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Q. 1.a 

                 The RISC philosophy is implemented with four major design rules:  

a. Instructions: RISC has a reduced number of instruction classes. These classes 

provide simple operations so that each is executed in a single cycle. Each 

instruction is a fixed length to allow the pipeline to fetch future instructions before 

decoding the current instruction. 

b. Pipeline:  The processing of instructions is broken down into smaller units that can 

be executed in parallel by pipelines.  

c. Register: RISC machines have a large general-purpose register set. Any register 

can contain either data or an address.  

d. Load-store architecture: The processor operates on the data held in registers. 

Separate load and store instructions transfer data between the register bank and 

external memory. 

               These design rules allow a RISC processor to be simpler, and thus the core can operate     

               at higher clock speed. 

Q. 1.b     

 
 



Q. 1.c 

A programmer can think of an ARM core as functional units connected by data buses, as shown 

in the following Figure. 

The arrows represent the flow of data, the lines represent the buses, and the boxes represent either 

an operation unit or a storage area. 

Data enters the processor core through the Data bus. The data may be an instruction to execute 

or a data item. 

Figure shows a Von Neumann implementation of the ARM—data items and instructions share the 

same bus. (In contrast, Harvard implementations of the ARM use two different buses). 

The instruction decoder translates instructions before they are executed. Each instruction 

executed belongs to a particular instruction set. 

The ARM processor, like all RISC processors, uses load-store architecture—means it has two 

instruction types for transferring data in and out of the processor: 

-load instructions copy data from memory to registers in the core 

 -store instructions copy data from registers to memory 

There are no data processing instructions that directly manipulate data in memory. Thus, data 



processing is carried out in registers. 

Data items are placed in the register file—a storage bank made up of 32-bit registers. 

Since the ARM core is a 32-bit processor, most instructions treat the registers as holding signed or 

unsigned 32-bit values. The sign extend hardware converts signed 8-bit and 16-bit numbers to 32-

bit values as they are read from memory and placed in a register. 

ARM instructions typically have two source registers, Rn and Rm, and a single result or destination 

register, Rd. Source operands are read from the register file using the internal buses 

A and B, respectively. 

The ALU (arithmetic logic unit) or MAC (multiply-accumulate unit) takes the register values Rn 

and Rm from the A and B buses and computes a result. Data processing instructions write the 

result in Rd directly to the register file. 

Load and store instructions use the ALU to generate an address to be held in the address register 

and broadcast on the Address bus. 

One important feature of the ARM is that register Rm alternatively can be preprocessed in the 

barrel shifter before it enters the ALU. Together the barrel shifter and ALU can calculate a wide 

range of expressions and addresses. 

After passing through the functional units, the result in Rd is written back to the register file using 

the Result bus. 

For load and store instructions the Incrementer updates the address register before the core reads 

or writes the next register value from or to the next sequential memory location. 

The processor continues executing instructions until an exception or interrupt changes the normal 

execution flow. 

 

Q. 2.a 

CPSR (Current Program Status Register) 

Q6. Explain the various fields in current program status register (CPSR) with neat diagram.  
 

Answer: Figure below shows the basic layout of a generic program status register.   

 
● The cpsr is divided into four fields, each 8 bits wide: flags, status, extension and control.  

● In current designs the extension and status fields are reserved for future use.  

● The control field contains the processor mode, state and interrupts mask bits.  



● The flag field contains the condition flags.  

● The following table gives the bit patterns that represent each of the processor modes in the cpsr. 

Mode Mode[4:0] 

Abort 10111 

Fast interrupt request 10001 

Interrupt request 10010 

Supervisor 10011 

System 11111 

Undefined 11011 

User 10000 

 

● When cpsr bit 5, T=1, then the processor is in Thumb state. When T=0, the processor is in ARM 

state. 

● The cpsr has two interrupt mask bits, 7 and 6 (I and F) which control the masking Interrupt request 

(IRQ) and Fast Interrupt Request (FIR). 

● Condition flags are updated by comparisons and the result of ALU operations that specify the S 
instruction suffix.  

● For example, if SUBS subtract instruction results in a register value of zero, then the Z flag in the 

cpsr is set. 
● The following table shows the conditional flags: 

Flag Flag Name Set when 

N Negative Bit 31 of the result is a binary 1 

Z Zero The result is zero, frequently used to indicate equality 

C Carry The result causes an unsigned carry 

V Overflow The result causes a signed overflow 

 

Q.2. b 

● Pipeline is the mechanism to speed up execution by fetching the next instruction while other 

instruction are being decoded and executed.  

● Figure 1 shows the ARM7 three-stage pipeline. 

 

 
Figure 1: ARM7 Three-stage pipeline 

● Fetch loads an instruction from memory.  

● Decode identifies the instruction to be executed.  

● Execute processes the instruction and writes the result back to a register. 

● Figure 2 illustrates the pipeline using a simple example. It shows a sequence of three instructions 

being fetched, decoded and executed by the processor.  

● Each instruction takes a single cycle to complete after the pipeline is filled.  

o In the first cycle, the core fetches the ADD instruction from the memory.  

o In the second cycle, the core fetches the SUB instruction and decode the ADD instruction.  



o In the third cycle, the core fetches CMP instruction from the memory, decode the SUB 

instruction and execute the ADD instruction. 

o The ADD instruction is executed, the SUB instruction is decoded, and the CMP instruction 

is fetched. This procedure is called filling the pipeline. 

 
● The pipeline design for each ARM family differs. For example, the ARM9 core increases the 

pipeline length to five stages as shown in the figure below. 

 

 
 

● The ARM10 increases the pipeline length still further by adding a sixth stage as shown in the figure 

below. 

 

 
 

       

● As the pipeline length increases the amount of work done at each stage is reduced, which allows 

the processor to attain a higher operating frequency. This in turn increases the performance.   

● Pipeline Executing Characteristics 

a. The ARM pipeline has not processed an instruction until it passes completely through the 

execute stage. For example, an ARM7 pipeline (with three stages) has executed an instruction 
only when the fourth instruction is fetched. Figure below shows an instruction sequence on an 

ARM7 pipeline.  

 



In the execute stage, the pc 

always points to the address of the instruction plus 8 bytes. In other words, the pc always points to the 
address of the instruction being executed plus two instructions ahead as shown in figure 2 below 

 
                          Figure 2: Example: pc = address + 8 

The execution of a branch instruction or branching by the direct modification of the pc causes the 

ARM core to flush its pipeline. 
a. ARM10 uses branch prediction, which reduces the effect of a pipeline flush by predicting 

possible branches and loading the new branch address prior to the execution of the instruction. 

b. An instruction in the execute stage will complete even though an interrupt has been raised. 

 

Q. 2. C 

There are three core extensions wrap around ARM processor:  cache and tightly coupled memory, memory 

management and the coprocessor interface. 

1. Cache and tightly coupled memory: The cache is a block of fast memory placed between main 

memory and the core. With a cache the processor core can run for the majority of the time without 

having to wait for data from slow external memory.  

o ARM has two forms of cache. The first found attached to the Von Neumann-style cores. It 

combines both data and instruction into a single unified cache as shown in the figure 1 

below.  

 
Figure 1: A simplified Von Neumann architecture with cache. 



 

o The second form, attached to the Harvard-style cores, has separate cache for data and 

instruction as shown figure 2 

  

Figure 2: A simplified 

Harvard architecture 

with TCMs. 

 

o A cache provides an 

overall increase in 

performance but 

will not give predictable 

execution.  

o But for real-time 

systems it is paramount that code execution is deterministic. 

o This is achieved using a form of memory called tightly coupled memory (TCM).  

o TCM is fast SRAM located close to the core and guarantees the clock cycles required to 

fetch instructions or data. 

 

Q.3. a 

Data Processing Instructions 

● The data processing instructions manipulate data within registers. They are move 

instructions, arithmetic instructions, logical instructions, compare instructions and multiply 

instructions.  

● Most data processing instructions can process one of their operands using the barrel shifter. 

● If S is suffixed on a data processing instruction, then it updates the flags in the cpsr. 





 
Q. 3.b 



 



Q.3.c 

mov r1, r2 
  → Copy the value of r2 into r1. 

 

add r1, r2, r4 
  → Add r2 and r4, store result in r1. 

 

bic r3, r2, r5 
  → Clear bits in r2 where r5 has 1s, store in r3. 

   (r3 = r2 & (~r5)) 

 

cmp r3, r4 
  → Compare r3 and r4 by subtracting (sets flags, no result stored). 

 

UMLAL r1, r2, r3, r4 
  → Multiply r3 × r4, add to 64-bit value in r2:r1, store result in r2:r1. 

 

Q.4.a 

LOAD-STORE INSTRUCTIONS ( Memory Access Instructions) 

● Load-store instructions transfer data between memory and processor registers. There are 

three types of load-store instructions: single-register transfer, multiple-register transfer, 

and swap. 

a) Single-Register Transfer 

● These instructions are used for moving a single data item in and out of a register. 

● Here are the various load-store single-register transfer instructions. 

Syntax: <LDR|STR>{<cond>}{B} Rd, addressing1 

LDR{<cond>}SB|H|SH Rd, addressing2 

STR{<cond>}H Rd, addressing2 



Example: 

1. LDR r0, [r1]  

o This instruction loads a word from the address stored in register r1 and places it 

into register r0. 

 

2. STR r0, [r1]  

● This instruction goes the other way by storing the contents of register r0 to the 

address contained in register r1. 

 

A full descending stack is a stack that grows downward (decreasing memory addresses), 

and the stack pointer (SP) always points to the last used (full) location in the stack. 

Full → SP points to a full (occupied) location. 
Descending → Stack grows to lower addresses (top moves down). 

STMFD SP!, {r0}   ; Store r0 in stack, Full Descending (STMFD) 

STMFD = Store Multiple Full Descending 

 

SP! = Update SP after storing (post-decrement) 

 

{r0} = Register to push 

Decrement SP → SP = SP - 4 
 
Store r0 at new SP address 

When popping (restoring) a value: 

asm 

CopyEdit 

LDMFD SP!, {r0}   ; Load r0 from stack, Full Descending (LDMFD) 
 



● LDMFD = Load Multiple Full Descending 

 

● SP! = Update SP after loading (post-increment) 

 

● {r0} = Register to pop into 

 

This does: 

1. Load r0 from address at SP 
 

2. Increment SP → SP = SP + 4 

Example: 

STMFD SP!, {r0, r1, r2}  ; Push r0, r1, r2 (r2 at lowest addr) 

LDMFD SP!, {r0, r1, r2}  ; Pop r0, r1, r2 

Assume initial SP = 0x1000 

Address Value 

0x0FF4 r2 value 

0x0FF8 r1 value 

0x0FFC r0 value 

0x1000 (old SP) 

New SP = 0x0FF4 (after pushing 3 registers) 

Q.4.c 

 

 AREA SUM10, CODE, READONLY 
 EXPORT __main 

__main 

ENTRY 
 MOV R1, #0X01 

 MOV R2, #0 

 

LOOP   ADD R2, R2, R1 
  ADD R1, R1, #1 

  CMP R1, #0X0B 

  BNE LOOP 
   



  LDR R0, = Result 
  STRB R2, [R0] 

STOP B STOP 

   

 AREA data2, DATA, READWRITE 
 

Result DCB 0x0 

 END 
 

output: 

R1=01 
 R2=00 

 R2=37 

Result is 55 but in the hexadecimal it is 37 so it will gives output as 37 

 

Q.5.a 

On most 32-bit ARM systems, the basic C data types and their typical sizes are: 

Data Type Size (Bytes) Description 

char 1 8-bit character 

short 2 16-bit integer 

int 4 32-bit signed integer 

unsigned 
int 

4 32-bit unsigned integer 

long 4 32-bit signed integer (same as int) 

float 4 32-bit IEEE-754 floating point 

double 8 64-bit IEEE-754 floating point 

void* 4 32-bit address pointer 

 

 

 

C Program to Compute Checksum 

of 64-Word Packet 

#include <stdio.h> 

#include <stdint.h> 



 

#define PACKET_SIZE 64 

 

// Function to compute checksum 

uint32_t compute_checksum(uint32_t packet[PACKET_SIZE]) { 

    uint32_t checksum = 0; 

    for (int i = 0; i < PACKET_SIZE; i++) { 

        checksum += packet[i]; 

    } 

    return checksum; 

} 

 

int main() { 

    // Sample data packet 

    uint32_t data_packet[PACKET_SIZE]; 

    for (int i = 0; i < PACKET_SIZE; i++) { 

        data_packet[i] = i + 1;  // Fill with values 1 to 64 

    } 

 

    uint32_t result = compute_checksum(data_packet); 

    printf("Checksum: %u\n", result); 

 

    return 0; 

} 
 

Sample Compiler Output 

 

compute_checksum: 

    PUSH    {r4, lr} 

    MOV     r2, #0          ; checksum = 0 

    MOV     r3, #0          ; i = 0 

.L2: 

    CMP     r3, #64 

    BGE     .L3 

    LDR     r1, [r0, r3, LSL #2]   ; load packet[i] 

    ADD     r2, r2, r1             ; checksum += packet[i] 

    ADD     r3, r3, #1             ; i++ 

    B       .L2 

.L3: 

    MOV     r0, r2 

    POP     {r4, pc} 

 

Q. 5.b 



1. for Loop 

✅ Best when the number of iterations is known in advance. 

c 

CopyEdit 

for (initialization; condition; increment) { 
    // Loop body 
} 
for (int i = 0; i < 5; i++) { 

    printf("%d\n", i); 

} 

2. while Loop 

✅ Best when the number of iterations is not known, but depends on a condition. 

c 

CopyEdit 

while (condition) { 
    // Loop body 
} 
int i = 0; 

while (i < 5) { 

    printf("%d\n", i); 

    i++; 

} 

3. do...while Loop 

✅ Best when the loop must run at least once, even if the condition is false initially. 

c 

CopyEdit 

do { 
    // Loop body 
} while (condition); 
int i = 0; 

do { 



    printf("%d\n", i); 

    i++; 

} while (i < 5); 

 



 
Q.5.c 
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Q.7.b 













 
 

Q.8.a 
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Q.9.a 
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Q.10.a 





 
Q.10.b 
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