CMR USN
INSTITUTE OF
TECHNOLOGY

Internal Assessment Test - |

Sub: [MICROCONTROLLERS Code: BCS402
4th
Date: -03-2025 Duration: {90 mins Ma{\r/lkas)'(50 Sem: | ¢ Branch: CS(DS)
Answer Any FIVE FULL Questions
Marks OBE
CO | RBT
a. Explain the embedded software with the help of suitable block diagrams. 6 |CO1| L2
b. Explain with examples the following 32-bit instruction of ARM processor.
1 i. CMN
ii. MLA 4 |CO2| L2
iii. MRS
iv. BIC
2 |[Explain the AMBA bus protocol used for ARM processors. 10 |CO2| L2
3 \Write ALP program to add array of 16-bit numbers and store the result in 32-bit 10 |co2l L3
memory.
4 |Explain in detail the processor modes available for ARM7. 10 |CO1l| L2
5 Explain memory management In ARM core. Compare cache and tightly coupled 10 |coil L2
memory.
Sub: MICROCONTROLLERS Code: BCS402
4th
Date: -03-2025 Duration: {90 mins Ma:\r/lkas)'(50 Sem: | ¢ Branch: CS(DS)
Answer Any FIVE FULL Questions
Marks OBE
CO | RBT
Explain the embedded software with the help of suitable block diagrams. 6 |CO1| L2
c. Explain with examples the following 32-bit instruction of ARM processor.
1 i. CMN
ii. MLA 4 |CO2| L2
iii. MRS
iv. BIC
2 |[Explain the AMBA bus protocol used for ARM processors. 10 |[CO2| L2
3 \Write ALP program to add array of 16-bit numbers and store the result in 32-bit 10 lcozl L3
memory.
4 [Explain in detail the processor modes available for ARM?7. 10 |CO1| L2
5 rli)(;?rllilrr; memory management In ARM core. Compare cache and tightly coupled 10 |co1l L2

Sub: MICROCONTROLLERS Code: BCS402
4th
Date: | 05-06-2024 Duration: {90 mins M:r/lka}s)'(50 Sem: | ¢ Branch: CS(DS)
Answer Any FIVE FULL Questions
Marks OBE
CO | RBT
6 [How registers are allocated to optimize the program? 10 |CO3| L2
7 Explain the syntax and usage of B, BL, BX and BLX instructions with necessary 10 |co2l L2
examples..
CCl HOD
Sub: MICROCONTROLLERS Code: BCS402
4th
Date: | 05-06-2024 Duration: {90 mins Ma:\r/lkas)'(50 Sem: | ¢ Branch: CS(DS)
Answer Any FIVE FULL Questions
Marks OBE
CO | RBT
6 [How registers are allocated to optimize the program? 10 |CO3| L2
7 Explain the syntax and usage of B, BL, BX and BLX instructions with necessary 10 |lco2l L2
examples..
CClI HOD

Solution

Q.1
EMBEDDED SYSTEM SOFTWARE:
An embedded system needs software to drive it. The following Figure shows four typical software
components required to control an embedded device.
Application
Operating system
Initializati Device d5
Hardware device
Figure: Software Abstraction Layers Executing on Hardware
v" The initialization code is the first code executed on the board and is specific to a particular target
or group of targets. It sets up the minimum parts of the board before handing control over to the
operating system.
v The operating system provides an infrastructure to control applications and manage hardware
system resources.
v' The device drivers provide a consistent software interface to the peripherals on the hardware
device.
v' An application performs one of the tasks required for a device.
1b

i. CMN:
e The comparison instructions are used to compare or test a register with a 32-bit value. They update the

cpsr flag bits according to the result, but do not affect other registers.
| [

CMN compare negated flags set as a result of Rn+ N

ii. MLA
The multiply instructions multiply the contents of a pair of registers and depending upon the instruction,
accumulate the results in another register.

MLA multiply and accumulate Rd = (Rm*Rs) + Rn

iii. MRS
The MRS instruction transfers the contents of either the cpsr or spsr to general purpose register.

MRS | copy program status register to a general-purpose register Rd= psr

iv. BIC

BIC logical bit clear (AND NOT) Rd = Rn& ~N

Q.2.

Q.3

Explain the AMBA bus protocol used for ARM processors.

AMBA Bus Protocol:

v

The Advanced Microcontroller Bus Architecture (AMBA) was introduced in 1996 and has been
widely adopted as the on-chip bus architecture used for ARM processors.
The first AMBA buses introduced were the ARM System Bus (ASB) and the ARM Peripheral Bus
(APB). Later ARM introduced another bus design, called the ARM High Performance Bus
(AHB).
Using AMBA, peripheral designers can reuse the same design on multiple projects. A peripheral
can simply be bolted onto the on-chip bus without having to redesign an interface for each
different processor architecture. This plug-and-play interface for hardware developers improves
availability and time to market.
AHB provides higher data throughput than ASB because 1t is based on a centralized multiplexed
bus scheme rather than the ASB bidirectional bus design. This change allows the AHB bus to run
at higher clock speeds.
ARM has introduced two variations on the AHB bus: Multi-layer AHB and AHB-Lite.

o The Multi-layer AHB bus allows multiple active bus masters.

o AHB-Lite is a subset of the AHB bus and it 1s limited to a single bus master.
The example device shown in the above Figure has three buses:

o an AHB bus for the high- performance peripherals

o an APB bus for the slower peripherals

o athird bus for external peripherals, proprietary to this device.

Write ALP program to add array of 16-bit numbers and store the result in 32-bit memory.

AREA ArrayAddition, CODE, READONLY

UP

ENTRY
LDR RO, =0X40000000
LDRB R1, [R0]
MOV RS, #0
ADD RO, RO, #2
LDRH R2, [R0]
ADD R1, #-1
ADD RO, RO, #2
LDRH R3, [R0]
ADD R1, #-1
ADD R4, R2, R3
ADD R5, R5, R4
CMP R1, #0
BNE UP
STR RS, [RO, #4]
MOV RO, #0X18
LDR R1, =0X20026
SVC #0123456
END

Q.4. Explain in detail the processor modes available for ARM7.

v" There are seven processor modes in total:
o six privileged modes (abort, fast interrupt request, interrupt request, supervisor, system,
and undefined)
e The processor enters abort mode when there is a failed attempt to access
memory.
e Fast interrupt request and interrupt request modes correspond to the two
interrupt levels available on the ARM processor.
e Supervisor mode is the mode that the processor 1s in after reset and is generally
the mode that an operating system kernel operates in.
e System mode 1s a special version of user mode that allows full read-write access
to the cpsr.
e Undefined mode is used when the processor encounters an instruction that is
undefined or not supported by the implementation.
o one non-privileged mode (user).
e User mode 1s used for programs and applications.
Q5 Explain memory management In ARM core. Compare cache and tightly coupled memory.

Memory Management:

v

Embedded systems often use multiple memory devices. It is usually necessary to have a method
to organize these devices and protect the system from applications trying to make inappropriate
accesses to hardware. This 1s achieved with the assistance of memory management hardware.
ARM cores have three different types of memory management hardware—

o no extensions providing no protection

© a memory protection unit (MPU) providing limited protection

© a memory management unit (MMU) providing full protection
Neon protected memory 1s fixed and provides very little flexibility. It 1s normally used for small,

simple embedded systems that require no protection from rogue applications.

v MPUs employ a simple system that uses a limited number of memory regions. These regions are

controlled with a set of special coprocessor registers, and each region is defined with specific

access permissions. This type of memory management is used for systems that require memory

protection but don’t have a complex memory map.

v' MMUs are the most comprehensive memory management hardware available on the ARM. The

MMU uses a set of translation tables to provide fine-grained control over memory. These tables

are stored in main memory and provide a virtual-to-physical address map as well as access

permissions. MMUs are designed for more sophisticated platform operating systems that support

multitasking.

Cache and Tightly Coupled Memory:
v" The cache is a block of fast memory placed between main memory and the core. It allows for
more efficient fetches from some memory types. With a cache the processor core can run for the
majority of the time without having to wait for data from slow external memory.

v" Most ARM-based embedded systems use a single-level cache internal to the processor.

v' ARM has two forms of cache. The first is found attached to the Von Neumann—style cores. It

combines both data and instruction into a single unified cache, as shown in the following Figure.

(ARM core J

(Uniﬁed cache]

[Logic and control j

BN
2\
—(AMBA bus interface unit}— (((Main memoryJ
) |

On-chip AMBA bus

L

Figure: Von Neumann Architecture with Cache

v' The second form, attached to the Harvard-style cores, has separate caches for data and

instruction, as shown in the following Figure.

(ARM core]
|

(Logic and control

D |

Data |[Instruction| D I

TCM TCM D

4[AMBA bus interface unil)— [((Main memory)
D+1

'
L]

On-chip AMBA bus

Figure: Harvard Architecture with TCMs

Q.6 How registers are allocated to optimize the program?

® The compiler attempts to allocate a processor
register to each local variable you use in a C function.

e |t will try to use the same register for different local
variables if the use of the variables do not overlap.
When there are more local variables than available
registers, the compiler stores the excess variables on
the processor stack. These variables are called spilled

® or swapped out variables since they are written out
to memory (in a similar way virtual memory is
swapped out to disk).

e Spilled variables are slow to access compared to
variables allocated to registers.

To implement a function efficiently, you
Nneed to

m minimize the number of spilled variables

m ensure that the most important and
frequently accessed variables are stored in
registers

C compiler register usage

Alternate

Register register

number names ATPCS register usage

ro al Argument registers. These hold the first four function

ri a2 arguments on a function call and the return value on a

r2 a3 function return. A function may corrupt these registers and
r3 a4 use them as general scratch registers within the function.

rd vl General variable registers. The function must preserve the callee
rs v2 values of these registers.

ré v3

r7 vd

r8 v5

C compiler register usage

ro v6 sb General variable register. The function must preserve the callee
value of this register except when compiling for read-write
position independence (RWPI). Then r9 holds the static base
address. This is the address of the read-write data.

rio v7 sl General variable register. The function must preserve the callee
value of this register except when compiling with stack limit
checking. Then r70 holds the stack limit address.

rii v8 fp General variable register. The function must preserve the callee
value of this register except when compiling using a frame
pointer. Only old versions of armicc use a frame pointer.

ri2 ip A general scratch register that the function can corrupt. It is
useful as a scratch register for function veneers or other
intraprocedure call requirements.

ri3 sp The stack pointer, pointing to the full descending stack.
ridg iIr The link register. On a function call this holds the return
address.

ris pc The program counter.

Q.7

Explain the syntax and usage of B, BL, BX and BLX instructions with necessary examples.

B branch pc = label
BL | branch with link pc = label
Ir=address of the next instruction after the BL
BX | branch exchange pc=Rm & Oxfffffffe, T=Rm & 1
BLX | branch exchange with link | pc =label, T=1
pc=Rm & Oxfffffffe, T=Rm & 1
Ir=address of the next instruction after the BLX

