
CMR

INSTITUTE OF

TECHNOLOGY

USN

Internal Assessment Test – II

Sub: Microcontrollers & Embedded Systems Code: BCO601

Date: 24/ 05/ 2025 Duration: 90 mins Max Marks: 50 Sem: 6th Branch: CSE(AIML)

Answer Any FIVE FULL Questions

 Marks
OBE

CO RBT

1.
a. Explain the various purposes of Embedded system in detail with examples.

b. Explain the difference between ASIC and ASSP.
[06]

[04]
CO3 L2

2.
Differentiate and detail the Operational and non-operational quality attributes to be

considered in any embedded system design.

[10]

 CO4

L3

3.

a. Explain the concept of Binary Semaphore (Mutex).

b. List the various types of firmware embedding techniques for a non-OS based

embedded system.

[05]

[05]

CO5 L2

4 Explain the different step modes for stepper motor. [10] CO3 L2

5

a. Explain the different Characteristics of Embedded System inn detail.

b. The availability of an embedded product is 90%. The MTBF of the product is 30

days. What is the MTTR in days/hours for the product?

[05]

[05]
CO4 L3

6

a. What are the differences between user level and kernel level threads

b. What is the difference between Hard and Soft - RealTime systems? Give suitable

examples..

[05]

[05]
CO5 L2

1.
a. Explain the various purposes of Embedded system in detail with examples.

b. Explain the difference between ASIC and ASSP.
[06]

[04]
CO3 L2

Purpose of Embedded Systems:

Each Embedded System is designed to serve the purpose of any one or a combination of the following tasks:

Data Collection/Storage /Representation:

Data Communication:

The data collecting embedded system can incorporate data communication units like wireless

Data (Signal) Processing:

The data collected by embedded systems may be used for various kinds of data processing

requirements like speech coding, synthesis, audeo-video codec, transmission applications, etc.

A digital hearing aid is an example of an embedded system employing data processing, which

improves the hearing capacity of impaired persons.

Monitoring:

Embedded system products falling under the medical domain are with monitoring functions only.

They are used for determing the state of some variables using input sensors. They donot impose

control over variables.

Eg: ECG machine: The sensors used in ECG are the different electrodes connected to the patient’s

body. The system is only used for monitoring the various parameters sensed by thesew electrodes.

Control:

Some embedded systems can have controlling unctionalities over certain variables according to

the changes in the input variables. Such embedded systems contain both sensors and actuators.

Sensors are connected to the input ports for capturing the environmental parameters while actuators

Which are connected to the output ports can be used to control the changes in input vaeiables so as

to get the desired impact. Eg: Air Conditioner

Application Specific User Interface:

Eg: Smart Running Shoes can be assumed to be an application specific embedded system wherein t

he application ccan tend to adaptive cushioning, adaptive shock absorbing characteristics as the speed

changes or running mode changes.

ASIC and ASSP:

2.
Differentiate and detail the Operational and non-operational quality attributes to be

considered in any embedded system design.
[10]

 CO4

L3

Operational Quality Attributes

These relate to how the system performs during runtime — impacting its functionality, performance, and

behavior in real-world operation.

Attribute Description

Performance
How efficiently the system processes data (e.g., speed, response time,

throughput). Critical in real-time systems.

Safety
Ensures the system does not cause harm — especially important in medical,

automotive, or industrial applications.

Security
Protection against unauthorized access, data theft, or tampering

(hardware/software).

Availability System's readiness for correct service at any time (e.g., uptime percentage).

Reliability Probability of failure-free operation over a specified time.

Maintainability Ease with which the system can be diagnosed, repaired, or updated.

Robustness
Ability to function correctly under abnormal conditions (e.g., noise, power

fluctuations).

Real-Time

Behavior
Ensuring deadlines are met (hard or soft real-time constraints).

 2. Non-Operational Quality Attributes

These attributes concern how the system is built, supported, and evolves — not its behavior during operation but in

design, development, and deployment.

Attribute Description

Testability
Ease of validating that the system functions correctly (e.g., using simulators or

JTAG).

Modifiability Ease of updating the system to accommodate future changes (hardware/software).

Scalability
Ability to scale up in terms of functionality or number of devices (e.g., IoT

networks).

Portability Ability to run on different hardware or platforms with minimal changes.

Reusability Ability to reuse software modules or hardware IP blocks in other designs.

Configurability
Ability to change parameters without altering source code (e.g., through firmware

settings).

Design Complexity Lower complexity improves debugging, integration, and future maintenance.

Documentation
Good technical documentation supports future development, certification, and

testing.

3.

a. Explain the concept of Binary Semaphore (Mutex).

b. List the various types of firmware embedding techniques for a non-OS based

embedded system.

[05]

[05]

CO5 L2

a. Concept of Binary Semaphore (Mutex)

A Binary Semaphore — commonly used as a Mutex (Mutual Exclusion lock) — is a synchronization

mechanism that ensures only one task or thread can access a shared resource at a time. It is fundamental in

embedded systems, operating systems, and multithreaded applications to prevent race conditions and

ensure data consistency.

1. Binary Semaphore Basics

• A binary semaphore has only two states:

o 1 → Unlocked (resource is free)

o 0 → Locked (resource is in use)

• It is used to signal availability of a resource.

• Can be used for mutual exclusion or event signaling depending on context.

2. Mutex (Mutual Exclusion)

A Mutex is a special case of a binary semaphore used exclusively for mutual exclusion — i.e., ensuring that

only one thread/task enters the critical section (shared code or resource) at a time.

b. In non-OS based embedded systems (also known as bare-metal systems), firmware is written and

embedded directly to run on the hardware without the support of an operating system. This requires

efficient techniques to manage code, memory, timing, and peripheral control.

Super Loop based Approach:

Should strictly follow a specified sequence.

Interrupt-Driven Technique

• Core logic still in a loop, but time-critical tasks are handled via ISRs (Interrupt Service Routines).

• Useful when certain events (e.g., UART Rx, Timer, GPIO) must be serviced immediately.

Key components:

• ISRs for critical tasks.

• Main loop for background jobs.

Ideal for real-time responses without an RTOS.

State Machine-Based Firmware

• System is broken into states with defined transitions and actions.

• Especially useful in control systems, communication protocols, or menu-driven devices.

Example States:

• INIT → IDLE → PROCESSING → ERROR → IDLE

Improves code readability and modularity for complex decision-making logic.

Polled Loop with Flag Checking

• Similar to super loop, but uses flags set by ISRs or hardware.

• Main loop checks and clears flags to perform corresponding tasks.

Used when ISR must be kept short and logic handled in main loop.

Cooperative Multitasking (Function Scheduling)

• Tasks are written as non-blocking functions.

• Functions are manually scheduled in the main loop based on timing, flags, or priorities.

Timing control via:

• Software timers

• Delay counters

• RTC modules

Useful for managing multiple periodic tasks without preemption.

4 Explain the different step modes for stepper motor. [10] CO3 L2

5

a. Explain the different Characteristics of Embedded System in detail.

b. The availability of an embedded product is 90%. The MTBF of the product is 30

days. What is the MTTR in days/hours for the product?

[05]

[05]
CO4 L3

b.

6

a. What are the differences between user level and kernel level threads

b. What is the difference between Hard and Soft - RealTime systems? Give suitable

examples..

[05]

[05]
CO5 L2

Feature User-Level Threads (ULTs) Kernel-Level Threads (KLTs)

Managed By
User-level thread libraries (e.g.,

POSIX pthreads)
The operating system kernel

Visibility to OS

Kernel

Invisible to the kernel; OS sees only

the main process

Fully visible; each thread is

individually managed by the kernel

Context

Switching
Fast (no kernel involvement) Slower (requires kernel mode switch)

Scheduling
Done in user space by the thread

library
Done by the kernel scheduler

Overhead Low
Higher due to system calls and kernel

scheduling

Blocking

Behavior

If one thread blocks, the entire

process blocks

Blocking one thread does not block

others

Portability Highly portable across OSes Less portable; tied to OS thread APIs

Resource

Management

Shared stack, registers are maintained

manually
Managed automatically by the kernel

Example Use

Cases

Lightweight embedded applications,

simulations, green threads

Multicore systems, real-time OS,

Linux threads

b.

In real-time systems, correctness depends not only on logical results, but also on the time at which the results are

produced. Based on timing constraints, real-time systems are classified into:

1. Hard Real-Time Systems

Definition:

A hard real-time system is one in which missing a deadline is considered a total system failure. The system must

respond within a strictly defined time limit, or it will cause severe consequences.

Characteristics:

• Strict deadlines

• Predictable and deterministic

• Safety-critical

• Failure to meet timing = catastrophic results

Examples:

Application Area Example Description

Medical Systems Pacemakers, defibrillators – late response can be fatal

Automotive Systems Airbag deployment in cars – must trigger within milliseconds

2. Soft Real-Time Systems

Definition:

In a soft real-time system, deadlines are important but not absolute. Occasional deadline misses are tolerated,

although system performance may degrade.

Characteristics:

• Flexible deadlines

• Best-effort scheduling

• Used in applications where timeliness enhances performance, but is not life-critical

Examples:

Application Area Example Description

Multimedia Video streaming or playback – occasional frame drop is acceptable

Gaming Real-time gaming systems – lag may reduce experience but not failure

Telecommunications VoIP, where occasional delays or jitter are tolerable

Conclusion:

Hard real-time systems demand absolute timing guarantees and are used in critical applications.

Soft real-time systems aim for timeliness, but allow for some flexibility, ideal for user-interactive or media systems.

