31

o A

CMR . y g —— A\

- ; I i ! . ! i RN .
INSTITUTE OF USN ! { [8 5 | | Sa)cven
TECHNOLOGY _

InternalAssessmentTest -1l __ o .
Sub: MICROCONTROLLERS | Code: BOS
Sedas : . | — -]
Date: | 26-05-2025 Duration: [90mins Max S0 | Semu ! ¢ ! Branch: Hl‘&DS\
| Marks: | | r i :
AnswerAnyFIVEFULLQuestions
l | OBE '
IMarks L0
; ¢ CO | RRT
] a. Explain with a neat diagram memory Hierarchy. i 4 s 2
b. Write a short note on instruction scheduling. | 6 QO3 LI
2 [Briefly explain what happens when an IRQ and FIQ exception is raised with an ARMprocessor. | 10 | OO ¢ 12
3 Define Firmware, Bootloader. Explain firmware execution flow and explain Red HatRedBoot, 10 Q8L
4 _ Briefly explain cache line replacement policies. 10 Q08| L2 i
S5 |With a neat diagram explain ARM processor exceptions and modes. R
6 Write a C program that prints the square of the integers between 0 to 9 usingfunctions and y doya |
explainhow to convert this C function to an asserbly functionwith command. \e : €03 | L3
7__How the function calling efficiently use by ARM through APCS with an exampleprogram. |

Qo J%

CCI A

(¥ Scanned with OKEN Scanner

MC_IAT Il_Solution

The Memory Hierarchy and Cache Memory

1
| Processor
| pay : __ Register file , |
PR |
o i Tightly M i i E
]
______ | memory [Level T cuche | +[Write buffer | |
Al T T 1
E SRAM I |
! Muin \" """ """"‘u"f’""‘"’,
1 memory : : :
Board | DRAM 5] - I |
1 | \
: ! !
' /Fluh and other board-level nonvolatile memory ;_ i
- N e -
“““ H 1
E 'l Read path
Device : Sccondary
-
E s Disk, tape, and network storage Write path

- A memory hierarchy depends as much on architectural design as on the technology
surrounding it.

- For example, TCM and SRAM are of the same technology yet differ in architectural
placement: TCM is located on the chip, while SRAM is located on a board.

- A cache may be incorporated between any level in the hierarchy where there is a
significant access time difference between memory components.

- A cache can improve system performance whenever such a difference exists.

- A cache memory system takes information stored in a lower level of the hierarchy
and temporarily moves it to a higher level.

Processor core:

- The innermost level of the hierarchy is at the processor core.

- This memory is so tightly coupled to the processor that in many ways it is
difficult to think of it as separate from the processor.

This memory is known as a register file.

These registers are integral to the processor core and provide the fastest
possible memory access in the system.

vl

Tightly coupled memory (TCM):

- Memory components are connected to the processor core through dedicated
on-chip interfaces.

The primary level is main memory.

It includes volatile components like SRAM and DRAM, and nonvolatile
components like flash memory.

The purpose of main memory is to hold programs while they are running on a
system.

Vol

The L1 and L2 caches are also known as the primary and secondary caches.
The L1 cache is an array of high-speed, on-chip memory that temporarily
holds code and data from a slower level.

vl

—> A cache holds this information to decrease the time required to access both

instructions and data.

—=> The write buffer is a very small FIFO buffer that supports writes to main

memory from the cache.

- An L2 cache is located between the L1 cache and slower memory.

The secondary storage:

—= storage—Ilarge, slow, relatively inexpensive mass storage devices such as

disk drives or removable memory.

- In this level is data derived from peripheral devices, which are characterized

by their extremely long access times.

= Secondary memory is used to store unused portions of very large programs

that do not fit in main memory and programs that are not currently executing.

Instruction scheduling is a compiler optimization technique used in
computer architecture to improve the performance of a program by
reordering the instructions in such a way that maximizes the utilization
of the CPU's execution units and minimizes stalls. The primary goals of
instruction scheduling are to reduce pipeline stalls, improve
instruction-level parallelism, and optimize the usage of processor
resources.

key aspects of instruction scheduling

1. Dependencies:

e Data Dependencies: Instructions that depend
on the result of previous instructions.

e Control Dependencies: Instructions that
depend on the outcome of branch instructions.

e Resource Dependencies: Instructions that
require the same computational resources.

2. Pipeline Stalls:

e Occur when the CPU pipeline cannot continue to
execute the next instruction because the current
instruction has not yet completed. Instruction
scheduling aims to minimize these stalls

3. Types of Instruction Scheduling:

e Static Scheduling: Performed at compile time
by the compiler. It does not change during
execution.

e Dynamic Scheduling: Performed at runtime by
the processor. It can adapt to changing
conditions and resource availability

Techniques:

e List Scheduling: A priority list of instructions is maintained,
and instructions are scheduled based on their dependencies
and priorities.

e Trace Scheduling: Identifies frequently executed paths
(traces) in the program and optimizes these traces.

e Software Pipelining: Overlaps the execution of instructions
from different iterations of a loop to utilize the pipeline more
effectively.

#IRQ and FIQ Exceptions

1 . The processor changes to a specific interrupt request mode, which reflects the
interrupt being raised.

2. The previous mode’s cpsr is saved into the spsr of the new interrupt request
mode.

3. The pc is saved in the Ir of the new interrupt request mode.

dlsabled in the cpsr. This immediately stops another interrupt request of the same

type being raised.
5. The processor branches to a specific entry in the vector table.

iInterrupt Request (IRQ).

|

Return to
user mode
code

2.

rnzcvqjlft_'qu1

spsr_irg=cpsr
rl4 _irqg=pc
pc=0x18

3. | Software

l

handler

iFast Interrupt Request (FIQ).

' (pzevaaitewsr}——

Return to

user mode
code

|

I

nzcvqjIFt_fiq
spsr_fiq=cpsr

rl4 fig=pc
pc=0x1c

3.

ks
Software

handler

Firmware

% The firmware is the deeply embedded, low-level
software that provides an interface between the
hardware and the application/operating system level
software.

% It resides in the ROM and executes when power is
applied to the embedded hardware system.

% Firmware can remain active after system initialization
and supports basic system operations.

% The choice of which firmware to use for a particular

ARM-based system depends upon the specific

application, which can range from loading and executing

a sophisticated operating system to simply relinquishing

control to a small microkernel.

Bootloader

- The bootloader is a small application that
installs the operating system or application
onto a hardware target.

The bootloader only exists up to the point
that the operating system or application is
executing, and it is commonly incorporated
into the firmware.

iFirmware execution flow

Stage Features

Set up target platform Program the hardware system registers
Platform identification
Diagnostics
Debug interface
Command line interpreter

Abstract the hardware = Hardware Abstraction Layer
Device driver

Load a bootable image Basic filing system

Relinquish control Alter the pcto point into the new image

Cache Policy

> There are three policies that determine the operation of a cache: the write
policy, the replacement policy, and the allocation policy.

> The cache write policy determines where data is stored during processor
write operations.

> The replacement policy selects the cache line in a set that is used for the
next line fill during a cache miss.

> The allocation policy determines when the cache controller allocates a cache
line.

Write Policy

> When the processor core writes to memory, the cache controller has two
alternatives for its write policy.

> The controller can write to both the cache and main memory, updating the
values in both locations; this approach is known as writethrough.

> The cache controller can write to cache memory and not update main
memory, this is known as writeback or copyback.

v v

vyv

Writethrough

When the cache controller uses a writethrough policy, it writes to both cache
and main memory when there is a cache hit on write, ensuring that the cache
and main memory stay coherent at all times.

Under this policy, the cache controller performs a write to main memory for
each write to cache memory.

writeback policy.

Writeback

When a cache controller uses a writeback policy, it writes to valid cache data
memory and not to main memory.

Valid cache lines and main memory may contain different data.

The cache line holds the most recent data, and main memory contains older
data, which has not been updated.

Cache Line Replacement Policies

On a cache miss, the cache controller must select a cache line from the
available set in cache memory to store the new information from main
memory.

The cache line selected for replacement is known as a victim.

If the victim contains valid, dirty data, the controller must write the dirty data
from the cache memory to main memory before it copies new data into the
victim cache line.

The process of selecting and replacing a victim cache line is known a
eviction.

The strategy implemented in a cache controller to select the next victim is
called its replacement policy.

The replacement policy selects a cache line from the available associative
member set; that is, it selects the way to use in the next cache line
replacement.

To summarize the overall process, the set index selects the set of cache lines
available in the ways, and the replacement policy selects the specific cache
line from the set to replace.

vV

ARM cached cores support two replacement policies, either pseudorandom or
round-robin.

Most ARM cores support both policies

The round-robin replacement policy has greater predictability, which is
desirable in an embedded system.

A round-robin replacement policy is subject to large changes in performance
given small changes in memory access.

Round-robin or cyclic replacement:

>
>

>

Simply selects the next cache line in a set to replace.
The selection algorithm uses a sequential,
incrementing victim counter that increments each time
the cache controller allocates a cache line.

When the victim counter reaches a maximum value, it
is reset to a defined base value.

Pseudorandom replacement policy:

>
>

>

Randomly selects the next cache line in a set to replace.

The selection algorithm uses a nonsequential incrementing victim
counter.

In a pseudorandom replacement algorithm the controller increments
the victim counter by randomly selecting an increment value and
adding this value to the victim counter.

When the victim counter reaches a maximum value, it is reset to a
defined base value.

An exception is any condition that needs to halt
normal execution of the instructions

« Exceptions and modes

Each exception causes the ARM core to enter a specific

mode.
Exception Mode Purpose
Fast Interrupt Request FIQ Fast interrupt handling
Interrupt Request IRQ Normal interrupt handling
SWI and RESET SVC Protected mode for OS
Pre-fetch or data abort ABT Memory protection handling
Undefined Instruction UND SW emulation of HW coprocessors
o
Mapping exceptions to modes
Resel |
Data Abont_}
L 4 (1' J
75 J —
[Prefesch Abon }
— w1}
Undefined |}
. N S N T N S T N
VRO NiUedetised) Q[AQ I Abor J[SVC |
Mases
Exception Mode Main purpose
Fast Interrupt Request FIQ fast interrupt request handling
Interrupt Request IRQ interrupt request handling
SWI and Reset Sve protected mode for operating systems

I Prefetch Abort and Data Abort abort
Undefined Instruction undefined
6.
#include <stdio.h>
// Function to calculate square
int square(int n) {
returnn * n;
}
int main() {
for (inti=0;i&It; 10; i++) {

printf("Square of %d is %d\n", i, square(i));

}

return O;

}

square: // int square(int n)

virtual memory and/or memory protection handling
software emulation of hardware coprocessors

-

PUSH {LR} // Save return address
MUL RO, RO, RO // RO=RO * RO
POP {LR}// Restore return address
BX LR // Return with result in RO

main:

PUSH {R4-R6, LR} // Save used registers and LR
MOV R4,#0//i=0

loop:

CMP R4, #10 // if (i >= 10)

BGE end // break

MOV RO, R4 // RO =i

BL square // Call square(i), result in RO

MOV R5, RO // Save square result in R5 (for debug)
ADD R4, R4, #1 // i++

B loop // repeat loop

end:

POP {R4-R6, LR}

BX LR

The ARM Procedure Call Standard (APCS) defines how functions (procedures)

interact in ARM systems—how arguments are passed, results returned, and registers used.
It ensures interoperability between code, allows modular development, and helps in
optimizing function calls.

If more than 4 arguments: the rest go on the stack.
Return address stored in LR during a function call (BL instruction).
BX LR used to return from a function.

int add(int a, int b) {

returna +b;

}

int main() {

int result = add(5, 10);

while(1); // loop forever

}

// Function: int add(int a, int b)

add:

PUSH {LR} // Save return address

ADD RO, RO, R1 // RO = RO + R1 (RO holds a, R1 holds b)
POP {LR} // Restore return address

BX LR // Return (RO has result)

main:

MOV RO, #5 // First argument (a)

MOV R1, #10 // Second argument (b)

BL add // Call add(a, b), result in RO

MOV R4, RO // Store result in R4 for observation

B . // Infinite loop (watch R4 in debugger)

