


BCS602-MACHINE LEARNING-1 

ANSWER KEY 
1a) According to Tom M. Mitchell, a well-known ML researcher, the formal 

definition of machine learning is: 

"A computer program is said to learn from experience E with respect to 

some class of tasks T and performance measure P, if its performance at 

tasks in T, as measured by P, improves with experience E." 

— Tom M. Mitchell, "Machine Learning", McGraw Hill, 1997 

Explanation: 

• Task (T): What the system is trying to do (e.g., classify emails as spam or 

not spam). 

• Experience (E): The data or interactions the system uses to learn (e.g., 

past labeled emails). 

• Performance (P): How well the system performs (e.g., classification 

accuracy). 

 

Challenges of Machine Learning 

1. Insufficient Quantity of Training Data 

o ML models require large amounts of labeled data to perform well. 

o Small datasets lead to underfitting, poor generalization, and high 

error rates. 

2. Noisy and Incomplete Data 

o Real-world data often contains errors (noise), missing values, or 

inconsistent entries. 

o Noise can confuse the learning algorithm and affect model 

accuracy. 

3. Overfitting and Underfitting 

o Overfitting: Model memorizes training data, fails on unseen data. 



o Underfitting: Model is too simple to learn underlying patterns. 

o Proper regularization and validation are required. 

4. High Dimensionality 

o Too many input features (dimensions) can make learning 

inefficient or inaccurate. 

o This is called the "curse of dimensionality". 

o Feature selection and dimensionality reduction (like PCA) help 

alleviate this. 

5. Imbalanced Data 

o Occurs when one class dominates (e.g., 95% class A, 5% class B). 

o The model may get biased toward the majority class, ignoring 

minority class performance. 

6. Interpretability and Explainability 

o Complex models (e.g., deep neural networks) are hard to interpret. 

o In critical domains like healthcare or finance, explainable AI is 

essential. 

7. Scalability 

o ML algorithms should handle large datasets efficiently. 

o Issues like memory usage and time complexity become bottlenecks 

with big data. 

8. Data Privacy and Security 

o Learning from sensitive data (e.g., medical records) poses privacy 

concerns. 

o Techniques like differential privacy and federated learning are 

used to protect data. 

9. Concept Drift 

o In dynamic environments, the statistical properties of the target 

variable change over time. 



o Example: user preferences on a streaming platform. 

o The model must adapt continuously. 

10. Bias and Fairness 

• ML systems may learn and perpetuate societal biases present in training 

data. 

• Fairness-aware learning is crucial to ensure equitable outcomes. 

1b) Univariate Data Visualization Aids 

Univariate analysis involves examining one variable at a time. Visualization 

helps understand the distribution, central tendency, spread, and outliers. 

1. Histogram 

• Definition: A bar chart representing the frequency distribution of a 

single continuous variable. 

• Usage: Shows how data is distributed over intervals (bins). 

• Insight: Shape of distribution (normal, skewed, bimodal), spread, central 

value. 

Example: Histogram of students' marks to see how many scored within certain 

ranges. 

 

2. Box Plot (Box-and-Whisker Plot) 

• Definition: Displays median, quartiles, minimum, maximum, and 

outliers. 

• Usage: Useful for comparing distributions or detecting skewness and 

outliers. 

• Insight: Highlights spread, central tendency, and extreme values. 

Example: Box plot of income levels to show spread and outliers. 

 

3. Bar Chart 



• Definition: Represents categorical univariate data using rectangular 

bars. 

• Usage: Displays frequency or proportion of categories. 

• Insight: Helps compare different categories. 

Example: Bar chart showing number of students in different majors (CS, ECE, 

ME). 

 

4. Pie Chart 

• Definition: A circular chart divided into slices to show proportions. 

• Usage: Best for showing percentage share of categories. 

• Insight: Understand composition of categorical data. 

Example: Pie chart of browser usage among users. 

 

5. Line Plot 

• Definition: Graph that uses points connected by lines to show data over 

time or order. 

• Usage: Best for ordered univariate data or time series. 

• Insight: Trends, patterns, or fluctuations over time. 

Example: Line plot of daily temperatures in a week. 

 

6. Stem-and-Leaf Plot 

• Definition: Text-based plot where numbers are split into stem (leading 

digit) and leaf (trailing digit). 

• Usage: Good for small datasets. 

• Insight: Retains original data values, shows distribution and shape. 

Example: Stem-and-leaf plot of test scores like 78, 82, 85. 

 



7. Frequency Table 

• Definition: A tabular representation of value counts. 

• Usage: Aids in creating histograms or bar charts. 

• Insight: Summary of how often each value occurs. 

Example: Table showing frequency of rainfall levels (0–10 mm, 10–20 mm, 

etc.) 

1c) 

 

2a) 1. Problem Definition 

• Clearly define the goal of the ML system. 

• Understand what is to be predicted or classified. 

• Define input features and output (target) variable. 



      Example: Predict house prices based on features like size, location, and 

number of rooms. 

 

2. Data Collection 

• Gather relevant data from various sources (e.g., sensors, logs, databases, 

surveys). 

• Data can be structured (tabular) or unstructured (text, images). 

     Bad or insufficient data = poor model performance. 

 

3. Data Preprocessing 

• Clean and prepare the data for training. 

• Steps may include: 

o Handling missing values 

o Removing duplicates 

o Encoding categorical variables 

o Normalization or standardization 

o Outlier detection and removal 

       "Garbage in, garbage out" — clean data is essential for accurate models. 

 

4. Feature Selection and Extraction 

• Select the most relevant input features that influence output. 

• Feature engineering: derive new features using domain knowledge. 

• Dimensionality reduction (e.g., PCA) may be applied to reduce 

redundancy. 

              Better features = better learning = better results. 

 

5. Splitting the Dataset 



• Divide data into: 

o Training set: to train the model 

o Validation set: to tune parameters (optional) 

o Test set: to evaluate final performance 

       Typical split: 70% training, 15% validation, 15% testing 

 

6. Model Selection 

• Choose an appropriate learning algorithm based on the problem type: 

o Classification (e.g., decision trees, SVM) 

o Regression (e.g., linear regression) 

o Clustering (e.g., K-means) 

      Understanding the nature of data and target helps choose the right model. 

 

7. Model Training 

• Feed training data into the algorithm to allow it to learn patterns. 

• Parameters are adjusted to minimize the loss/error function. 

     May require multiple iterations (epochs) to optimize performance. 

 

8. Model Evaluation 

• Evaluate the model using metrics like: 

o Accuracy, Precision, Recall, F1-score (for classification) 

o RMSE, MAE, R² (for regression) 

        Evaluation helps understand generalization to unseen data. 

 

9. Model Tuning / Hyperparameter Optimization 

• Tune model hyperparameters using techniques like: 



o Grid Search 

o Random Search 

o Cross-validation 

    Example: adjusting learning rate, number of trees in Random Forest. 

 

10. Deployment 

• Deploy the trained model in a real-world environment (e.g., web app, 

embedded system). 

• Monitor performance and update as needed. 

           Deployment brings your ML model into production use. 

 

11. Monitoring and Maintenance 

• Continuously monitor model performance. 

• Handle concept drift (changes in data patterns). 

• Retrain model periodically with fresh data. 

+diagram 

2b) Data Preprocessing Measures to Handle Missing Values 

1. Ignore the Tuple (Row Deletion) 

• Remove records (rows) that contain missing values. 

• Works well only when the number of such tuples is small. 

     Not recommended when a large portion of data is missing. 

 

2. Fill in Manually 

• Missing values are filled manually by experts based on domain 

knowledge. 

• Accurate but not scalable for large datasets. 



      Useful for small datasets or critical fields like medical data. 

 

3. Use a Global Constant 

• Replace all missing values with a constant (e.g., “Unknown” or -9999). 

• Useful for categorical data. 

     May distort data distribution or bias some models. 

 

4. Use Attribute Mean/Median/Mode 

• Numerical Attributes: 

o Replace missing values with mean or median. 

• Categorical Attributes: 

o Replace with the mode (most frequent value). 

     Simple and fast; widely used in practice. 

     Mean is sensitive to outliers — use median if data is skewed. 

 

5. Use Class-Specific Mean/Median/Mode 

• If target class is known, fill missing values using mean/median/mode of 

that class only. 

      More accurate than global average — preserves class-based distinctions. 

 

6. Predict Missing Value Using a Model 

• Build a classification or regression model to predict the missing value 

using other attributes. 

o Use K-Nearest Neighbors (KNN), Decision Trees, etc. 

• Considered a smart imputation method. 

     Effective for complex patterns, but computationally expensive. 



 

7. Use Data Imputation Techniques 

• Advanced statistical techniques: 

o KNN imputation 

o Multiple Imputation 

o Expectation-Maximization (EM) algorithm 

       These methods preserve statistical relationships between attributes. 

 

8. Use Interpolation (for Time Series Data) 

• Estimate missing values using interpolation methods (linear, polynomial) 

based on time or sequence. 

      Very useful in time-series datasets (e.g., temperature logs, ECG data). 

2c)   

+Plot the box plot 
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3b) 

 

 



 

Example 3 
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4b) 
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Final Prediction Fail 

5b) 

 



 

Limitations of Regression Methods 

(as discussed in Sridhar N textbook) 

 

1. Assumption of Linearity 

• Linear regression assumes that the relationship between input and output 

is linear. 

• Fails when data exhibits non-linear patterns. 

 

2. Sensitive to Outliers 

• Regression models, especially least squares-based ones, are heavily 

influenced by outliers, which can skew results significantly. 

 

3. Multicollinearity 



• When independent variables are highly correlated, the model may 

become unstable and coefficients may vary significantly. 

 

4. Overfitting 

• Complex models like polynomial regression may fit the training data too 

well and fail to generalize on new data. 

 

5. Irrelevant Features 

• Including irrelevant or highly redundant features can reduce model 

performance unless techniques like feature selection or regularization 

are applied. 

 

6. Poor Interpretability in High Dimensions 

• In multiple regression with many variables, the interpretation of 

coefficients becomes difficult, especially with interactions or polynomial 

terms. 

 

7. Limited to Numeric Input/Output 

• Standard regression methods cannot handle categorical outputs or 

textual input unless preprocessed. 

 

5c) 



 

 

6a) Nearest centroid algorithm steps 



 

CLASS =B 

6b) 

 



 

 

6c) Advantages: 

1. Simple to Understand and Interpret 

o Decision trees mimic human decision-making. 

o Easy to visualize and explain. 

2. No Need for Feature Scaling or Normalization 

o Works with both numerical and categorical data directly. 

3. Handles Both Classification and Regression 

o Can be used for predicting both discrete labels and continuous 

values. 

4. Performs Feature Selection 

o Automatically selects the most significant attributes (via measures 

like Information Gain or Gini index). 

5. Works Well with Missing Values 

o Can handle missing values to some extent during splitting. 



6. Non-parametric 

o No assumptions about the distribution of data. 

 

      Disadvantages: 

1. Overfitting 

o Can create very deep trees that perfectly fit training data but fail on 

test data (low generalization). 

2. Instability 

o Small changes in data can lead to a completely different tree (due 

to greedy splits). 

3. Biased Toward Features with Many Levels 

o Attributes with many distinct values may be favored (especially 

with Information Gain). 

4. Less Accurate Than Ensemble Methods 

o Individual trees are less powerful than Random Forest or Gradient 

Boosted Trees. 

5. Hard to Capture Linear Relationships 

o Performs poorly if the true relationship between features and target 

is linear or additive 



 

7a) 

 



 

 



 

7b)Diagrams+ 

 



8a) 

 

 



 

8b) 

 

Explain in detail. 

9a) 



 

 

9b) 

Explain each component in detail 



 

 

10a) 

 

10b) 



 

Explain each step 

 

10c)     Characteristics of Reinforcement Learning 

1. Trial-and-Error Learning 

o The agent learns by interacting with the environment and 

improving its actions based on feedback. 

2. Delayed Reward 

o Actions may not have an immediate impact, and rewards can be 

delayed across multiple time steps. 

3. Exploration vs Exploitation 

o The agent must explore new actions to discover better rewards but 

also exploit known actions that yield high rewards. 

4. Sequential Decision Making 

o Decisions affect future states and rewards, forming a sequence of 

learning episodes. 

5. Feedback-Based Learning 

o Learning is guided only by a scalar reward signal, not labeled 

input-output pairs (unlike supervised learning). 

6. Learning Optimal Policy 

o The goal is to learn a policy π(a∣s)\pi(a|s)π(a∣s) that maximizes the 

expected cumulative reward. 

 



    Challenges in Reinforcement Learning 

1. Exploration–Exploitation Dilemma 

o Balancing trying new actions vs choosing the best known action 

is non-trivial. 

2. Delayed and Sparse Rewards 

o Sometimes rewards come only after a long sequence of actions 

(e.g., playing a game), making learning difficult. 

3. Credit Assignment Problem 

o Determining which action was responsible for a reward is hard 

when many actions contributed. 

4. Large/Continuous State Spaces 

o When the environment has large or continuous state/action spaces, 

it becomes computationally challenging. 

5. Non-Stationary Environments 

o The environment might change over time, requiring adaptive 

learning. 

6. Partial Observability 

o The agent might not fully observe the state of the environment, 

making learning incomplete or uncertain. 

7. Function Approximation 

o Using models like neural networks to approximate value 

functions can lead to instability. 

 

    Applications of Reinforcement Learning 

Domain Application Example 

 Games Playing Chess, Go, Atari, AlphaZero, Dota 2 

 Robotics Motion planning, robotic arm control 



Domain Application Example 

AI & Planning Self-learning agents, intelligent planning 

Simulation Game AI agents, navigation tasks 

 Network Systems Routing optimization, congestion control 

 Industrial Control Adaptive controllers, process optimization 

Healthcare Treatment planning, drug dosage adjustment 

Finance Stock trading, portfolio optimization 

Autonomous Systems Drone path planning, self-driving cars 

 


