
CMR

INSTITUTE OF

TECHNOLOGY

USN

Internal Assesment Test – I

Sub: Microcontrollers & Embedded Systems Code: BCO601

Date: 24/ 03/ 2023 Duration: 90 mins Max Marks: 50 Sem: 6th Branch: CSE(AIML)

Answer Any FIVE FULL Questions

 Marks
OBE

CO RBT

1. Differentiate between RISC and CISC.

Explain the Architecture of an ARM Embedded device with the help of a neat diagram

[04]

[06]

CO1 L3

2. Explain the 5-stage pipelining used in ARM. Which ARM core implements 5-stage

pipelining.
[10] CO1

L3

3. What are the various processor modes in ARM? Detail any four modes. [10] CO1 L3

4
Draw and detail the complete ARM Register set.

Explain Banked Registers in ARM?

[07]

[03]
CO1 L3

5
Explain the use of Barrel Shifters in ARM Processor with suitable examples?

Write an ALP to find the sum of first 10 interger numbers.

[05]

[05]
CO2 L3

6 Explain CMN, CMP, TEQ, TST, SWP instructions with suitable examples. [10] CO2 L3

7 Explain the different Logical Instructions in ARM Processor with an example. [10] CO2 L3

SOLUTION:

Q-1 Differentiate between RISC and CISC.

Explain the Architecture of an ARM Embedded device with the help of a neat diagram

Sol: CISC RISC

CISC: stands for Complex Instruction Set

Computing

RISC: stands for Reduced Instruction Set

Computing

Generally used for General purpose

Applications like Laptops, Desktops, etc

Generally used for Specific purpose-

oriented application like Projectors, Ovens,

Remotes, etc

A large number of a instructions are present

in the architecture.

Very few instructions are present. The

number of instructions is generally less than

100.

CISC based processors have more complex

hardware architectures and relatively

simpler compilers

RISC based Processors are supported with

complex Compilers to support operations

with reduced instruction set architectures

(simpler processor hardware).

Some instructions with long execution

times. These include instructions that

copy an entire block from one part of

memory to another and others that

copy multiple registers to and from

memory.

No instruction with a long execution

time due to a very simple instruction

set. Some early RISC machines did

not even have an integer multiply

instruction, requiring compilers to

implement multiplication as a

sequence of additions.

Variable-length encodings of the

instructions.

Fixed-length encodings of the

instructions are used.

Multiple formats are supported for

specifying operands. A memory

operand specifier can have many

different combinations of

displacement, base, and index

register.

Simple addressing formats are

supported. Only base and

displacement addressing is allowed.

CISC supports array. RISC does not support an array.

Arithmetic and logical operations can

be applied to both memory and

register operands.

Arithmetic and logical operations

only use register operands. Memory

referencing is only allowed by

loading and storing instructions, i.e.

reading from memory into a register

and writing from a register to memory

respectively.

Multiple formats are supported for

specifying operands. A memory

operand specifier can have many

different combinations of

displacement, base, and index

register.

Simple addressing formats are

supported. Only base and

displacement addressing is allowed.

CISC supports array. RISC does not support an array.

The stack is being used for procedure

arguments and returns addresses.

Registers are being used for

procedure arguments and return

addresses. Memory references can be

avoided by some procedures.

Pipelining implementation becomes

complex due to variable length

instructions and variable cycle

instruction execution

Pipelining implementation is

relatively easy due to fixed length

Instruction Code and fixed cycle

instruction execution

 Architecture of an ARM Embedded device with the help of a neat diagram:

Above figure shows a typical embedded device based on an ARM core. Each box represents

a feature or function. The lines connecting the boxes are the buses carrying data. We can

separate the device into four main hardware components:

■ The ARM processor controls the embedded device. Different versions of the ARM processor

are available to suit the desired operating characteristics. An ARM processor

comprises a core (the execution engine that processes instructions and manipulates

data) plus the surrounding components that interface it with a bus. These components

can include memory management and caches.

■ Controllers coordinate important functional blocks of the system. Two commonly

found controllers are interrupt and memory controllers.

■ The peripherals provide all the input-output capability external to the chip and are

responsible for the uniqueness of the embedded device.

■ A bus is used to communicate between different parts of the device.

Q-2 Explain the 5-stage pipelining used in ARM. Which ARM core implements 5-stage pipelining.

Sol:

The ARM9TDMI processor performs five operations in parallel:

■ Fetch: Fetch from memory the instruction at address pc. The instruction is loaded into

the core and then processes down the core pipeline.

■ Decode: Decode the instruction that was fetched in the previous cycle. The processor

also reads the input operands from the register bank if they are not available via one of

the forwarding paths.

■ ALU: Executes the instruction that was decoded in the previous cycle. Note this instruction

was originally fetched from address pc − 8 (ARM state) or pc − 4 (Thumb state).

Normally this involves calculating the answer for a data processing operation, or the

address for a load, store, or branch operation. Some instructions may spend several

cycles in this stage. For example, multiply and register-controlled shift operations take

several ALU cycles.

■ LS1: Load or store the data specified by a load or store instruction. If the instruction is

not a load or store, then this stage has no effect.

■ LS2: Extract and zero- or sign-extend the data loaded by a byte or halfword load

instruction. If the instruction is not a load of an 8-bit byte or 16-bit halfword item,

then this stage has no effect.

Q-3 What are the various processor modes in ARM? Detail any four modes.

Sol: Processor Modes:

The processor mode determines which registers are active and the access rights to the cpsr

register itself. Each processor mode is either privileged or nonprivileged: A privileged mode

allows full read-write access to the cpsr. Conversely, a nonprivileged mode only allows read

access to the control field in the cpsr but still allows read-write access to the condition flags.

There are seven processor modes in total: six privileged modes (abort, fast interrupt

request, interrupt request, supervisor, system, and undefined) and one nonprivileged mode

(user).

a) The processor enters abort mode when there is a failed attempt to access memory.

b) Fast interrupt request and interrupt request modes correspond to the two interrupt levels

available on the ARM processor.

c) Supervisor mode is the mode that the processor is in after reset and is generally the mode that

an operating system kernel operates in.

d) System mode is a special version of user mode that allows full read-write access to the cpsr.

e) Undefined mode is used when the processor encounters an instruction that is undefined or not

supported by the implementation.

f) User mode is used for programs and applications.

An important feature to note is that the cpsr is not copied into the spsr when a mode change is forced

due to a program writing directly to the cpsr. The saving of the cpsr only occurs when an exception or

interrupt is raised.

Figure above shows that the current active processor mode occupies the five least significant

bits of the cpsr. When power is applied to the core, it starts in supervisor mode, which is

privileged. Starting in a privileged mode is useful since initialization code can use full access

to the cpsr to set up the stacks for each of the other modes.

Table presented above lists the various modes and the associated binary patterns. The last column of

the table gives the bit patterns that represent each of the processor modes in the cpsr.

Q-4 Draw and detail the complete ARM Register set.

Explain Banked Registers in ARM?

Sol:

Registers

General-purpose registers hold either data or an address. They are identified with the letter r prefixed

to the register number. For example, register 4 is given the label r4.

Figure above shows the active registers available in user mode—a protected mode normally used

when executing applications.

All the registers shown are 32 bits in size. There are up to 18 active registers: 16 data registers and 2

processor status registers. The data registers are visible to the programmer as r0 to r15.

The ARM processor has three registers assigned to a particular task or special function:

r13, r14, and r15. They are frequently given different labels to differentiate them from the

other registers.

In Figure, they are the shaded registers to identify the assigned special-purpose functions:

■ Register r13 is traditionally used as the stack pointer (sp) and stores the head of the stack

in the current processor mode.

■ Register r14 is called the link register (lr) and is where the core puts the return address

whenever it calls a subroutine.

■ Register r15 is the program counter (pc) and contains the address of the next instruction

to be fetched by the processor.

Depending upon the context, registers r13 and r14 can also be used as general-purpose

registers, which can be particularly useful since these registers are banked during a processor

mode change. However, it is dangerous to use r13 as a general register when the processor

is running any form of operating system because operating systems often assume that r13

always points to a valid stack frame.

In ARM state the registers r0 to r13 are orthogonal—any instruction that you can apply

to r0 you can equally well apply to any of the other registers. However, there are instructions

that treat r14 and r15 in a special way.

In addition to the 16 data registers, there are two program status registers: cpsr and spsr

(the current and saved program status registers, respectively).

The register file contains all the registers available to a programmer. Which registers are

visible to the programmer depend upon the current mode of the processor

Q-5 Explain the use of Barrel Shifters in ARM Processor with suitable examples?

Write an ALP to find the sum of first 10 interger numbers.

 Barrel Shifter:

Consider the following instruction:

Syntax: <instruction>{<cond>}{S} Rd, N

 MOV r7, r5

As depicted in the syntax above, N is a simple register.

But N can be more than just a register or immediate value; it can also be a register Rm that has been

preprocessed by the barrel shifter prior to being used by a data processing instruction.

Data processing instructions are processed within the arithmetic logic unit (ALU).

A unique and powerful feature of the ARM processor is the ability to shift the 32-bit binary

pattern in one of the source registers left or right by a specific number of positions before

it enters the ALU. This shift increases the power and flexibility of many data processing

operations.

Pre-processing or shift occurs within the cycle time of the instruction. This is particularly

useful for loading constants into a register and achieving fast multiplies or division by

a power of 2.

There are data processing instructions that do not use the barrel shift, for example,

the MUL (multiply), CLZ (count leading zeros), and QADD (signed saturated 32-bit add)

instructions.

We apply a logical shift left (LSL) to register Rm before moving it to the destination register.

This is the same as applying the standard C language shift operator ≪ to the register. The

MOV instruction copies the shift operator result N into register Rd. N represents the result

of the LSL operation:

PRE r5 = 5

r7 = 8

MOV r7, r5, LSL #2 ; let r7 = r5*4 = (r5 << 2)

POST r5 = 5

r7 = 20

The five different shift operations that you can use within the barrel shifter are

summarized in Table 3.2.

Q-6 Explain CMN, CMP, TEQ, TST, SWP instructions with suitable examples.

Sol:

Comparison Instructions:

 Syntax: <instruction> {<cond>} {S} Rd, N

 N: a register or immediate value

1) CMP : compare

 CMP r0, r1; compute (r0 - r1)and set NZCV

 Example

 PRE: CPSR = nzcvqiFt_USER, r0 = 4, r9 = 4

 CMP r0, r9

 POST: CPSR = nZcvqiFt_USER

2) CMN : negated compare

 CMN r0, r1; compute (r0 + r1)and set NZCV

 Example

 PRE: CPSR = nzcvqiFt_USER, r0 = 4, r9 = 4

 CMN r0, r9

 POST: CPSR = nzcvqiFt_USER

3) TST : bit-wise AND test

 TST r0, r1; compute (r0 AND r1)and set NZCV

 Example

 PRE: CPSR = nzcvqiFt_USER, r0 = 4, r9 = 4

 TST r0, r9

 POST: CPSR = nzcvqiFt_USER

4) TEQ : bit-wise exclusive-or test

 TEQ r0, r1; compute (r0 EOR r1)and set NZCV

 Example

 PRE: CPSR = nzcvqiFt_USER, r0 = 4, r9 = 4

 TEQ r0, r9

 POST: CPSR = nZcvqiFt_USER

5) SWP: SWAP Instruction

Syntax: SWP{B}{<cond>} Rd, Rm, [Rn]

 tmp = mem32[Rn]

 Mem32[Rn] = Rm

 Rd = tmp

 SWP: swap a word between memory and a register

 SWPB: swap a byte between memory and a register

 Example

 PRE:

 Mem32[0x9000] = 0x12345678

 r0 = 0x00000000

 r1 = 0x11112222

 r2 = 0x00009000

 SWP r0, r1, [r2]

 POST:

 mem32[0x9000] = 0x11112222

 r0 = 0x12345678

 r1 = 0x11112222

 r2 = 0x00009000

Q-7 Explain the different Logical Instructions in ARM Processor with an example.

Sol: Logical Operations

 Syntax: <instruction> {<cond>} {S} Rd, RN, N

 N: a register or immediate value

1) AND : Bit-wise and

 Example:

 PRE: r1 = 0b1111, r2 = 0b0101

 AND r0, r1, r2 ; r0 = r1 AND r2

 POST: r0=0b0101

2) ORR : Bit-wise OR

 Example:

 PRE: r1 = 0b1111, r2 = 0b0101

 ORR r0, r1, r2 ; r0 = r1 OR r2

 POST: r0=0b1111

3) EOR : Bit-wise Exclusive-OR

 Example:

 PRE: r1 = 0b1111, r2 = 0b0101

 EOR r0, r1, r2 ; r0 = r1 Ex-OR r2

 POST: r0=0b1010

4) BIC : bit clear

 BIC r0, r1, r2; r0 = r1 & Not(r2)

 Example:

 PRE: r1 = 0b1111, r2 = 0b0101

 BIC r0, r1, r2 ; r0 = r1 AND (NOT(r2))

 POST: r0=0b1010

