Internal Test -II May 2025 QP & ANSWER KEY | Sub: | Biology for Computer Engineers | | | | | | Code: | BBOC407 | | |-------|--------------------------------|-----------|---------|---------------|-----|------|-----------------|---------|------| | Date: | 23/ 05 / 25 | Duration: | 90 mins | Max
Marks: | _50 | Sem: | 4 TH | Branch: | CSDS | **Note:** Answer any five questions with neat diagram: | Q.No. | Question | | OBE | | | |-------|---|-------|-----|-----|--| | | Question | Marks | СО | RBT | | | 1 | Explain the function of lungs as a purification system Gas Exchange (Removal of Carbon Dioxide) Main Function: Remove carbon dioxide (CO₂) from the blood. Why it matters: CO₂ is a waste product of cellular metabolism. If it builds up in the body, it becomes toxic. How it happens: Deoxygenated blood rich in CO₂ reaches the lungs via the pulmonary arteries. CO₂ diffuses from the blood into the alveoli (air sacs) and liss then exhaled. 2. Oxygenation of Blood Main Function: Absorb oxygen (O₂) from inhaled air. Why it matters: Oxygen is essential for energy production in body cells. How it happens: Oxygen from inhaled air diffuses into the blood in the alveoli. Oxygen-rich blood returns to the heart to be pumped throughout the body. | [10] | CO3 | L1 | | | | Filtering Small Blood Clots & Air Bubbles Function: Trap small emboli (blood clots, air bubbles) that could be dangerous if they reached the brain or heart. Why it matters: Prevents blockages in critical organs. How it happens: The lung's capillary network acts as a biological filter. Defense Against Inhaled Toxins & Microbes Function: Filter dust, pathogens, and pollutants from inhaled air. How it happens: Cilia and mucus in the respiratory tract trap and move particles | | | | | | | Alveolar macrophages destroy mic
lungs. | robes that reach the deep | | | |---|--|--|-----|----| | | 5. Chemical Processing & Detoxification | | | | | | Function: Modify or break down certain suincluding: | ubstances in the blood, | | | | | | kinin) | | | | | Drugs and toxins (to a limited external exte | • | | | | | The lungs contribute to metabolic homeos | stasis. | | | | | Function Purpose | | | | | | CO ₂ removal Eliminate metabolic | waste | | | | | O ₂ absorption Supply oxygen to blo | od | | | | | Filtering emboli Prevent dangerous b | lockages | | | | | Airborne pathogen defense Prevent respiratory i | nfections | | | | | Chemical processing Assist in detoxification | ขา | | | | 2 | Define ECG. Briefly explain the design of a stent is ECG (Electrocardiogram) is a medical test that red the heart over a period of time using electrodes p • Detects abnormal heart rhythms (arrhythm • Identifies heart attacks (myocardial infanct • Monitors heart health over time Design of a Stent in the Coronary Artery: A stent is a tiny mesh-like tube made of metallory a narrowed or blocked coronary artery to keep it blood flow to the heart muscle. Structure of a Coronary Stent: • Material: Usually made of stainless steel, of biodegradable polymer. • Shape: Cylindrical, mesh or lattice-like strue • Types: 1. Bare-metal stents (BMS) – simple r 2. Drug-eluting stents (DES) – coated re-narrowing. 3. Bioabsorbable stents – dissolve over | conds the electrical activity off placed on the skin. mias) colymer that is inserted into open and restore normal cobalt-chromium alloy, or acture that can expand. metal mesh. with drugs to prevent artery | CO3 | L2 | | | How It Works (Design Functionality): | | | | |---|---|------|-----|----| | | Compressed on a balloon catheter and inserted into the artery. When positioned correctly, the balloom is inflated, expanding the stent. The stent presses against the artery walls, holding them open. The balloon is removed, and the stent remains permanently in place. Importance: Used in angioplasty to treat coronary artery disease (CAD). Helps reduce the risk of heart attacks by maintaining blood supply to the heart. | | | | | 3 | Explain the 3D printing of skin and bone in detaill 3D printing of skin and bone is a revolutionary application of bioprinting technology, combining biology, engineering, and medicine to create customized living tissues 3D skin printing involves layer-by-layer deposition of bio-inks containing cells, growth factors, and biomaterials to create skin tissue that can replicate epidermis, dermis, and sometimes hypodermis. Process Steps: 1. Cell Collection Skin cells (like keratinocytes, fibroblasts) are harvested from the patient or a donor. 2. Bio-ink Preparatiom Cells are mixed with hydrogels like collagen, gelatin, or alginate to form a printable bio-ink. 3. 3D Printing A specialized bioprinter deposits the bio-ink layer-by-layer to form: Epidermis (outer layer) Dermis (middle connective tissue layer)) Optionally: Vascular structures 4. Maturation in Bioreactor The printed skin is kept in a bioreactor that mimics body conditions (e.g., temperature, nutrients) to promote tissue development. Transplantatiom Once matured, the printed skin is grafted onto the wound or burn site. | [10] | CO4 | L1 | | | Applications of 3D Printed Skin: | | | | - Burn and wound healing - Drug and cosmetic testing (avoids animal testing) - Skin disease modeling - Personalized skin grafts 3D Printing of Bone:3D bone printing creates scaffolds or full bone structures using materials that mimic natural bone's strength and porosity. These structures are often seeded with stem cells to regenerate functional bone. #### **Process Steps:** - 1. Imaging and Modeling - CT or MRI scans of the patient's bone defect are used to create a custom 3D model. - 2. Material Selection - Bio-inks or powders like: - Hydroxyapatite - Calcium phosphate - Tricalcium phosphate (TCP) - Biodegradable polymers (e.g., PLA, PCL) - 3. 3D Printing of Scaffold - The bioprinter builds the structure layer-by-layer, allowing for:: - Porosity for vascularization - Load-bearing strength - 4. Cell Seeding - Mesenchymal stem cells (MSCs) or osteoblasts are added to promote bone growth. - 5. Implantation and Integration - The printed bone is implanted, and over time, it integrates with the patient's natural bone through osteointegration. ## Applications of 3D Printed Bone: - Repair of bone defects from trauma, cancer, or congenital diseases - Facial and jawbone reconstruction - Dental implants - Orthopedic implants - Bone graft substitutes #### **Key Advantages** Feature Skin Printing Bone Printing Customization Matches wound area Matches defect shape Biocompatibility Patient-derived cells Natural bone-like materials Speed Fast wound coverage Quick scaffold production Regeneration Promotes healing Promotes new bone growth | | Explain the Al process for disease diagnosis and its various applications in the medical field | | | | |---|---|------|-----|----| | | Al Function Medical Use | | | | | | Image analysis -Tumor detection in X-rays, MRIs | | | | | | Prediction models -Heart disease, diabetes risk | | | | | 4 | Pattern recognition -Diagnosing rare diseases | [10] | CO5 | L2 | | | Virtual assistants -Basic symptom checking | | | | | | Robotics -Precision surgery | | | | | | Genomic analysis -Personalized cancer therapy/ | | | | | | Explain briefly a. Bio Remediation b. Bio-Mining | | | | | | a. Bio-Remediation | | | | | | Definition: Bio-remediation is the process of using microorganisms (like bacteria and fungi) to remove or neutralize pollutants from a contaminated site (soil, water, or air). | | | | | | Key Points: | | | | | | Microbes break down harmful substances into less toxic or harmless products. Used for oil spills, heavy metal contamination, pesticide removal, etc. Types: In-situ: Treatment at the site of contamination. | | | | | 5 | Ex-situ: Contaminated material is removed and treated elsewhere. | [10] | CO4 | L1 | | | Example: Using Pseudomonas bacteria to clean oil spills in oceans. | | | | | | b. Bio-Mining | | | | | | Definition: Bio-mining is the use of microorganisms to extract metals from ores and mining waste, especially low-grade ores. | | | | | | Key Points: | | | | | | Bacteria like <i>Thiobacillus ferrooxidans</i> and <i>Acidithiobacillus</i> oxidize metal sulfides to release metals like copper, gold, or uranium. Environment-friendly alternative to traditional mining; | | | | | | Slower to | out less p | polluting. | | | | | |---|---|------------------|--|--|------|-----|----| | | Example: Extracting copper from copper sulfide ores using Thiobacillus ferrooxidans. | | | | | | | | | Summary : Concept Bio-Remediation Bio-Mining | | | | | | | | | | | | | | | | | | Purpose Clean pollution Organisms Bacteria, fungi | | Extract metals | | | | | | | | | a, fungi | Bacteria (e.g., Thiobacillus) | | | | | | Application Oil sp | | ls, pesticide cleanup | Mining low-grade ores | | | | | | Eco-impact | Reduce
damage | es environmental
e | Minimizes chemical use in mining | | | | | | Discuss the eye | as a can | nera system | | | | | | | designed to capture, focu | | cus, and process lighted explanation of ho | era system because both are
ht to form clear images. Here's a
w the eye functions as a natural | | | | | | Eye Component Cornea & Aqueous Humor Lens | | Camera Equivalent Function | | | | | | | | | Camera lens cover Focus incoming light | | | | | | | | | Adjustable camera
lens | Fine-tunes focus (accommodation) | | | | | | | | Aperture (shutter) | Controls light entry by adjusting pupil size | | | | | 6 | Pupil | | Aperture hole | Allows light into the eye | [10] | CO3 | L1 | | | Retina | | Camera sensor/film | Captures image as electrical signals | | | | | | Optic Nerve | Į. | Data cable | Sends image signals to the brain | | | | | | Sclera | | Camera
body/casing | Provides structure and protection | | | | | | Vitreous Humor | | Internal optics | Maintains shape and light transmission | | | | | | Detailed Functional Comparison | | | | | | | | | 1. Light Entry and Control | | | | | | | | | Eye: Light enters through the cornea and then the pupil (controlled by
the iris). | | | | | | | Camera: Light enters through the lens and aperture, which adjusts to light levels. ## 2. Focusing Light - Eye Lens: Changes shape to focus objects at different distances (accommodation) using ciliary muscles. - Camera Lens: Adjusts its focal length using a mechanical or digital zoom/focus system. ### 3. Image Capture - Retina: Light-sensitive layer that contains rods (for dim light) and cones (for color vision). It converts light into nerve signals. - Camera Sensor/Film: Captures light and stores the image electronically/ or chemically. #### 4. Signal Transmission - Optic Nerve: Transfers electrical signals to the visual contex in the brain for image processing. - Camera Cable or Memory: Transfers data to a screen, computer, or memory card. ## Features Shared by Both Feature Human Eye Camera Autofocus Lens curvature adjustment Motor-controlled lens Aperture Control Iris adjusts pupil size Adjustable f-stop Light Sensitivity/ Rods and cones ISO sensitivity/ Image Processing Brain interprets signals Software/processor in camera #### Differences - The eye adapts continuously and automatically to changes in lighting and focus. - The camera requires manual or digital adjustment unless it's fully automated. - The eye processes depth and motion in real-time, while a camera captures static frames (unless it's a video camera). CI CCI HOD