CMR
INSTITUTE OF USN
TECHNOLOGY

Internal Assessment Test — 11

Sub: Microcontrollers & Embedded Systems Code: BCO601
Date: 24/ 05/ 2025 Duration: |90 mins | Max Marks: 50 Sem: 6™ | Branch: CSE(AIML)
Answer Any FIVE FULL Questions
OBE
Marks CO | RBT
a. Explain the various purposes of Embedded system in detail with examples. [06]
L bb. Explain the difference between ASIC and ASSP. (04 |03 | L2
) Differentiate and detail the Operational and non-operational quality attributes to be [10] COo4 L3
" |considered in any embedded system design.
a. Explain the concept of Binary Semaphore (Mutex). [05]
3. |b. List the various types of firmware embedding techniques for a non-OS based [05] |CO5 | L2
embedded system.
4 |[Explain the different step modes for stepper motor. [10] |CO3 L2
a. Explain the different Characteristics of Embedded System inn detail. [05]
5 |b. The availability of an embedded product is 90%. The MTBF of the product is 30 [05] CO4 | L3
days. What is the MTTR in days/hours for the product?
a. What are the differences between user level and kernel level threads [05]
6 |b. What is the difference between Hard and Soft - RealTime systems? Give suitable [05] CO5 | L2
examples..

a. Explain the various purposes of Embedded system in detail with examples. [06]
b. Explain the difference between ASIC and ASSP. 047 |CO3 | L2

Purpose of Embedded Systems:

Each Embedded System is designed to serve the purpose of any one or a combination of the following tasks:
1. Data collection/Storage/Representation

Data communication

Data (signal) processing

Monitoring

Control

6. Application specific user interface

P

Data Collection/Storage /Representation:

Embedded systems designed for the purpose of data collection performs acquisition of data from the
external world. Data collection is usually done for storage, analysis, manipulation and transmission.
The term “data” refers all kinds of information, viz. text, voice, image, video, electrical signals and any
other measurable quanfities. Data can be either analog (continuous) or digital (diserete). Embedded sys-
tems with analog data capturing techniques collect data directly in the form of analog signals whereas
embedded systems with digital data collection mechanism converts the analog signal to corresponding
digital signal using analog to digital (A/D) converters and then collects the binary equivalent of the
analog data. If the data is digital, it can be directly captured without any additional interface by digital
embedded systems.

The collected data may be stored directly in the system or may be transmitted to some other systems
or it may be processed by the system or it may be deleted instantly after giving a meaningful representa-
tion. These actions are purely dependent on the purpose for which the embedded system is designed.

'Embedded systems designed for pure measurement applications without storage, uséd in control and

instrumentation domain, collects data and gives a meaningful representation of the collected data by |
means of graphical representation or quantity value and deletes the collected data when new data arrives
at the data collection terminal. Analog and digital CROs without storage memory are typical examples
of this. Any measuring equipment used in the medical domain for monitoring without storage function-
ality also comes under this category. |

Data Communication:

The data collecting embedded system can incorporate data communication units like wireless
modules (Bluetooth, ZigBee, Wi-Fi, EDGE, GPRS, etc.) or wire-line modules (RS-232C, USB, TCP/IP,
PS2, etc.). Certain embedded systems act as a dedicated transmission unit between the sending and
receiving terminals, offering sophisticated functionalities like data packetizing, encrypting and decrypt-
ing. Network hubs, routers, switches, etc. are typical examples of dedicated data transmission embedded
systems. They act as mediators in data communication and provide various features like data security,
monitoring etc.

Data (Signal) Processing:

The data collected by embedded systems may be used for various kinds of data processing
requirements like speech coding, synthesis, audeo-video codec, transmission applications, etc.
A digital hearing aid is an example of an embedded system employing data processing, which
improves the hearing capacity of impaired persons.

Monitoring:

Embedded system products falling under the medical domain are with monitoring functions only.
They are used for determing the state of some variables using input sensors. They donot impose
control over variables.

Eg: ECG machine: The sensors used in ECG are the different electrodes connected to the patient’s
body. The system is only used for monitoring the various parameters sensed by thesew electrodes.

Control:

Some embedded systems can have controlling unctionalities over certain variables according to
the changes in the input variables. Such embedded systems contain both sensors and actuators.

Sensors are connected to the input ports for capturing the environmental parameters while actuators
Which are connected to the output ports can be used to control the changes in input vaeiables so as
to get the desired impact. Eg: Air Conditioner

Application Specific User Interface:

Eg: Smart Running Shoes can be assumed to be an application specific embedded system wherein t
he application ccan tend to adaptive cushioning, adaptive shock absorbing characteristics as the speed
changes or running mode changes.

ASIC and ASSP:

Application Specific Integrated Circuit (ASIC) is a microchip designed to perform a specific or unique
application. It is used as replacement to conventional general purpose logic chips. It integrates several
functions into a single chip and there by reduces the system development cost. Most of the ASICs are
proprietary products. As a single chip, ASIC consumes a very small area in the total system and thereby
helps in the design of smaller systems with high capabilities/functionalities.

ASICs can be pre-fabricated for a special application or it can be custom fabricated by using the com-
ponents from a re-usable ‘building block’ library of components for a particular customer application.
ASIC based systems are profitable only for large volume commercial productions. Fabrication of ASICs
requires a non-refundable initial investment for the process technology and configuration expenses. This
investment is known as Non-Recurring Engineering Charge (NRE) and it is a one time investment.

If the Non-Recurring Engineering Charges (NRE) is borne by a third party and the Application
Specific Integrated Circuit (ASIC) is made openly available in the market, the ASIC is referred as
Application Specific Standard Product (ASSP). The ASSP is marketed to multiple customers just as a
general-purpose product is, but to a smaller number of customers since it is for a specific application.
“The ADE7760 Energy Metre ASIC developed by Analog Devices for Energy metreing applications is
a typical example for ASSP”.

Since Application Specific Integrated Circuits (ASICs) are proprietary products, the developers of
such chips may not be interested in revealing the internal details of it and hence it is very difficult to
point out an example of it. Moreover it will create legal disputes if an illustration of such an ASIC prod-
uct is given without getting prior permission from the manufacturer of the ASIC. For the time being,
let us forget about it. We will come back to it in another part of this book series (Namely, Designing
Advanced Embedded Systems).

Differentiate and detail the Operational and non-operational quality attributes to be
considered in any embedded system design.

[10]

CO4

L3

Dperational Quality Attributes

yehavior in real-world operation.

'hese relate to how the system performs during runtime — impacting its functionality, performance, and

Attribute Description
Performance How efﬁc1enj[1y th@ system processes data (e.g., speed, response time,
throughput). Critical in real-time systems.
Ensures the system does not cause harm — especially important in medical,
Safety
automotive, or industrial applications.
. Protection against unauthorized access, data theft, or tampering
Security
(hardware/software).
Availability System's readiness for correct service at any time (e.g., uptime percentage).
Reliability Probability of failure-free operation over a specified time.
Maintainability Ease with which the system can be diagnosed, repaired, or updated.
Robustness Ablhjcy to function correctly under abnormal conditions (e.g., noise, power
fluctuations).
Real-Time
. Ensuring deadlines are met (hard or soft real-time constraints).
Behavior

2. Non-Operational Quality Attributes

'hese attributes concern how the system is built, supported, and evolves — not its behavior during operation but in
lesign, development, and deployment.

Attribute Description

Testability »Ease of validating that the system functions correctly (e.g., using simulators or
TAG).

Modifiability Ease of updating the system to accommodate future changes (hardware/software).

Scalability Ability to scale up in terms of functionality or number of devices (e.g., loT
1etworks).

Portability Ability to run on different hardware or platforms with minimal changes.

Reusability Ability to reuse software modules or hardware IP blocks in other designs.

Configurability Ability to change parameters without altering source code (e.g., through firmware

Design Complexity Lower complexity improves debugging, integration, and future maintenance.

iettings).

Good technical documentation supports future development, certification, and

Documentation .
esting.
a. Explain the concept of Binary Semaphore (Mutex). [05]
b. List the various types of firmware embedding techniques for a non-OS based [05] [CO5 | L2
embedded system.
a. Concept of Binary Semaphore (Mutex)

A Binary Semaphore — commonly used as a Mutex (Mutual Exclusion lock) — is a synchronization
mechanism that ensures only one task or thread can access a shared resource at a time. It is fundamental in
embedded systems, operating systems, and multithreaded applications to prevent race conditions and
ensure data consistency.

1. Binary Semaphore Basics
A binary semaphore has only two states:
o 1 — Unlocked (resource is free)
o 0 — Locked (resource is in use)
It is used to signal availability of a resource.
Can be used for mutual exclusion or event signaling depending on context.

2. Mutex (Mutual Exclusion)
A Mutex is a special case of a binary semaphore used exclusively for mutual exclusion — i.e., ensuring that
only one thread/task enters the critical section (shared code or resource) at a time.

In non-OS based embedded systems (also known as bare-metal systems), firmware is written and

embedded directly to run on the hardware without the support of an operating system. This requires
efficient techniques to manage code, memory, timing, and peripheral control.

9.1 EMBEDDED FIRMWARE DESIGN APPROKCHES

The firmware design approaches for embedded product is purely dependent on the complexity of the
functions to be performed, the speed of operation required, etc. Two basic approaches are used for Em-
bedded firmware design. They are ‘Conventional Procedural Based Firmware Design’ and ‘ Embedded
Operating System (OS) Based Design’, The conventional procedural based design is also known as
‘Super Loop Model’. We will discuss each of them in detail in the following sections.

9.1.1 The Super Loop Based Approach

The Super Loop based firmware development approach is adopted for applications that are not time
critical and where the response time is not so important (embedded systems where missing deadlines
are acceptable). It is very similar to a conventional procedural programming where the code is executed
task by task. The task listed at the top of the program code is executed first and the tasks just below the

top are executed after completing the first task. This is a true procedural one..In a multiple task based
system, each task is executed in serial in this approach. The firmware execution flow for this will be
1. Configure the common pararheters and perform initialisation for various hardware components
memory, registers, etc.
Start the first task and execute it
Execute the second task
Execute the next task

NG R e

Execute the last defined task
8. Jump back to the first task and follow the same flow

From the firmware execution sequence, it is obvious that the order in which the tasks to be executed
are fixed and they are hard coded in the code itself. Also the operation is an infinite loop based approach.

Super Loop based Approach:

. Since the tasks are running inside an infinite loop, the only way to come out of the loop is either
a‘hardware reset or an interrupt assertion. A hardware reset brings the program execution back to the
main lodp. Whereas an interrupt request suspends-the task execution temporarily and performs the cor-
responding interrupt routine and on completion of the mterrupt routine it restarts the task execution from
the point where it got interrupted.

The ‘Super loop based design’ doesn’t require an operating system, since there is no need for sched-
uling which task is to be executed and assigning priority to each task. In a super loop based design, the
priorities are fixed and the order in which the tasks to be executed are also fixed. Hence the code for
performing these tasks will be residing in the code memory without an operating system image.

This type of design is deployed in low-cost embedded products and products where response time
is not time critical. Some embedded products demands this type of approach if some tasks itself are
sequential. For example, reading/writing data to and from a card using a card reader requires a sequence
of operations like checking the presence of card, authenticating the operation, reading/writing, etc. it
Should strictly follow a specified sequence.

Interrupt-Driven Technique

Core logic still in a loop, but time-critical tasks are handled via ISRs (Interrupt Service Routines).
Useful when certain events (e.g., UART Rx, Timer, GPIO) must be serviced immediately.

Key components:

ISRs for critical tasks.

Main loop for background jobs.

Ideal for real-time responses without an RTOS.

State Machine-Based Firmware

System is broken into states with defined transitions and actions.

Especially useful in control systems, communication protocols, or menu-driven devices.
Example States:

INIT — IDLE — PROCESSING — ERROR — IDLE

Improves code readability and modularity for complex decision-making logic.

Polled Loop with Flag Checking

Similar to super loop, but uses flags set by ISRs or hardware.
Main loop checks and clears flags to perform corresponding tasks.
Used when ISR must be kept short and logic handled in main loop.

Cooperative Multitasking (Function Scheduling)

Tasks are written as non-blocking functions.

Functions are manually scheduled in the main loop based on timing, flags, or priorities.
Timing control via:

Software timers

Delay counters

RTC modules

Useful for managing multiple periodic tasks without preemption.

Explain the different step modes for stepper motor. | [10] l CO3 | L2

2.3.3.4 Stepper Motor A stepper motor is an electro-mechanical device which generates discrete
displacement (motion) in response, to dc electrical signals. It differs from the normal dc motor in its
operation. The dc motor produces continuous rotation on applying dc voltage whereas a stepper motor
produces discrete rotation in response to the dc voltage applied to it. Stepper motors are widely used in
industrial embedded applications, consumer electronic products and robotics control systems. The paper
feed mechanism of a printer/fax makes use of stepper motors for its functioning.

Based on the coil winding arrangements, a two-phase stepper motor is classified into two. They are:

1. Unipolar

. —_

2. Bipolar A 3

1. Unipolar A unipolar stepper motor contains two windings per Q :
phase. The direction of rotation (clockwise or anticlockwise) of a ©

stepper motor is controlled by changing the direction of current \,
flow. Current in one direction flows through one coil and in the op-
posite direction flows through the other coil. It is easy to shift the
direction of rotation by just switching the terminals to which the
coils are connected. Figure 2.18 illustrates the working of a two-
phase unipolar stepper motor.
The coils are represented as A, B, C and D. Coils A and C carry
current in opposite directions for phase 1 (only one of them will be

carrying current at a time). Similarly, B and D carry current in opposite directions for phase 2 (only one
of them will be carrying current at a time).

2. Bipolar A bif)olar stepper motor contains single winding per phase. For reversing the motor rota-
tion the current flow through the windings is reversed dynamically. It requires complex circuitry for
current flow reversal. The stator winding details for a two phase unipolar stepper motor is shown in
Fig. 2.19.

The stepping of stepper motor can be implemented in different ways by changing the sequence of ac-
tivation of the stator windings. The different stepping modes supported by stepper motor are explained
below.

Full Step . In the full step mode both the phases are energised simultaneously. The coils A, B, C and D
are energised in the following order:

It should be noted that out of the two windings, only one winding of a phase is energised at a time.

.GND

GND N

—~— 4

X \\2,//

Wave Step In the wave step mode only one phase is energised at a time and each coils of the phase is
energised alternatively. The coils A, B, C and D are energised in the following order:

Half Step It uses the combination of wave and full step. It has the highest torque and stability. The
coil energising sequence for half step is given below.

days. What is the MTTR in days/hours for the product?

a. Explain the different Characteristics of Embedded System in detail.
b. The availability of an embedded product is 90%. The MTBF of the product is 30

[05]
[05]

CO4

L3

3.1 CHARACTERISTICS OF AN EMBEDDED SYSTEM

Unlike general purpose computing systems, embedded systems possess certain specific characteristics
and these characteristics are unique to each embedded system. Some of the important characteristics of
an embedded system are:

Application and domain specific

Reactive and Real Time

Operates in harsh environments

Distributed

Small size and weight

Power concerns

A i

3.1.1 Application and Domain Specific

If you closely observe any embedded system, you will find that each embedded system is having certain
functions to perform and they are developed in such a manner to do the intended functions only. They
cannot be used for any other purpose. It is the major criterion which distinguishes an embedded system
from a general purpose system. For example, you cannot replace the embedded control unit of your mi-
crowave oven with your air conditioner’s embedded control unit, because the embedded control units-of
microwave oven and airconditioner are specifically designed to perform certain specific tasks. Also you
cannot replace an embedded control unit developed for a particular domain say telecom with another
control unit designed to serve another domain like consumer electronics.

3.1.2 Reactive and Real Time

_As mentioned earlier; embedded systems are in constant interaction with the Real world through sen-
sors and user-defined input devices which are connected to the input port of the system. Any changes
happening in the Real world (which is called an Event) are captured by the sensors or input devices in
Real Time and the control algorithm running inside the unit reacts in a designed manner to bring the
controlled output variables to the desired level. The event may be a periodic one or an unpredicted one.
If the event is an unpredicted one then such systems should be designed in such a way that it should be
scheduled to capture the events without missing them. Embedded systems produce changes in output in
response to the changes in the input. So they are generally referred as Reactive Systems.

Real Time System operation means the timing behaviour of the system should be deterministic;
meaning the system should respond to requests or tasks in a known amount of time. A Real Time system
should not miss any deadlines for tasks or operations. It is not necessary that all embedded systems
should be Real Time in operations. Embedded applications or systems which are mission critical, like
flight control systems, Antilock Brake Systems (ABS), etc. are examples of Real Time systems. The
design of an embedded Real time system should take the worst case scenario into consideration.

3.1.3 Operates in Harsh Environment

. It1is not necessary that all embedded systems should be deployed in controlled environments. The en-
vironment in which the embedded system deployed may be a dusty one or a high temperature zone or
an area subject to vibrations and shock. Systems placed in such areas should be capable to withstand
all these adverse operating conditions. The design should take care of the operating conditions of the
area where the system is going to implement. For example, if the system needs to be deployed in a high
temperature zone, then all the components used in the system should be of high temperature grade. Here
we cannot go for a compromise in cost. Also proper shock absorption techniques should be provided to
systems which are going to be commissioned in places subject to high shock. Power supply fluctuations,
corrosion and component aging, etc. are the other factors that need to be taken into consideration for
embedded systems to work in harsh environments.

3.1.4 Distributed

The term distributed means that embedded systems may be a part of larger systems. Many numbers of
such distributed embedded systems form a single large embedded control unit. An automatic vending
machine is a typical example for this. The vending machine contains a card reader (for pre-paid vend-
ing systems), a vending unit, etc. Each of them are independent embedded units but they work together

to perform the overall vending function. Another example is the Automatic Teller Machine (ATM).
An ATM contains a card reader embedded unit, responsible for reading and validating the user’s ATM
card, transaction unit for performing transactions, a currency counter for dispatching/vending currgncy
to the authorised person and a printer unit for printing the transaction details. We can visualise these as
independent embedded systems. But they work together to achieve a common goal.

Another typical example of a distributed embedded system is the Supervisory Control And Data
Acquisition (SCADA) system used in Control & Instrumentation applications, which contains physi-
cally distributed individual embedded control units connected to a supervisory module.

3.1.5 Small Size and Weight

Product aesthetics is an important factor in choosing a product. For example, when you plan to buy a
new mobile phone, you may make a comparative study on the pros and corns of the products available in
the market. Definitely the product aesthetics (size, weight, shape, style, etc.) will be one of the deciding
factors to choose a product. People believe in the phrase “Small is beautiful”. Moreover it is convenient
to handle a compact device than a bulky product. In embedded domain also compactness is a significant
deciding factor. Most of the application demands small sized and low weight products.

3.1.6 Power Concerns

Power management is another important factor that needs to be considered in designing embedded
systems. Embedded systems should be designed in such a way as to minimise the heat dissipation by the
system. The production of high amount of heat demands cooling requirements like cooling fans which
in turn occupies additional space and make the system bulky. Nowadays ultra low power components
are available in the market. Select the design according to the low power components like low dropout
regulators, and controllers/processors with power saving modes. Also power management is a critical
constraint in battery operated application. The more the power consumption the less is the battery life.

T e

Mrpe = 30 dop-

g = ¢

A

b b o -

Thwladdl = WTBE xloo
(rarsEs MITR)

9o = MrAF
[oo Q‘/{r/sr=+mrr&)

= o-q(uttrm) =3

= 0-9 = 30

(Dot MITL

0. VTR = @ﬁm@?%—ﬁ—:—s—/
S| s 33T T

a. What are the differences between user level and kernel level threads
b. What is the difference between Hard and Soft - RealTime systems? Give suitable
examples..

[05]

[05] CO5

L2

Feature User-Level Threads (ULTs) Kernel-Level Threads (KLTs)
User-level thread libraries (e.g., .
Managed By POSIX pthreads) The operating system kernel
Visibility to OS Invisible to the kernel; OS sees only Fully visible; each thread is
Kernel the main process individually managed by the kernel

Context

Switching Fast (no kernel involvement) Slower (requires kernel mode switch)
Scheduling Done in user space by the thread Done by the kernel scheduler

library
Overhead Low Higher Que to system calls and kernel

scheduling

Blocking If one thread blocks, the entire Blocking one thread does not block
Behavior process blocks others
Portability Highly portable across OSes Less portable; tied to OS thread APIs
Resource Shared stack, registers are maintained Managed automatically by the kernel
Management manually
Example Use Lightweight embedded applications, Multicore systems, real-time OS,
Cases simulations, green threads Linux threads
b.

In real-time systems, correctness depends not only on logical results, but also on the time at which the results are
produced. Based on timing constraints, real-time systems are classified into:

1. Hard Real-Time Systems

Definition:

A hard real-time system is one in which missing a deadline is considered a total system failure. The system must
respond within a strictly defined time limit, or it will cause severe consequences.

Characteristics:
e Strict deadlines
e Predictable and deterministic
e Safety-critical
e Failure to meet timing = catastrophic results

Examples:
Application Area Example Description
Medical Systems Pacemakers, defibrillators — late response can be fatal

Automotive Systems Airbag deployment in cars — must trigger within milliseconds

2. Soft Real-Time Systems

Definition:

In a soft real-time system, deadlines are important but not absolute. Occasional deadline misses are tolerated,
although system performance may degrade.

Characteristics:
¢ Flexible deadlines
o Best-effort scheduling
e Used in applications where timeliness enhances performance, but is not life-critical

Examples:

Application Area Example Description

Multimedia Video streaming or playback — occasional frame drop is acceptable
Gaming Real-time gaming systems — lag may reduce experience but not failure

Telecommunications VolP, where occasional delays or jitter are tolerable

Conclusion:

Hard real-time systems demand absolute timing guarantees and are used in critical applications.

Soft real-time systems aim for timeliness, but allow for some flexibility, ideal for user-interactive or media systems.

