

Internal Assessment Test II- March 2025

Sub:	Machin	ne leari	ning-1			Sub Code:	BCS602	Branch:	CSE- AIML
Date:	23/05/20	25 I	Ouration:	90min's	Max Marks: 50	Sem/Sec:	VI CSE-A	AIML	1
	Answer any FIVE FULL Questions								MARKS
1a)	Differentiate between the local weighted regression with linear regression Scheme: 5 differences 1 marks each							5	
	Solution								
	Linear	Regressio	on		Local Weighted Regre	ssion (LWR)			
	Global	model			Local model (varies acr	oss input space)			
	Fits a single line (or hyperplane) to the entire dataset All data points treated equally Fast and efficient (once trained)			Fits a model around a susing nearby data	specific query poi	int			
				Nearby points get high points are down-weigh	_	nt			
				More expensive, as it reper prediction	ecalculates weigh	ts			
	Best when the relationship is approximately linear globally				Best when data shows non-linearity				
1.(b)	For the g	For the given dataset given below compute the entropy and information gain Row Age BuysComputer						ain	5
	Row A								
	1 <	<=30	No						
	2 <	<=30	No						
	3 3	31–40	Yes						
	4 >	>40	Yes						
	5 >	>40	Yes						
	Scheme:- Entropy Calculation-2.5Marks								
	Informa	tion ga	in-2.5Ma	arks					
	Solution: Entropy=.971								

$Entropy(S) = -\left(\frac{3}{5}\log_2\frac{2}{5} + \frac{2}{5}\log_2\frac{2}{5}\right)$ $\approx -(0.6 \cdot -0.737 + 0.4 \cdot -1.322) = 0.971$ Information Gain = 971 $Gain(S, Age) = Entropy(S) - Entropy_{Age} = 0.971 - 0 = \boxed{0.971}$ 2(a) Explain how the continuous attributes are discretized. Scheme: $4 \text{ steps} - 4^n = 4$ Example = 1Mark Solution: $1.5 \text{ ort the elements}$ $2. \text{Remove the duplicates}$ $3. \text{ Compute Gain}$ $4. \text{ Based on the maximum Gain} <=> \text{ is categorised}$ Example $2(b) \text{ Explain the advantages and disadvantages of decision trees.}$ Scheme: $Advantages 2.5 \text{ Marks}$ Disadvantages 2.5 Marks Disadvantages 2.5 Marks Pisadvantages 3.7 Marks Solution: $1.5 \text{ ort Non linear activation function-2Explain non linear activation functions.}$ Scheme: $1.5 \text{ Nod do no linearity}$ To activate neurons $1.5 \text{ pryes. Sigmoid, Tanh, RELU and Softmax}$ Sigmoid Function $\sigma(x) = \frac{1}{1 + e^{-x}}$ Range: $(0, 1)$ Shape: 5 -shaped curve Use case: Binary classification (e.g., logistic regression output) $1.5 \text{ tanh}(Hyperbolic Tangent)$ $1.5 \text{ tanh}(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$ Range: $(1, 1)$ Shape: 5 -shaped but centered at 0 Use case: When negative outputs are useful (e.g., hidden layers)			
Information Gain = .971 $Gain(S, Age) = Entropy(S) - Entropy_{Age} = 0.971 - 0 = \boxed{0.971}$ 2(a) Explain how the continuous attributes are discretized. Scheme: 4 steps=4*1=4 Example=1 Mark Solution: 1. Sort the elements 2. Remove the duplicates 3. Compute Gain 4. Based on the maximum Gain <> is categorised Example 2(b) Explain the advantages and disadvantages of decision trees. Scheme: Advantages 2.5 Marks Disadvantages 2.5 Marks Disadvantages 2.5 Marks Need of activation function-2Marks Types of Non linear activation function-6MArks Solution: To add non linearity To activate neurons Types:Sigmoid, Tanh.RELU and Softmax Sigmoid Function $\sigma(x) = \frac{1}{1+e^{-x}}$ Range: (0, 1) Shape: 5-shaped curve Use case: Binary classification (e.g., logistic regression output) Tanh (Hyperbolic Tangent) $tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$ Range: (-1, 1) Shape: S-shaped but centered at 0		$Entropy(S) = -\left(\frac{3}{5}\log_2\frac{3}{5} + \frac{2}{5}\log_2\frac{2}{5}\right)$	
$Gain(S,Age) = Entropy(S) - Entropy_{Age} = 0.971 - 0 = \boxed{0.971}$ $2(a) \text{Explain how the continuous attributes are discretized.}$ Scheme: $4 \text{ steps-}4^*1-4$ Example=1 Mark Solution: $1. \text{Sort the elements}$ $2. \text{Remove the duplicates}$ $3. \text{Compute Gain}$ $4. \text{Based on the maximum Gain} \iff \text{is categorised}$ Example $2(b) \text{Explain the advantages and disadvantages of decision trees.}$ Scheme: $\text{Advantages } 2.5 \text{ Marks}$ $\text{Disadvantages } 2.5 \text{ Marks}$ Solution: $\text{Need of activation function-2Marks}$ $\text{Types of Non linear activation function-6MArks}$ Solution: $\text{To add non linearity}$ $\text{To activate neurons}$ $\text{Types: Sigmoid, Tanh, RELU and Softmax}$ Sigmoid Function $\sigma(x) = \frac{1}{1+e^{-x}}$ $\text{Range: } (0, 1)$ $\text{Shape: S-shaped curve}$ $\text{Use case: Binary classification (e.g., logistic regression output)}$ $\text{Tanh (Hyperbolic Tangent)}$ $\text{tanh}(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$ $\text{Range: } (-1, 1)$ $\text{Shape: S-shaped but centered at 0}$		$pprox -(0.6 \cdot -0.737 + 0.4 \cdot -1.322) = 0.971$	
2(a) Explain how the continuous attributes are discretized. Scheme: 4 steps=4*1=4 Example=1 Mark Solution: 1. Sort the elements 2. Remove the duplicates 3. Compute Gain 4. Based on the maximum Gain <=,> is categorised Example 2(b) Explain the advantages and disadvantages of decision trees. Scheme: Advantages 2.5 Marks Disadvantages 2.5 Marks Disadvantages 2.5 Marks Disadvantages 2.5 Marks Nation is the need of an activation function? Explain non linear activation functions. Scheme: Need of activation function-2Marks Types of Non linear activation function-6MArks Solution: To add non linearity To activate neurons Types: Sigmoid. Tanh.RELU and Softmax Sigmoid Function $\sigma(x) = \frac{1}{1+e^{-x}}$ Range: (0, 1) Shape: S-shaped curve Use case: Binary classification (e.g., logistic regression output) Tanh (Hyperbolic Tangent) $\tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$ Range: (-1, 1) Shape: S-shaped but centered at 0		Information Gain =.971	
Scheme: $4 \text{ steps}=4*1=4$ $Example=1Mark$ Solution: $1. \text{ Sort the elements}$ $2. \text{Remove the duplicates}$ $3. \text{ Compute Gain}$ $4. \text{ Based on the maximum Gain} <=,> \text{ is categorised}$ $Example$ $2(b) \text{ Explain the advantages and disadvantages of decision trees.}$ $Scheme:$ $Advantages 2.5 \text{ Marks}$ $Disadvantages 2.5 \text{ Marks}$ $Disadvantages 2.5 \text{ Marks}$ $Disadvantages 2.5 \text{ Marks}$ $Scheme:$ $Need of activation function-2 \text{ Marks}$ $Types of Non linear activation function-6 \text{ MArks}}$ $Solution:$ $To add non linearity$ $To activate neurons$ $Types: Sigmoid, Tanh, RELU and Softmax$ $Sigmoid Function$ $\sigma(x) = \frac{1}{1+e^{-x}}$ $\text{Range: } (0, 1)$ $\text{Shape: } S\text{-shaped curve}$ $\text{Use case: Binary classification (e.g., logistic regression output)}$ $\tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$ $\text{Range: } (-1, 1)$ $\text{Shape: } S\text{-shaped but centered at 0}$		$Gain(S, Age) = Entropy(S) - Entropy_{Age} = 0.971 - 0 = \boxed{0.971}$	
$4 \text{ steps} = 4*1 = 4$ $Example = 1 \text{ Mark}$ $Solution:$ $1. \text{Sort the elements}$ $2. \text{Remove the duplicates}$ $3. \text{Compute Gain}$ $4. \text{Based on the maximum Gain} <=.> \text{ is categorised}$ $Example$ $2(b) \text{Explain the advantages and disadvantages of decision trees.}$ $Scheme:$ $Advantages 2.5 \text{ Marks}$ $Disadvantages 2.5 \text{ Marks}$ $Solution:$ $Need of activation function-2 \text{ Marks}$ $Types of Non linear activation function-6 \text{ MArks}$ $Solution:$ $To add non linearity$ $To activate neurons$ $Types: Sigmoid, Tanh, RELU and Softmax$ $Sigmoid Function$ $\sigma(x) = \frac{1}{1 + e^{-x}}$ $Range: (0, 1)$ $Shape: S-shaped curve$ $Use case: Binary classification (e.g., logistic regression output)$ $Tanh (Hyperbolic Tangent)$ $tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$ $Range: (-1, 1)$ $Shape: S-shaped but centered at 0$	2(a)	Explain how the continuous attributes are discretized.	5
Example=1Mark Solution: 1.Sort the elements 2.Remove the duplicates 3.Compute Gain 4.Based on the maximum Gain <=,> is categorised Example 2(b) Explain the advantages and disadvantages of decision trees. Scheme: Advantages 2.5 Marks Disadvantages 2.5 Marks Disadvantages 2.5 Marks Disadvantages 2.5 Marks Disadvantages 2.5 Marks Solution: To add activation function-2Marks Types of Non linear activation function-6MArks Solution: To add non linearity To activate neurons Types:Sigmoid, Tanh,RELU and Softmax Sigmoid Function $\sigma(x) = \frac{1}{1+e^{-x}}$ Range: (0, 1) Shape: 5-shaped curve Use case: Binary classification (e.g., logistic regression output) Tanh (Hyperbolic Tangent) $\tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$ Range: (-1, 1) Shape: 5-shaped but centered at 0		Scheme:	
Solution: 1.Sort the elements 2.Remove the duplicates 3.Compute Gain 4.Based on the maximum Gain <=,> is categorised Example 2(b) Explain the advantages and disadvantages of decision trees. Scheme: Advantages 2.5 Marks Disadvantages 2.5 Marks Disadvantages 2.5 Marks Need of activation function? Explain non linear activation functions. Scheme: Need of activation function-2Marks Types of Non linear activation function-6MArks Solution: To add non linearity To activate neurons Types: Sigmoid, Tanh, RELU and Softmax Sigmoid Function $\sigma(x) = \frac{1}{1+e^{-x}}$ Range: (0, 1) Shape: S-shaped curve Use case: Binary classification (e.g., logistic regression output) Tanh (Hyperbolic Tangent) $\tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$ Range: (-1, 1) Shape: S-shaped but centered at 0		4 steps=4*1=4	
1. Sort the elements 2. Remove the duplicates 3. Compute Gain 4. Based on the maximum Gain <=,> is categorised Example 2(b) Explain the advantages and disadvantages of decision trees. Scheme: Advantages 2.5 Marks Disadvantages 2.5 Marks Disadvantages 2.5 Marks What is the need of an activation function? Explain non linear activation functions. Scheme: Need of activation function-2 Marks Types of Non linear activation function-6 MArks Solution: To add non linearity To activate neurons Types: Sigmoid, Tanh, RELU and Softmax Sigmoid Function $\sigma(x) = \frac{1}{1+e^{-x}}$ Range: $(0, 1)$ Shape: S-shaped curve Use case: Binary classification (e.g., logistic regression output) Tanh (Hyperbolic Tangent) $\tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$ Range: $(-1, 1)$ Shape: S-shaped but centered at 0		Example=1Mark	
2.Remove the duplicates 3.Compute Gain 4.Based on the maximum Gain <=,> is categorised Example 2(b) Explain the advantages and disadvantages of decision trees. Scheme: Advantages 2.5 Marks Disadvantages 2.5Marks What is the need of an activation function?Explain non linear activation functions. Scheme: Need of activation function-2Marks Types of Non linear activation function-6MArks Solution: To add non linearity To activate neurons Types:Sigmoid, Tanh,RELU and Softmax Sigmoid Function $\sigma(x) = \frac{1}{1+e^{-x}}$ Range: (0, 1) Shape: S-shaped curve Use case: Binary classification (e.g., logistic regression output) Tanh (Hyperbolic Tangent) $\tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$ Range: (-1, 1) Shape: S-shaped but centered at 0		Solution:	
3.Compute Gain 4.Based on the maximum Gain <=,> is categorised Example 2(b) Explain the advantages and disadvantages of decision trees. Scheme: Advantages 2.5 Marks Disadvantages 2.5 Marks Disadvantages 2.5 Marks What is the need of an activation function?Explain non linear activation functions. Scheme: Need of activation function-2Marks Types of Non linear activation function-6MArks Solution: To add non linearity To activate neurons Types:Sigmoid, Tanh,RELU and Softmax Sigmoid Function $\sigma(x) = \frac{1}{1+e^{-x}}$ Range: (0, 1) Shape: S-shaped curve Use case: Binary classification (e.g., logistic regression output) Tanh (Hyperbolic Tangent) $\tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$ Range: (-1, 1) Shape: S-shaped but centered at 0		1.Sort the elements	
4. Based on the maximum Gain <=,> is categorised Example 2(b) Explain the advantages and disadvantages of decision trees. Scheme: Advantages 2.5 Marks Disadvantages 2.5 Marks Mhat is the need of an activation function? Explain non linear activation functions. Scheme: Need of activation function-2 Marks Types of Non linear activation function-6 MArks Solution: To add non linearity To activate neurons Types: Sigmoid Tanh, RELU and Softmax Sigmoid Function $\sigma(x) = \frac{1}{1+e^{-x}}$ Range: (0, 1) Shape: S-shaped curve Use case: Binary classification (e.g., logistic regression output) Tanh (Hyperbolic Tangent) $\tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$ Range: (-1, 1) Shape: S-shaped but centered at 0		2.Remove the duplicates	
Example 2(b) Explain the advantages and disadvantages of decision trees. Scheme: Advantages 2.5 Marks Disadvantages 2.5 Marks 3(a) What is the need of an activation function? Explain non linear activation functions. Scheme: Need of activation function-2 Marks Types of Non linear activation function-6 MArks Solution: To add non linearity To activate neurons Types: Sigmoid, Tanh, RELU and Softmax Sigmoid Function $\sigma(x) = \frac{1}{1+e^{-x}}$ Range: (0, 1) Shape: 5-shaped curve Use case: Binary classification (e.g., logistic regression output) Tanh (Hyperbolic Tangent) $\tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$ Range: (-1, 1) Shape: 5-shaped but centered at 0		3.Compute Gain	
2(b) Explain the advantages and disadvantages of decision trees. Scheme: Advantages 2.5 Marks Disadvantages 2.5 Marks 3(a) What is the need of an activation function? Explain non linear activation functions. Scheme: Need of activation function-2 Marks Types of Non linear activation function-6 MArks Solution: To add non linearity To activate neurons Types: Sigmoid, Tanh, RELU and Softmax Sigmoid Function $\sigma(x) = \frac{1}{1+e^{-x}}$ Range: (0, 1) Shape: 5-shaped curve Use case: Binary classification (e.g., logistic regression output) Tanh (Hyperbolic Tangent) $\tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$ Range: (-1, 1) Shape: 5-shaped but centered at 0		4.Based on the maximum Gain <=,> is categorised	
Scheme: Advantages 2.5 Marks Disadvantages 2.5 Marks 3(a) What is the need of an activation function? Explain non linear activation functions. Scheme: Need of activation function-2 Marks Types of Non linear activation function-6 MArks Solution: To add non linearity To activate neurons Types: Sigmoid, Tanh, RELU and Softmax Sigmoid Function $\sigma(x) = \frac{1}{1+e^{-x}}$ Range: $(0,1)$ Shape: S-shaped curve Use case: Binary classification (e.g., logistic regression output) Tanh (Hyperbolic Tangent) $\tan h(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$ Range: $(-1,1)$ Shape: S-shaped but centered at 0		Example	
Advantages 2.5 Marks Disadvantages 2.5 Marks What is the need of an activation function? Explain non linear activation functions. Scheme: Need of activation function-2Marks Types of Non linear activation function-6MArks Solution: To add non linearity To activate neurons Types: Sigmoid, Tanh, RELU and Softmax Sigmoid Function $\sigma(x) = \frac{1}{1+e^{-x}}$ Range: $(0, 1)$ Shape: S-shaped curve Use case: Binary classification (e.g., logistic regression output) Tanh (Hyperbolic Tangent) $\tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$ Range: $(-1, 1)$ Shape: S-shaped but centered at 0	2(b)		5
Disadvantages 2.5Marks 3(a) What is the need of an activation function?Explain non linear activation functions. Scheme: Need of activation function-2Marks Types of Non linear activation function-6MArks Solution: To add non linearity To activate neurons Types:Sigmoid, Tanh,RELU and Softmax Sigmoid Function $\sigma(x) = \frac{1}{1+e^{-x}}$ Range: (0, 1) Shape: S-shaped curve Use case: Binary classification (e.g., logistic regression output) Tanh (Hyperbolic Tangent) $\tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$ Range: (-1, 1) Shape: S-shaped but centered at 0			
Scheme: Need of activation function-2Marks Types of Non linear activation function-6MArks Solution: To add non linearity To activate neurons Types:Sigmoid, Tanh,RELU and Softmax	2(-)	Disadvantages 2.5Marks	0
Types of Non linear activation function-6MArks Solution: To add non linearity To activate neurons Types:Sigmoid, Tanh,RELU and Softmax Sigmoid Function $\sigma(x) = \frac{1}{1+e^{-x}}$ Range: (0, 1) Shape: S-shaped curve Use case: Binary classification (e.g., logistic regression output) Tanh (Hyperbolic Tangent) $\tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$ Range: (-1, 1) Shape: S-shaped but centered at 0	3(a)		8
Solution: To add non linearity To activate neurons Types:Sigmoid, Tanh,RELU and Softmax Sigmoid Function $\sigma(x) = \frac{1}{1+e^{-x}}$ Range: (0, 1) Shape: S-shaped curve Use case: Binary classification (e.g., logistic regression output) Tanh (Hyperbolic Tangent) $\tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$ Range: (-1, 1) Shape: S-shaped but centered at 0			
To add non linearity To activate neurons Types:Sigmoid, Tanh,RELU and Softmax		Types of Non linear activation function-bMArks	
To activate neurons $ \text{Types:Sigmoid, Tanh,RELU and Softmax} $ $ \textbf{Sigmoid Function} $ $ \sigma(x) = \frac{1}{1+e^{-x}} $ $ \text{Range: (0, 1)} $ $ \text{Shape: S-shaped curve} $ $ \text{Use case: Binary classification (e.g., logistic regression output)} $ $ \textbf{Tanh (Hyperbolic Tangent)} $ $ \tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}} $ $ \text{Range: (-1, 1)} $ $ \text{Shape: S-shaped but centered at 0} $			
Sigmoid Function $\sigma(x)=\frac{1}{1+e^{-x}}$ Range: (0, 1) Shape: S-shaped curve Use case: Binary classification (e.g., logistic regression output) $\tanh(\mathbf{H}\mathbf{y}\mathbf{perbolic Tangent})$ $\tanh(x)=\frac{e^x-e^{-x}}{e^x+e^{-x}}$ Range: (-1, 1) Shape: S-shaped but centered at 0			
$\sigma(x)=\frac{1}{1+e^{-x}}$ Range: (0, 1) Shape: S-shaped curve Use case: Binary classification (e.g., logistic regression output) $\tanh(x)=\frac{e^x-e^{-x}}{e^x+e^{-x}}$ Range: (-1, 1) Shape: S-shaped but centered at 0		Types:Sigmoid, Tanh,RELU and Softmax	
Range: (0, 1) Shape: S-shaped curve Use case: Binary classification (e.g., logistic regression output) $\tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$ Range: (-1, 1) Shape: S-shaped but centered at 0		Sigmoid Function	
Shape: S-shaped curve Use case: Binary classification (e.g., logistic regression output) $\tanh(x)=\frac{e^x-e^{-x}}{e^x+e^{-x}}$ Range: (-1, 1) Shape: S-shaped but centered at 0		$\sigma(x) = \frac{1}{1 + e^{-x}}$	
Use case: Binary classification (e.g., logistic regression output) $\tanh(x)=\frac{e^x-e^{-x}}{e^x+e^{-x}}$ Range: (-1, 1) $\mathrm{Shape: S-shaped \ but \ centered \ at \ 0}$		Range: (0, 1)	
Tanh (Hyperbolic Tangent) $\tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$ Range: (-1, 1) $\text{Shape: S-shaped but centered at 0}$		Shape: S-shaped curve	
$\tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$ Range: (-1, 1) Shape: S-shaped but centered at 0		Use case: Binary classification (e.g., logistic regression output)	
Range: (-1, 1) Shape: S-shaped but centered at 0		Tanh (Hyperbolic Tangent)	
Shape: S-shaped but centered at 0		$\tanh(x) = \frac{e^x - e^{-x}}{e^x + e^{-x}}$	
		Range: (-1, 1)	
Use case: When negative outputs are useful (e.g., hidden layers)		Shape: S-shaped but centered at 0	
		Use case: When negative outputs are useful (e.g., hidden layers)	

	ReLU (Rectified Linear Unit)		
	f(
	Range: [0, ∞)		
	Shape: Linear for positive inputs, zero for n		
	Softmax Function		
	Softm		
	Range: (0, 1), sum of outputs = 1		
	Use case: Output layer for multi-class class	sification	
3(b)	What is the XOR problem in perceptron	and how to overcome it?	2
	Scheme: Xor problem 1 Mark		
	Solution for XOR 1 MArk		
	Calutian.		
	Solution: XOR is not linearly seperable and single	e perceptron cannot solve this.We need m	ultilayer
4 >	perceptron.		
4a)	Differentiate between clustering and Scheme:	classification.	4
	Any 4 differences *1=4		
	Caladia a		
	Solution: Clustering		
		Classification	
	Unsupervised Learning	Supervised Learning	
	No predefined labels; the algorithm	Predefined labels are provided; model learns	
	groups data by similarity	from them	
	Groups or clusters of similar items		
	Discover inherent structure or patterns in data	Predict the correct class for new, unseen data	
	K-Means, DBSCAN, Hierarchical clustering	Decision Trees, SVM, Random Forest, Neural Networks	
4b)	Explain the components of Reinforce	ement Learning.	6
	Scheme: 6 components*1=6		
	Solution: Write about each component		
	1.Environment		
	2.State and actions		
	3.Episode		
	4.Policy 5.Reward		
	6.Reinforcement Problems		

) [Analyze the	student pe	rformance using Na	aive Bayes algorithm for continuous				
a	attribute. Pre	dict wheth	ner a student will ge	et a job offer or not in the final year by				
t	taking CGPA	\=8.9, Inte	eractiveness='Yes'.					
	5.No.	CGPA	Interactiveness	Job Offer				
	1.	9.5	Yes	Yes				
	2.	8.2	No	Yes				
	3.	9.3	No	No				
	4.	7.6	No	No				
	5.	8.4	Yes	Yes				
	7.	7.5	Yes Yes	Yes No				
	8.	9.6	No	Yes				
	9.	8.6	Yes	Yes				
	10.	8.3	Yes	Yes				
	Q 1							
	Scheme:							
I	Frequency m	atrix mea	n and standard dev	iation-3Marks				
	•			intion Sivings				
- [Test instance	probabili probabili	ty-1 Mark					
π	Posterior Pro	hahillity (Marke					
1	i Osterior i re	odability-2	ZIVIAIKS					
l,	r 11111 1 T.	. 4 4		T - 1/				
1	Likelinood li	nteractivei	ness Yes Yes=5/7 N	NO=½3				
	No Yes=2/7 No=½							
,	Mean and S.D for CGPA JF=Yes 8.814 .538							
	WICH AIR S.D 101 CUFA JF-168 0.014 .330							
ľ	Mean and S.D for CGPA JF=No 8.133 .825							
1	Test Instance Guassian Yes=.732,No=.313							
I	Posterior Yes=.366 No=.0313							
1	Job offer=Ye	26						
) I	Explain prio	r, posterio	r and likelihood pro	babilities with the help of an example	4			
5	Scheme:							
		ior and Lil	kelihood 1Mark ead	·h				
	Prior, Posterior and Likelihood 1Mark each							
I	Example 1Mark							
	Solution:							
	Solution:							
	Prior:- it is the seen or some							
	Likelihood P class for the							
ŀ	Posterior-Pro							
				-	2			
			SMC and Jaccard	coefficient for the following data	3			
	(1011) (1100))						
	Scheme:							
I	Each method	l*1=3						

1. Cosine Similarity

Cosine Similarity =
$$\frac{A \cdot B}{\|A\| \|B\|}$$

Dot Product (A · B):

$$(1 \cdot 1) + (0 \cdot 1) + (1 \cdot 0) + (1 \cdot 0) = 1 + 0 + 0 + 0 = 1$$

Magnitude of A:

$$||A|| = \sqrt{1^2 + 0^2 + 1^2 + 1^2} = \sqrt{3}$$

Magnitude of B:

$$\|B\| = \sqrt{1^2 + 1^2 + 0^2 + 0^2} = \sqrt{2}$$

Cosine Similarity $= \frac{1}{\sqrt{3} \cdot \sqrt{2}} = \frac{1}{\sqrt{6}} \approx 0.408$

7

2. Simple Matching Coefficient (SMC)

SMC is the proportion of matching attributes (both 1s and 0s):

• Matches:

○ 1st bit: $1 == 1 \rightarrow match$

○ 2nd bit: $0 \neq 1 \rightarrow$ no match

○ 3rd bit: $1 \neq 0 \rightarrow$ no match

○ 4th bit: $1 \neq 0 \rightarrow$ no match

Only 1 match out of 4:

7

$$\mathrm{SMC} = \frac{\mathrm{Number\ of\ Matches}}{\mathrm{Total\ Number\ of\ Attributes}} = \frac{1}{4} = 0.25$$

$$\mathrm{Jaccard} = \frac{1}{4} = 0.25$$

3.

6b) Solve using Single linkage or MIN algorithm clustering algorithm,

Object X Y

A 3 5

B 7 8

C 12 5

D 16 9

Scheme

Each iteration -3 MArks each 3*2=6

Final cluster -1 MArk

Solution:

Compute Pairwise Euclidean Distances

The Euclidean distance between two points $(x1,y1)(x_1, y_1)(x1,y1)$ and $(x2,y2)(x_2, y_2)(x2,y2)$ is:

distance=(x2-x1)2+(y2-y1)2\text{distance} = \sqrt{ $(x_2 - x_1)^2 + (y_2 y_1)^2$ }distance=(x2-x1)2+(y2-y1)2

Now calculate the distances:

• **AB** =
$$\sqrt{(7-3)^2 + (8-5)^2}$$
 = $\sqrt{(16+9)}$ = $\sqrt{25}$ = **5.0**

•
$$AC = V((12-3)^2 + (5-5)^2) = V(81+0) = V81 = 9.0$$

• **AD** =
$$\sqrt{((16-3)^2 + (9-5)^2)}$$
 = $\sqrt{(169 + 16)}$ = $\sqrt{185} \approx 13.6$

• BC =
$$\sqrt{(12-7)^2 + (5-8)^2}$$
 = $\sqrt{(25+9)}$ = $\sqrt{34} \approx 5.83$

• **BD** =
$$\sqrt{(16-7)^2 + (9-8)^2}$$
 = $\sqrt{(81+1)}$ = $\sqrt{82} \approx 9.06$

• CD =
$$\sqrt{((16-12)^2 + (9-5)^2)} = \sqrt{(16+16)} = \sqrt{32} \approx 5.66$$

• Closest distance is 5.0 (A-B) → Merge {A} and {B}

Clusters now: $\{AB\}$, $\{C\}$, $\{D\}$

Iteration 2: Find minimum distance between clusters

- AB-C: Use minimum of distance(AC)=9.0 and distance(BC)=5.83

 → MIN = 5.83
- AB-D: distance(AD)=13.6, distance(BD)= $9.06 \rightarrow MIN = 9.06$
- C-D: 5.66

Minimum is 5.66 (C–D) \rightarrow Merge {C} and {D}

Clusters now: {AB}, {CD}

Final{A,B,C,D}