature Blind Search Heuristic Search 

Definition Blind (or uninformed) search 

strategies have no additional 

information about states beyond the 

problem definition. 

Heuristic (or informed) search 

uses domain-specific knowledge 

to guide the search process. 

Knowledge Used Only uses the information in the 

problem definition (initial state, 

actions, goal test). 

Uses a heuristic function (h(n)) 

that estimates the cost from a 

node to the goal. 



 

Examples Breadth-First Search (BFS), Depth-

First Search (DFS), Uniform Cost 

Search (UCS). 

Greedy Best-First Search, A* 

Search. 

Efficiency Less efficient — may explore 

irrelevant or longer paths. 

More efficient — guides the 

search toward goal-relevant 

paths. 

Completeness & 

Optimality 

Some blind searches are complete and 

optimal (e.g., BFS), but may be slow. 

Heuristic search may not always 

be optimal (Greedy), but A* is 

optimal with admissible 

heuristics. 

Use Case Suitable for small or simple state 

spaces. 

Suitable for large or complex 

problems where guidance is 

crucial. 

5.b. Write a note on Wumpus world problem. 

 (6 Marks | L2 | CO3) 

The Wumpus world is a cave which has 4/4 rooms connected with passageways. So there 

are total 16 rooms which are connected with each other. We have a knowledge-based agent 

who will go forward in this world. The cave has a room with a beast which is called Wumpus, 

who eats anyone who enters the room. The Wumpus can be shot by the agent, but the agent 

has a single arrow. 

 

• The agent explores a cave consisting of rooms connected by passageways. 



 

• Lurking somewhere in the cave is the Wumpus, a beast that eats any agent that enters 

its room. 

• Some rooms contain bottomless pits that trap any agent that wanders into the room. 

• Occasionally, there is a heap of gold in a room. 

• The goal is to collect the gold and exit the world without being eaten. 

 
PEAS description of Wumpus world: 

 

Performance measure: 

• +1000 reward points if the agent comes out of the cave with the gold. 

• -1000 points penalty for being eaten by the Wumpus or falling into the pit. 

• -1 for each action, and -10 for using an arrow. 

• The game ends if either agent dies or came out of the cave. 

Environment: 

• A 4*4 grid of rooms. 

• The agent initially in room square [1, 1], facing toward the right. 

• Location of Wumpus and gold are chosen randomly except the first square [1,1]. 

• Each square of the cave can be a pit with probability 0.2 except the first square. 

Actions/Actuators: 

● The agent can move Forward, TurnLeft by 90◦, or TurnRight by 90◦. 

● The agent dies a miserable death if it enters a square containing a pit or a live 

wumpus. 

● If an agent tries to move forward and bumps into a wall, then the agent does not 

move. 

● The action Grab can be used to pick up the gold if it is in the same square as the 

agent. 

● The action Shoot can be used to fire an arrow in a straight line in the direction the 

agent is facing. 

● The arrow continues until it either hits (and hence kills) the wumpus or hits a wall. 

The agent has only one arrow, so only the first Shoot action has any effect. 

● Finally, the action Climb can be used to climb out of the cave, but only from square 

[1,1]. 

Sensors: 

The agent has five sensors, each of which gives a single bit of information: 

● – In the square containing the wumpus and in the directly (not diagonally) adjacent 

squares, the agent will perceive a Stench. 

● – In the squares directly adjacent to a pit, the agent will perceive a Breeze. 

● – In the square where the gold is, the agent will perceive a Glitter. 

● – When an agent walks into a wall, it will perceive a Bump. 

● – When the wumpus is killed, it emits a woeful Scream that can be perceived 

anywhere in the cave. 



 

● The percepts will be given to the agent program in the form of a list of five symbols; 

For example: if there is a stench and a breeze, but no glitter, bump, or scream, the agent 

program will get 

[Stench, Breeze, None, None, None]. 

The Wumpus agent’s first step 

The first step taken by the agent in the wumpus world. 

(a) The initial situation, after percept [None, None, None, None, None]. 

(b) After one move, with percept [None, Breeze, None, None, None]. 

 

 

 

 

 

 

 

 
● Now agent needs to move forward, so it will either move to [1, 2], or [2,1]. Let's 

suppose agent moves to the room [2, 1], at this room agent perceives some breeze 

which means Pit is around this room. The pit can be in [3, 1], or [2,2], so we will add 

symbol P? to say that, is this Pit room? 

● Now agent will stop and think and will not make any harmful move. The agent will go 

back 

to the [1, 1] room. The room [1,1], and [2,1] are visited by the agent, so we will use 

symbol V to represent the visited squares. 

● At the third step, now agent will move to the room [1,2] which is OK. In the room 

[1,2] agent perceives a stench which means there must be a Wumpus nearby. But 

Wumpus cannot be in the room [1,1] as by rules of the game, and also not in [2,2] 

(Agent had not detected any stench when he was at [2,1]). Therefore agent infers that 

Wumpus is in the room [1,3], and in current state, there is no breeze which means in 

[2,2] there is no Pit and no Wumpus. So it is safe, and we will mark it OK, and the 

agent moves further in [2,2]. 

● At room [2,2], here no stench and no breezes present so let's suppose agent decides 

to move to [2,3]. At room [2,3] agent perceives glitter, so it should grab the gold and 

climb out of the cave. 

 
Two later stages in the progress of the agent. 

(a) After the third move, with percept [Stench, None, None, None, None] 

(b) After the fifth move, with percept [Stench, Breeze, Glitter , None, None]. 

 
● The agent perceives a stench in [1,2], resulting in the state of knowledge. The stench 

in [1,2] means that there must be a wumpus nearby.   But the wumpus cannot be in 



 

[1,1], by the rules of the game, and it cannot be in [2,2] (or the agent would have 

detected a stench when it was in [2,1]). Therefore, the agent can infer that the wumpus 

is in [1,3]. The notation W! indicates this inference. The lack of a breeze in [1,2] 

implies that there is no pit in [2,2]. 

● The agent has now proved to itself that there is neither a pit nor a wumpus in [2,2], so 

it is OK to move there. assume that the agent turns and moves to [2,3]. In [2,3], the 

agent detects a glitter, so it should grab the gold and then return home. 

 

 

 

 

 

 

 

 

 

5.c. Write the connectives used to form complex sentence of propositional logic. 

 Given example for each. 

 (8 Marks | L2 | CO3) 

Syantax 

o The syntax of propositional logic defines the allowable sentences. 

o The atomic sentences consist of a single proposition symbol. 

o Each such symbol stands for a proposition that can be true or false. Use symbols 

that start with an uppercase letter and may contain other letters or subscripts, for 

example: P , Q, R, W1,3 and North. 

o Complex sentences are constructed from simpler sentences, using parentheses and 

logical connectives. 

o There are five connectives in common use: 

● ¬ (not). A sentence such as ¬W1,3 is called the negation of W1,3. A literal is 

either an atomic sentence (a positive literal) or a negated atomic sentence (a 

negative literal). 

● 𝖠 (and). A sentence whose main connective is 𝖠, such as W1,3 𝖠 P3,1, is called a 

conjunction. 

● ∨ (or). A sentence using ∨, such as (W1,3𝖠P3,1)∨W2,2, is a disjunction of the 

disjunction 



 

(W1,3 𝖠 P3,1) and W2,2. 

● ⇒ (implies). A sentence such as (W1,3 𝖠 P3,1) ⇒  ¬W2,2  is called an implication 

.Implications are also known as rules or if–then statements. The implication 

symbol is sometimes written in other books as ⊃ or →. 
● ⇔ (if and only if). The sentence W1,3 ⇔ ¬W2,2 is a biconditional. Some other 

books write this as ≡. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Semantics 

• The semantics defines the rules for determining the truth of a sentence with respect 

to a particular model. 

• In propositional logic, a model simply fixes the truth value—true or false—for 

every proposition symbol. 

For example, 

If the sentences in the knowledge base make use of the proposition symbols P1,2, P2,2, and 

P3,1, then one possible model is 

m1 = {P1,2 = false, P2,2 = false, P3,1 = true} . 

The semantics for propositional logic must specify how to compute the truth value of any 

sentence, given a model. 

Atomic sentences are easy: 

• True is true in every model and False is false in every model. 

• The truth value of every other proposition symbol must be specified 

directly in the model. 

For example, in the model m1 given earlier, P1,2 is false. 

For complex sentences, we have five rules, which hold for any subsentences P and Q in any 

model m (here “iff” means “if and only if”): 



 

• ¬P is true iff P is false in m. 

• P 𝖠 Q is true iff both P and Q are true in m. 

• P ∨ Q is true iff either P or Q is true in m. 

• P ⇒ Q is true unless P is true and Q is false in m. 

• P ⇔ Q is true iff P and Q are both true or both false in m. 
 

 

OR 

6. a. Describe A* search algorithm with an example. 

 (10 Marks | L3 | CO3) 

The most widely known form of best-first search is called A∗  search (pronounced “A-star 

search”).It evaluates nodes by combining g(n), the cost to reach the node, and h(n), the cost to 

get from thenode to the goal: 

f (n) = g(n)+ h(n) . 

Since g(n) gives the path cost from the start node to node n, and h(n) is the estimated cost of the 

cheapest path from n to the goal, we have 

f(n) = estimated cost of the cheapest solution through n . 

Thus, if we are trying to find the cheapest solution, a reasonable thing to try first is the node with 

the lowest value of g(n) + h(n). It turns out that this strategy is more than just reasonable: 

provided that the heuristic function h(n) satisfies certain conditions, A∗  search is both complete 

and optimal. 

Example: 



 

 

To ensure optimality in A* search, two key conditions on the heuristic function h(n) are required: 

admissibility and consistency. 

An admissible heuristic is one that never overestimates the true cost to reach the goal. This 

means that for every node n, the heuristic estimate h(n) is always less than or equal to the actual 

minimum cost from n to the goal. Admissible heuristics are optimistic and ensure that A* will 

find an optimal solution. A classic example is the straight-line distance (hSLD) in the Romania 

map problem, which always underestimates or equals the true path cost since it represents the 

shortest possible (Euclidean) route. 

A consistent heuristic (also called monotonic) satisfies a stronger condition: for every node n and 

its successor n', the estimated cost from n should be no greater than the cost of reaching n' plus 

the estimated cost from n' to the goal, i.e., 

 h(n) ≤ c(n, a, n') + h(n'). 

 This follows the triangle inequality, ensuring that the estimated cost along a path doesn't 

decrease unexpectedly. All consistent heuristics are admissible, but not all admissible heuristics 

are consistent. However, in practice, most commonly used admissible heuristics (like hSLD) are 

also consistent, making them suitable for graph-based A* searches. 

A* search is optimal when it uses a good heuristic. Specifically: 



 

● In tree search, A* is optimal if the heuristic h(n) is admissible, i.e., it never overestimates 

the cost to reach the goal. 

 

● In graph search, A* is optimal only if h(n) is consistent, meaning it satisfies the triangle 

inequality: 

 h(n) ≤ c(n, a, n′) + h(n′). 

 

When h(n) is consistent, the f(n) = g(n) + h(n) values never decrease along any path. This 

ensures that A* always expands the node with the lowest estimated total cost first and never 

overlooks a cheaper path.  

Example: Romania Map  

In the path from Arad to Bucharest, the straight-line distance heuristic (hSLD) is both admissible 

and consistent. 

For instance, when Bucharest first appears on the frontier (with f = 450), A* does not 
immediately expand it. Instead, it continues with nodes like Pitesti (f = 417) because there 
might be a cheaper path through Pitesti. Eventually, A* finds the optimal path Arad → Sibiu 
→ Rimnicu Vilcea → Pitesti → Bucharest with the least cost. 

Thus, by using a consistent heuristic, A* guarantees it will always find the shortest-cost 

(optimal) path, without revisiting nodes or missing better routes. 

6.b. Compare proposition logic and predicate logic in detail with example. 

 (4 Marks | L4 | CO3) 

Aspect Propositional Logic Predicate Logic (First-Order Logic) 

Definition Deals with simple, atomic 

propositions that are either true 

or false. 

Extends propositional logic by using 

quantifiers, variables, and predicates to 

express complex facts. 

Expressiveness Limited — cannot represent 

relationships or internal 

structure. 

Highly expressive — can represent 

relationships among objects and general 

rules. 



 

Syntax Elements Uses propositions (e.g., Rain, 

Snow) and logical connectives 

(¬, ∧, ∨, →). 

Uses predicates, constants, variables, 

quantifiers (∀, ∃). 

Example Rain → WetGround (If it 

rains, the ground is wet) 

∀x (Human(x) → Mortal(x)) (All 

humans are mortal) 

Inference Power Less powerful; suitable for 

simple domains. 

More powerful; supports deduction over 

complex domains. 

6.c. Explain the following concepts with example: 

 i) Heuristic function 

 ii) Atomic sentence 

 iii) Complex sentence 

 (6 Marks | L2 | CO3) 

i) Heuristic function 

We look at heuristics for the 8-puzzle, in order to shed light on the nature of heuristics in 

general. 

• The average solution cost for a randomly generated 8-puzzle instance is about 22 

steps. 

• The branching factor is about 3. (When the empty tile is in the middle, four moves 

are possible; when it is in a corner, two; and when it is along an edge, three.) 

• This means that an exhaustive tree search to depth 22 would look at about 322≈ 

3.1×1010 states. 

• A graph search would cut this down by a factor of about 170,000 because only 

9!/2 =181, 440 distinct states are reachable. 

 

 

 

 

 

 

 

 



 

Here are two commonly used candidates: 

• h1 = the number of misplaced tiles.



 

For Figure 3.28, all of the eight tiles are out of position, so the start state would have h1 = 8. h1 is an 

admissible heuristic because it is clear that any tile that is out of place must be moved at least once. 

• h2 = the sum of the distances of the tiles from their goal positions. 

Because tiles cannot move along diagonals, the distance we will count is the sum of the horizontal and 

vertical distances. This is sometimes called the city block distance or Manhattan distance. h2 is also 

admissible because all any move can do is move one tile one step closer to the goal. Tiles 1 to 8 in the 

start state give a Manhattan distance of 

h2 = 3+1 + 2 + 2+ 2 + 3+ 3 + 2 = 18 . 

As expected, neither of these overestimates the true solution cost, which is 26. 

The effect of heuristic accuracy on performance 

      Generating admissible heuristics from relaxed problems 

      Generating admissible heuristics from subproblems: Pattern databases 

        Learning heuristics from experience

ii) Atomic sentence 

o The atomic sentences consist of a single proposition symbol. 

o Each such symbol stands for a proposition that can be true or false. Use symbols 

that start with an uppercase letter and may contain other letters or subscripts, for 

example: P , Q, R, W1,3 and North. 

 

 

 

 

 

 

 

iii) Complex sentence 

o Complex sentences are constructed from simpler sentences, using parentheses and 

logical connectives. 

o There are five connectives in common use: 

● ¬ (not). A sentence such as ¬W1,3 is called the negation of W1,3. A literal is 

either an atomic sentence (a positive literal) or a negated atomic sentence (a 

negative literal). 

● 𝖠 (and). A sentence whose main connective is 𝖠, such as W1,3 𝖠 P3,1, is called a 

conjunction. 



 

● ∨ (or). A sentence using ∨, such as (W1,3𝖠P3,1)∨W2,2, is a disjunction of the 

disjunction 

(W1,3 𝖠 P3,1) and W2,2. 

● ⇒ (implies). A sentence such as (W1,3 𝖠 P3,1) ⇒  ¬W2,2  is called an implication 

.Implications are also known as rules or if–then statements. The implication 

symbol is sometimes written in other books as ⊃ or →. 
● ⇔ (if and only if). The sentence W1,3 ⇔ ¬W2,2 is a biconditional. Some other 

books write this as ≡. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Module – 4 

7. a. What are predicates? Explain its syntax and semantics. 

 (5 Marks | L2 | CO4) 

Predicates are functions in First-Order Logic (FOL) that represent properties of objects or 

relationships between objects. A predicate takes one or more arguments and returns either true or 

false. 

Syntax and Semantics of First-Order Logic 

i. Models for first-order logic 

The models of a logical language are the formal structures that constitute the possible worlds 

under consideration. Each model links the vocabulary of the logical sentences to elements of the 

possible world, so that the truth of any sentence can be determined. Thus, models for 

propositional logic link proposition symbols to predefined truth values.Models for first-order 

logic are much more interesting. First, they have objects in them! The domain of a model is the 

set of objects. The domain is required to be nonempty—every possible world must contain at 

least one object. 



 

1. Richard the Lionheart, King of England from 1189 to 1199; 

2. The evil King John, who ruled from 1199 to 1215; 

3. The left legs of Richard 

4. The left legs of John; 

5. A crown 

The objects in the model may be related in various ways. In the figure, Richard and John are 

brothers.A relation is just the set of tuples of objects that are related. (A tuple is a collection of 

objects arranged in a fixed order and is written with angle brackets surrounding the 

objects.)Thus, the brotherhood relation in this model is the set 

{ <Richard the Lionheart, King John>, <King John, Richard the Lionheart >} (8.1) 

The crown is on King John’s head, so the “on head” relation contains just one tuple, 

<the crown, King John>.The “brother” and “on head” relations are binary relations—that is, they 

relate pairs of objects.The model also contains unary relations, or properties: the “person” 

property is true of bothRichard and John; the “king” property is true only of John (presumably 

because Richard is dead at this point); and the “crown” property is true only of the crown.Certain 

kinds of relationships are best considered as functions, in that a given object must be related to 

exactly one object in this way.For example, each person has one left leg, so the model has a 

unary “left leg” function that includesthe following mappings: 

<Richard the Lionheart> → Richard’s left leg (8.2) 

<King John> → John’s left leg 

ii. Symbols and interpretations 

The basic syntactic elements of first-order logic are the symbols that stand for objects, 

relations,and functions. The symbols, therefore, come in three kinds:Constant symbols, which 

stand for objects;Predicate symbols, which stand for relations; and Function symbols, which 

stand for functions.We adopt the convention that these symbols will begin with uppercase 

letters.For example, we might use constant symbols Richard and John; predicate symbols 

Brother , OnHead, Person, King, and Crown; and function symbol LeftLeg. 

As in propositional logic, every model must provide the information required to determine if any 

given sentence is true or false.Thus, in addition to its objects, relations, and functions, each 



 

model includes an interpretation that specifies exactly which objects, relations and functions are 

referred to by the constant,predicate, and function symbols.One possible interpretation for our 

example—which a logician would call the intended interpretation—is as follows: 

• Richard refers to Richard the Lionheart and John refers to the evil King John. 

• Brother refers to the brotherhood relation, that is, the set of tuples of objects given in Equation 

(8.1); OnHead refers to the “on head” relation that holds between the crown and King John; 

• LeftLeg refers to the “left leg” function, that is, the mapping given in Equation (8.2). 

There are many other possible interpretations, of course. For example, one interpretation 

mapsRichard to the crown and John to King John’s left leg. There are five objects in the model, 

so there are 25 possible interpretations just for the constant symbols Richard and John. 

iii. Terms 

• A term is a logical expression that refers to an object. Constant symbols are therefore terms,but 

it is not always convenient to have a distinct symbol to name every object. For example,in 

English we might use the expression “King John’s left leg” rather than giving a name to his leg. 

• This is what function symbols are for: instead of using a constant symbol, we use 

LeftLeg(John). 

• In the general case, a complex term is formed by a function symbol followed by a 

parenthesized list of terms as arguments to the function symbol. 

• The formal semantics of terms is straightforward. Consider a term f(t1,...,tn). The function 

symbol f refers to some function in the model (call it F); the argument terms refer to objects 

in the domain (call them d1,...,dn); and the term as a whole refers to the object that is the 

value of the function F applied to d1,...,dn.For example, suppose the LeftLeg function symbol 

refers to the function shown in Equation (8.2) and John refers to King John, then LeftLeg(John) 

refers to King John’s left leg. In this way, the interpretation fixes the referent of every term. 

iv. Atomic sentences 

Atomic sentence is formed from a predicate symbol optionally followed by a parenthesized list 

of terms, such as Brother (Richard, John).This states, under the intended interpretation given 

earlier, that Richard the Lionheart is the brother of King John. Atomic sentences can have 



 

complex terms as arguments.Thus,Married(Father (Richard), Mother (John)) states that Richard 

the Lionheart’s father is married to King John’s mother (again, under a suitable 

interpretation).An atomic sentence is true in a given model if the relation referred to by the 

predicate symbol holds among the objects referred to by the arguments. 

v. Complex sentences 

We can use logical connectives to construct more complex sentences, with the same syntax and 

semantics as in propositional calculus. Here are four sentences that are true in the model of 

Figure 8.2 under our intended interpretation: 

¬Brother (LeftLeg(Richard), John) 

Brother (Richard, John) ∧  Brother (John, Richard) 

King(Richard) ∨  King(John) 

¬King(Richard) ⇒ King(John) 

7.b. Define universal and existential instantiation and give example for both. 

 (5 Marks | L1 | CO4)    

Universal Instantiation (UI): 

The rule says that we can infer any sentence obtained by substituting a ground term (a term 

without variables) for the variable. Let SUBST (θ) denote the result of applying the substitution 

θto the sentence a. Then the rule is written 

 

For any variable v and ground term g. 

For example, there is a sentence in knowledge base stating that all greedy kings are Evils 

 

For the variable x, with the substitutions like {x/John},{x/Richard}the following sentences can 

be 

inferred. 



 

 

Thus a universally quantified sentence can be replaced by the set of all possible instantiations. 

Existential Instantiation (EI): 

The existential sentence says there is some object satisfying a condition, and the instantiation 

process is just giving a name to that object, that name must not already belong to another object. 

This new name is called a Skolem constant. Existential Instantiation is a special case of a more 

general process called “skolemization”. 

For any sentence a, variable v, and constant symbol k that does not appear elsewhere in the 

knowledge base, 

 

As long as C1 does not appear elsewhere in the knowledge base. Thus an existentially quantified 

sentence can be replaced by one instantiation 

Elimination of Universal and Existential quantifiers should give new knowledge base which can 

be shown to be inferentially equivalentto oldin the sense that it is satisfiable exactly when the 

original knowledge base is satisfiable. 

7.c. Consider the following knowledge base: 

 i) Gita likes all kinds of food 

 ii) Mango and chapatti are food 

 iii) Anything anyone eats and is still alive 

 Goal: Gita ate mango and anyone and is still alive is food 

 (10 Marks | L3 | CO4) 



 

Given Knowledge Base (KB): 

1. Gita likes all kinds of food 

 

2. Mango and chapatti are food 

 

3. Anything that anyone eats and is still alive is food 

Goal: 

Prove (or infer): 

 Gita ate mango 

 Anyone who is still alive is food 

Step 1: Represent the KB in First-Order Logic (FOL) 

Let’s define the predicates: 

● Food(x) — x is food 

 

● Likes(x, y) — x likes y 

 

● Eats(x, y) — x eats y 

 

● Alive(x) — x is alive 

 

● Person(x) — x is a person 

Now express each sentence: 

1. Gita likes all kinds of food 

 ∀ x (Food(x) → Likes(Gita, x)) 

 

2. Mango and chapatti are food 

 Food(Mango) 

 Food(Chapatti) 

 

3. Anything that anyone eats and is still alive is food 

 ∀ x ∀ y ((Eats(x, y) ∧  Alive(x)) → Food(y)) 

Step 2: State the Goal in FOL 



 

We need to derive or support the conclusion that: 

● Gita ate mango → Eats(Gita, Mango) 
 

● Anyone who is alive is food → (We’ll clarify this below) 

Step 3: Inference / Reasoning 

We need to use resolution or chaining to show what can be inferred. 

From the given KB: 

● We already know Food(Mango) from statement 2 

 

● And from 1: ∀ x (Food(x) → Likes(Gita, x)) 

 ⇒ Apply Modus Ponens with Food(Mango) 
 ⇒ Likes(Gita, Mango)  

● So, we’ve shown Gita likes mango.Now, consider statement 3: 

 ∀ x ∀ y ((Eats(x, y) ∧  Alive(x)) → Food(y)) 

 This implies: If someone eats something and is still alive, that something is food. 

We can’t reverse this directly to say: "If someone is alive, then they are food" — this is a logical 

fallacy. 

So, the correct derivable conclusions from the KB are: 

1. Gita likes mango (since mango is food) 

 

2. Gita likes chapatti (since chapatti is also food) 

 

3. If Gita eats mango and is still alive, then mango is food (but we already know that) 

 

4. We cannot prove from the KB that "anyone who is alive is food" — this is not supported 

by FOL semantics. 

Final Answer Summary (FOL-based reasoning): 

● Step 1: From Food(Mango), Food(Chapatti) 

● Step 2: From ∀ x (Food(x) → Likes(Gita, x)), we infer: 

 → Likes(Gita, Mango) 
 → Likes(Gita, Chapatti) 



 

● Step 3: From ∀ x ∀ y ((Eats(x, y) ∧  Alive(x)) → Food(y)), we know: 

 If Gita eats mango and is alive → Mango is food (already known) 

OR 

8. a. Write appropriate expressions for the following: 

 i) Some students read well 

 ii) Some students like some books 

 iii) Some students like all books 

 iv) All students like some books 

 v) All students like no books 

Explain the concept of resolution in first order logic with appropriate procedure. (8 Marks 

| L3 | CO4)  

Let the predicates be: 

● Student(x) — x is a student 

 

● ReadsWell(x) — x reads well 

 

● Likes(x, y) — x likes y 

 

● Book(y) — y is a book 

i) Some students read well 

∃ x (Student(x) ∧  ReadsWell(x)) 

ii) Some students like some books 

∃ x ∃ y (Student(x) ∧  Book(y) ∧  Likes(x, y)) 

iii) Some students like all books 

∃ x (Student(x) ∧  ∀ y (Book(y) → Likes(x, y))) 

iv) All students like some books 

∀ x (Student(x) → ∃ y (Book(y) ∧  Likes(x, y))) 

v) All students like no books 



 

∀ x (Student(x) → ∀ y (Book(y) → ¬Likes(x, y))) 

Concept of resolution in FOL 

Resolution in First-Order Logic 

Resolution is a rule of inference used for automated theorem proving. It works by refutation: we 

assume the negation of the goal, add it to the knowledge base, and apply resolution repeatedly to 

derive a contradiction (empty clause ⊥ ). 

Resolution Procedure Steps: 

1. Convert all FOL sentences to clause form: 

 

○ Eliminate implications (→) 
 

○ Move negations inward (using De Morgan’s laws) 

 

○ Standardize variables 

 

○ Skolemize existential quantifiers 

 

○ Drop universal quantifiers 

 

○ Convert to conjunctive normal form (CNF) 

 

○ Represent each conjunct as a clause 

 

2. Negate the query (goal) and add it to the KB. 

 

3. Apply unification to find matching literals and resolve them. 

 

4. Repeat resolution until: 

 

○ The empty clause (⊥ ) is derived ⇒ goal is proven. 

 

○ No new clauses ⇒ goal not provable. 

Example (from textbook): 

KB: 



 

1. ∀ x (¬Human(x) ∨  Mortal(x)) 

 

2. Human(Socrates) 

 

Goal: Prove Mortal(Socrates) 

● Negate goal: ¬Mortal(Socrates) 

 

● Convert KB and goal to clauses: 

 

○ Clause 1: ¬Human(x) ∨  Mortal(x) 

 

○ Clause 2: Human(Socrates) 

 

○ Clause 3: ¬Mortal(Socrates) 

 

● Apply resolution: 

 

○ From Clause 1 and Clause 2 → Mortal(Socrates) 
 

○ Resolving with Clause 3 → ⊥ (empty clause) 
 

 Goal is proved by resolution. 

8.b.Write and explain simple backward chaining algorithm and forward chaining 

algorithm for first-order knowledge bases with example. Also explain the process of 

unification. 

 (12 Marks | L3 | CO4) 

Forward Chaining 

First-Order Definite Clauses: 

A definite clause either is atomic or is an implication whose antecedent is a conjunction of 

positive literals and whose consequent is a single positive literal. The following are first-order 

definite clauses:Unlike propositional literals, first-order literals can include variables, in which 

case those variablesare assumed to be universally quantified.Consider the following problem; 

“The law says that it is a crime for an American to sell weapons to hostile nations. The country 



 

Nono, an enemy of America, has some missiles, and all of its missiles were sold to it by Colonel 

West, who is American.” 

We will represent the facts as first-order definite clauses 

". . . It is a crime for an American to sell weapons to hostile nations": 

Example Knowledge Base: 

....it is a crime for an American to sell weapons to hostile nations: 

Rule 1. American(x) ∧  Weapon(y) ∧  Sells(x, y, z) ∧  Hostile(z) ⇒ Criminal(x) 

Nono . . . has some missiles, 

i.e., ∃  x Owns(Nono, x) ∧  Missile(x): 

Rule 2. Owns(Nono, M1) and 

Rule 3. Missile(M1) 

. . . all of its missiles were sold to it by Colonel West 

Rule 4. ∀  x Missile(x) ∧  Owns(Nono, x) ⇒ Sells(West, x, Nono) 

Missiles are weapons: 

Rule 5. Missile(x) ⇒ Weapon(x) 

An enemy of America counts as “hostile”: 

Rule 6. Enemy(x, America) ⇒ Hostile(x) 

West, who is American . . . 

Rule 7. American(West) 

The country Nono, an enemy of America . . . 

Rule 8. Enemy(Nono, America) 

A simple forward-chaining algorithm: 



 

Starting from the known facts, it triggers all the rules whose premises are satisfied,adding their 

conclusions lo the known facts.The process repeats until the query is answered or no new facts 

are added. Notice that a fact isnot "new" if it is just renamingof a known fact.We will use our 

crime problem to illustrate how FOL-FC-ASK works. The implication sentences are (1), (4), (5), 

and (6). Two iterations are required:On the first iteration, rule (1) has unsatisfied premises.Rule 

(4) is satisfied with {x/Ml), and Sells (West, M1, Nono) is added. Rule (5) is satisfied with 

{x/M1) and Weapon (M1) is added.Rule (6) is satisfied with {x/Nono}, and Hostile (Nono) is 

added.On the second iteration, rule (1) is satisfied with {x/West, Y/MI, z /Nono), and 

Criminal(West) is added.It is sound, because every inference is just an application of 

Generalized Modus Ponens, it iscomplete for definite clause knowledge bases; that is, it answers 

every query whose answers are entailed by any knowledge base of definite clauses 

 

Backward Chaining 

This algorithm work backward from the goal, chaining through rules to find known facts that 

support the proof. It is called with a list of goals containing the original query, and returns the set 

of all substitutions satisfying the query. The algorithm takes the first goal in the list and finds 

every clause in the knowledge base whose head, unifies with the goal. Each such clause creates a 

new recursive call in which body, of the clause is added to the goal stack .Remember that facts 

are clauses with a head but no body, so when a goal unifies with a known fact, no new sub goals 



 

are added to the stack and the goal is solved. The algorithm for backward chaining and proof tree 

for finding criminal (West) using backward chaining are given below. 

 

Unification: 

It is the process used to find substitutions that make different logical expressions look 

identical.Unification is a key component of all first-order Inference algorithms.UNIFY (p, q) = θ 

where SUBST (θ, p) = SUBST (θ, q) θ is our unifier value (if one exists). Ex:―Who does John 

know?‖ 

UNIFY (Knows (John, x), Knows (John, Jane)) = {x/ Jane}. UNIFY (Knows (John, x), Knows 

(y, Bill)) = {x/Bill, y/ John}. 

UNIFY (Knows (John, x), Knows (y, Mother(y))) = {x/Bill, y/ John} UNIFY (Knows (John, x), 

Knows (x, Elizabeth)) = FAIL 

The last unification fails because both use the same variable, X. X can’t equal both John and 

Elizabeth. To avoid this change the variable X to Y (or any other value) in Knows(X, Elizabeth) 



 

Knows(X, Elizabeth) → Knows(Y, Elizabeth) 

Still means the same. This is called standardizing apart.sometimes it is possible for more than 

one unifier returned: 

UNIFY (Knows (John, x), Knows(y, z)) =??? 

This can return two possible unifications: {y/ John, x/ z} which means Knows (John, z) OR {y/ 

John, x/ John, z/ John}. For each unifiable pair of expressions there is a single most general 

unifier (MGU), In this case it is {y/ John, x/z).An algorithm for computing most general unifiers 

is shown below. 

 

Module – 5 

9. a. Explain the impact of uncertainty in probabilistic reasoning. 

 (5 Marks | L2 | CO5) 

Uncertainty in AI arises from partial observability, nondeterminism, or incomplete knowledge 

about the environment. Traditional logical agents struggle in such environments because they 



 

must account for all possible scenarios, leading to overly complex belief states and 

unmanageably large contingency plans. 

In contrast, probabilistic reasoning allows agents to represent degrees of belief about the world 

using probability theory. Instead of needing complete certainty, agents can make informed 

decisions based on likelihoods of outcomes. 

For example, an automated taxi agent can’t guarantee arriving on time due to possible delays. 

However, it can select the plan with the highest expected utility, balancing risks like traffic 

delays against rewards like punctuality. This addresses the qualification problem, where it’s 

impossible to list all conditions that affect success. 

Decision theory, which combines probability theory with utility theory, allows agents to choose 

actions that maximize expected utility, making them rational even when outcomes are uncertain. 

9.b. Explain Bayes’ rule and its utilization in probabilistic reasoning. 

 (5 Marks | L2 | CO5) 

It can actually be written in two forms: 

P(a ∧  b) = P(a | b)P(b) and P(a ∧  b) = P(b | a)P(a) . 

Equating the two right-hand sides and dividing by P(a), we get 

P(b | a) = P(a | b)P(b)/P(a) . (13.12) 

This equation is known as Bayes’ rule (also Bayes’ law or Bayes’ theorem). This simple 

equation underlies most modern AI systems for probabilistic inference. 

The more general case of Bayes’ rule for multivalued variables can be written in the P 

notation as follows: 

P(Y | X) = P(X | Y )P(Y )/P(X) , 

As before, this is to be taken as representing a set of equations, each dealing with specific val- 

ues of the variables. We will also have occasion to use a more general version conditionalized 

on some background evidence e: 

P(Y | X, e) = P(X | Y, e)P(Y | e)/P(X | e) . 

Applying Bayes’ rule: The simple case 



 

On the surface, Bayes’ rule does not seem very useful. It allows us to compute the single 

term P(b | a) in terms of three terms: P(a | b), P(b), and P(a). That seems like two steps 

backwards, but Bayes’ rule is useful in practice because there are many cases where we do 

have good probability estimates for these three numbers and need to compute the fourth. 

Often, we perceive as evidence the effect of some unknown cause and we would like to 

determine that cause. In that case, Bayes’ rule becomes 

P(cause | effect) = P(effect | cause)P(cause)/P(effect) . 

The conditional probability P(effect | cause) quantifies the relationship in the causal direction, 

whereas P(cause | effect) describes the diagnostic direction. In a task such as medical diagnosis, 

we often have conditional probabilities on causal relationships (that is, the doctor knows 

P(symptoms | disease)) and want to derive a diagnosis, P(disease | symptoms). For example, a 

doctor knows that the disease meningitis causes the patient to have a stiff neck, 

 

say, 70% of the time. The doctor also knows some unconditional facts: the prior probabil- 

ity that a patient has meningitis is 1/50,000, and the prior probability that any patient has a stiff 

neck is 1%. Letting s be the proposition that the patient has a stiff neck and m be the proposition 

that the patient has meningitis, we have 

P(s | m)=0.7 

P(m)=1/50000 

P(s)=0.01 

P(m | s) = P(s | m)P(m) 

P(s) = 0.7 ×( 1/50000)/0.01 = 0.0014 . 

Using Bayes’ rule: Combining evidence 

We have seen that Bayes’ rule can be useful for answering probabilistic queries conditioned on 

one piece of evidence—for example, the stiff neck. In particular, we have argued that 

probabilistic information is often available in the form P(effect | cause). What happens when we 

have two or more pieces of evidence? For example, what can a dentist conclude if her nasty steel 



 

probe catches in the aching tooth of a patient? If we know the full joint distribution (Figure 

13.3), we can read off the answer:  

P(Cavity |toothache ∧  catch) = α 0.108, 0.016≈0.871, 0.129 . 

We know, however, that such an approach does not scale up to larger numbers of variables.We 

can try using Bayes’ rule to reformulate the problem: 

P(Cavity |toothache ∧  catch)= α P(toothache ∧  catch | Cavity) P(Cavity) . 

9.c. Write the representation of Bayes Theorem. In a class, 70% children were fall sick due 

to viral fever and 30% due to bacterial fever. The probability of observing temperature for 

viral is 0.78 and bacterial is 0.31. If a child develops high... 

 (10 Marks | L3 | CO5) 

Bayes' Theorem – Formula 

P(H∣ E)=P(E∣ H)⋅ P(H)P(E)P(H | E)  

Where: 

● P(H∣ E): Posterior probability (Hypothesis given evidence) 

 

● P(E∣ H): Likelihood (Probability of evidence given hypothesis) 

 

● P(H): Prior probability 

 

● P(E): Total probability of the evidence (marginal likelihood) 

 Given Data 

Let: 

● Viral fever (V) 

 

● Bacterial fever (B) 

 

P(V)=0.70,P(B)=0.30 

P(Temp∣ V)=0.78,P(Temp∣ B)=0.31 

We need to find: 



 

P(V∣ Temp)=? 

 Apply Bayes’ Theorem 

P(V∣ Temp)=P(Temp∣ V)⋅ P(V)/P(Temp) 

We must compute P(Temp)P(Temp)P(Temp) using Law of Total Probability: 

P(Temp)=P(Temp∣ V)⋅ P(V)+P(Temp∣ B)⋅ P(B) 

=(0.78)(0.70)+(0.31)(0.30)=0.546+0.093=0.639 

Now compute: 

P(V∣ Temp)=0.78⋅ 0.70/0.639=0.5460.639≈0.854 

Final Answer 

P(Viral Fever∣ Temperature)≈85.4% 

So, if a child develops high temperature, there is about an 85.4% probability it is due to viral 

fever. 

OR 

10. a. Write short notes on: 

 i) Expert systems 

 ii) Knowledge acquisition 

 (8 Marks | L2 | CO5) 

i) Expert systems 

Expert systems are computer programs designed to simulate the decision-making ability of 

human experts. They use a large amount of domain-specific knowledge, often encoded in the 

form of rules. These systems solve complex problems in areas like medicine, engineering, or 

mineral exploration by using reasoning techniques such as forward chaining or backward 

chaining. 

Several expert systems have been developed, each with its unique rule base and reasoning 

method: 

● RI (or XCON): Used for configuring computer systems (e.g., DEC VAX systems). It 

applies a set of production rules to recommend configurations, such as selecting disk 



 

drives or cables based on current system status. It uses forward chaining, starting from 

known conditions and applying rules to reach conclusions. 

 

● MYCIN: A medical diagnosis system that used backward chaining. It worked by 

reasoning from potential diagnoses back to symptoms and test results, helping determine 

bacterial infections and recommending treatments. 

 

● PROSPECTOR: Used in geology for mineral exploration. It assigned confidence 

measures to hypotheses using numerical certainty factors. It combined geological 

evidence with probabilistic reasoning to suggest the presence of minerals. 

 

● DESIGN ADVISOR: Assisted chip designers by advising on circuit designs. If its 

suggestion was rejected, it used a justification-based truth maintenance system to revise 

its reasoning. It relied on checking conditions like "resetability" based on sequential 

element count and would query the user if a rule was violated. 

 ii) Knowledge acquisition 

Knowledge acquisition is the process by which a knowledge engineer extracts expert knowledge 

from a domain expert and translates it into a usable form for an expert system. It typically 

involves an interview-based method where rules are initially built and refined using iterative 

expert-level validation. This process is slow and error-prone, especially when no automated 

systems are involved. 

To support knowledge acquisition, several systems have been developed: 

● MOLE: A system that acquires knowledge by refining hypotheses through expert 

consultation. It works by suggesting explanations and refining them based on expert 

feedback and problem-solving experience. MOLE uses networks where each symptom 

may have multiple causes and refines the knowledge base with each error made. 

 

● SALT: Focuses on design configuration problems and uses parameter-value 

dependencies to build networks. It checks constraints and dependencies and updates 

explanations when violations occur. SALT is especially useful in tasks such as elevator 

design where solutions are constructed incrementally. 

 

● META-DENDRAL: The first system to use machine learning for rule generation. It 

learned rules from chemical data and used them to deduce molecular structures 

accurately, showing that expert knowledge can be automatically learned. 



 

10.b. Suppose a doctor is trying to find out if a patient is suffering from some type of 

cancer. If the cancer is only found on average in 2 out of every 1000 people, the doctor’s 

initial beliefs can be expressed as P(cancer) = 0.002. 

 There is a laboratory test to determine if the patient has cancer. Unfortunately this test is 

100% accurate. The test comes back positive in 98% of cases where the patient has cancer. 

Also, the test comes out negative only in 97% of cases, where the patient does not have a 

cancer. If the doctor orders a test and it comes back positive what is the probability that 

the patient indeed has cancer? 

 (12 Marks | L3 | CO5) 

● Prior probability of cancer: 

 P(Cancer) = 0.002 

● Test result is positive 

● Test accuracy: 

 

○ P(Pos | Cancer) = 0.98 

 

○ P(Neg | ¬Cancer) = 0.97 
 ⇒ So, P(Pos | ¬Cancer) = 1 − 0.97 = 0.03 

We are asked to compute: 

P(Cancer | Positive Test Result) 

Step 1: Apply Bayes’ Theorem 

P(Cancer∣ Positive)=P(Positive∣ Cancer)⋅ P(Cancer)/P(Positive) 

We need to calculate P(Positive): 

P(Positive)=P(Positive∣ Cancer)⋅ P(Cancer)+P(Positive∣ ¬Cancer)⋅ P(¬Cancer) 

Substitute the known values: 

P(Positive)=(0.98)(0.002)+(0.03)(0.998)=0.00196+0.02994=0.0319 

 Step 2: Now calculate the posterior probability 

P(Cancer∣ Positive)=0.98⋅ 0.0020/0319=0.001960/0319 

P(Cancer∣ Positive)≈0.0614≈∗ ∗ 6.14 Final Answer: 



 

Even though the test is highly accurate, the probability that the patient actually has cancer after a 

positive test is only about 6.14%. 

Why is the result low despite a positive test? 

Because cancer is very rare (0.2%), even a small false positive rate (3%) causes many non-

cancer patients to test positive. This leads to a low posterior probability even after a positive 

result.This is a classic case of Bayesian diagnosis in medical reasoning. 
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