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@x. Marks: 100
Note: 1. Answer any FIVE full questions, choosing ONE full question from each module.
2 M : Marks , L: Bloom’s level C: Course outcomes. b

L Module - 1 L] C
Q.1 | a. | Explainthe major design rules to implement the RISC design philosophy. |08 |12 | co1
b. | Differentiate between RISC and CISC processors. 04|12 | CO1
c. é:,{plain ARM core data flow model, with neat diagram. 08 L2 | CO1
| OR |
1 Q.2 |a.|With the help of bit layout diagram, explain Current Program Status 08| L2 | CO1
| Register (CPSR) of ARM. |
b. | With an g:x;_ample:, explain the pipeline in AT{M 05| L2 | CO1
c. | Discuss the following with diagramé: ‘ 107| L2 | CO1
(i) Von-Neuman arshitecture with cache ‘ <N
(i) Harvard rchitecture with TCM!* \ ; \ : ‘t, o '
/ \ T 1 \ 4‘
F ~ Module—2 ! B |
Q.3 [ a. | Explain the different data processing instructions in ARM. -~ | 08| L2|CO2
b. [ Explain the different branch imstructions of ARM. " [0a| 12| CO2
c. | Explain the following ARM instructions: ~ 08| L2 | CO2

() MOV 'm,n (i) ADDSty, 12,14 (iii) BIC 13, 13, 75
(1v) CMP .13, 14 ) UMLAL I}, 2, 13, T4
. ~ |

T)A a. | Explain the’ differept load store instgllc{tiohs in ARM. . ' 08| L2 | CO2

. b. | With al}l} examp‘le, explain full dcsceﬁdiné stack operations. - 07 | L2 | CO2

c. Devclo{p an ALP to find the sum of ﬁrs;cJ 10 integer numbers. 7 05| L3 | CO2
Moduie -3

Q.5 | a. [ List out basic C data types used in ARM. Develop a C program to obtain | 08 | L2 | CO3
checksums of a data packet containing 64 words and write the compiler
output for the above function.

b. Ex;))]a:in the C looping structures in ARM. 08 | L2 CO3

/
¢. | Explain pointer aliasing in ARM. 04| L2 | CO2
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Q.6 |a. mmpie explain function calls in ARM

]

\k_,__—
b. | Explain regxster allocatnon in ARM

code to ARM.

.C. Wmefnot“ on portablllty 1ssues when portmg C

v

) Module - 4 : 3 "
Q.7 | a. | Explain th the ARM processor exceptions and modes, vector table and (10| L2 | CO4
' exception prlormes ;
b. | Explain the interrupts in ARM. 10| L2 | CO4
; . OR N -: ;
Q.8 |a. Explam the ARM ﬁrmware suite and red hat redboot. o 10 ( L2 | CO4
b. Exp’lain the sandstone directory layout and sandstone code structure. : B 10 | L2 | CO4
[ P 3
| i .Module - 5

Q.9 [ a. | Explain'the basic archjtecture of a cache memory and basic operatlon of 3|10 | L2 | CO5

cache contro Iler. {*, :
b. | With ‘aj“.neat dlagram, ex-plairi a4 KB, four Wa-)lf set assoc_;iative‘ cache. %" 10| L2 | COS5
* Y SNl OR: L T TR
Q.10 . ’EWETTrﬁab@fffé‘r;aﬁa‘ﬁq}lsurmg cache ifﬁgiency. o a qs L2 |-CO5 ;
‘r b. Explam%f cache policy. ‘ : i | : o 112 | L2 | COS5
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VTU SCheme
Q. la

The RISC philosophy is implemented with four major design rules:

a. Instructions: RISC has a reduced number of instruction classes. These classes
provide simple operations so that each is executed in a single cycle. Each
instruction is a fixed length to allow the pipeline to fetch future instructions before
decoding the current instruction.

b. Pipeline: The processing of instructions is broken down into smaller units that can
be executed in parallel by pipelines.

c. Register: RISC machines have a large general-purpose register set. Any register
can contain either data or an address.

d. Load-store architecture: The processor operates on the data held in registers.
Separate load and store instructions transfer data between the register bank and
external memory.

These design rules allow a RISC processor to be simpler, and thus the core can operate
at higher clock speed.
Q.1b
Difference between RISC and CISC
RISC CISC
RISC CISC
Greate r ; —_—
fin':}\lz‘xily | Compiler Compiler J
Code Code
Generation Generation
S Greater
Processor Complexity
Emphasizes on compiler complexity Emphasizes on processor complexity
Simple but powerful instructions Instructions are more complicated
Executes instruction in single cycle Takes many cycle to execute
Instructions are of fixed length Instructions are of variable length
Have large set of general purpose registers Have limited set of general purpose registers
Any register can contain either data or an | Dedicated registers for specific purpose
address
Separate load and store instructions transfer | MOV instructions can be used to transfer
data between the register and external memory. | between register and memory.
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Figure: ARM Core dataflow Model

A programmer can think of an ARM core as functional units connected by data buses, as shown
in the following Figure.

The arrows represent the flow of data, the lines represent the buses, and the boxes represent either
an operation unit or a storage area.

Data enters the processor core through the Data bus. The data may be an instruction to execute

or a data item.

Figure shows a Von Neumann implementation of the ARM—data items and instructions share the
same bus. (In contrast, Harvard implementations of the ARM use two different buses).

The instruction decoder translates instructions before they are executed. Each instruction
executed belongs to a particular instruction set.

The ARM processor, like all RISC processors, uses load-store architecture—means it has two
instruction types for transferring data in and out of the processor:

-load instructions copy data from memory to registers in the core

-store instructions copy data from registers to memory

There are no data processing instructions that directly manipulate data in memory. Thus, data



processing is carried out in registers.

Data items are placed in the register file—a storage bank made up of 32-bit registers.

Since the ARM core is a 32-bit processor, most instructions treat the registers as holding signed or
unsigned 32-bit values. The sign extend hardware converts signed 8-bit and 16-bit numbers to 32-
bit values as they are read from memory and placed in a register.

ARM instructions typically have two source registers, Rn and Rm, and a single result or destination
register, Rd. Source operands are read from the register file using the internal buses

A and B, respectively.

The ALU (arithmetic logic unit) or MAC (multiply-accumulate unit) takes the register values Rn

and Rm from the A and B buses and computes a result. Data processing instructions write the
result in Rd directly to the register file.

Load and store instructions use the ALU to generate an address to be held in the address register

and broadcast on the Address bus.

One important feature of the ARM is that register Rm alternatively can be preprocessed in the
barrel shifter before it enters the ALU. Together the barrel shifter and ALU can calculate a wide
range of expressions and addresses.

After passing through the functional units, the result in Rd is written back to the register file using
the Result bus.

For load and store instructions the Incrementer updates the address register before the core reads

or writes the next register value from or to the next sequential memory location.

The processor continues executing instructions until an exception or interrupt changes the normal
execution flow.

Q.2a
CPSR (Current Program Status Reqister)

Q6. Explain the various fields in current program status register (CPSR) with neat diagram.

Answer: Figure below shows the basic layout of a generic program status register.

Fields | Flags — »« — Status ——»le—— Extension—»«— Control ——»|

Bit 31302928 7 654 0
NIZIC|IV I EIT Mode
Function | |
[ \
Condition Interrupt Processor
flags Masks Mode

Thumb
state

e The cpsr is divided into four fields, each 8 bits wide: flags, status, extension and control.
e Incurrent designs the extension and status fields are reserved for future use.
e The control field contains the processor mode, state and interrupts mask bits.



e The flag field contains the condition flags.
e The following table gives the bit patterns that represent each of the processor modes in the cpsr.
Mode Mode[4:0]
Abort 10111
Fast interrupt request 10001
Interrupt request 10010
Supervisor 10011
System 11111
Undefined 11011
User 10000
e When cpsr bit 5, T=1, then the processor is in Thumb state. When T=0, the processor is in ARM
state.
e The cpsr has two interrupt mask bits, 7 and 6 (I and F) which control the masking Interrupt request
(IRQ) and Fast Interrupt Request (FIR).
e Condition flags are updated by comparisons and the result of ALU operations that specify the S
instruction suffix.
e For example, if SUBS subtract instruction results in a register value of zero, then the Z flag in the
cpsr is set.
e The following table shows the conditional flags:
Flag Flag Name Set when
N Negative Bit 31 of the result is a binary 1
Z Zero The result is zero, frequently used to indicate equality
C Carry The result causes an unsigned carry
\% Overflow The result causes a signed overflow
Q.2.b
e Pipeline is the mechanism to speed up execution by fetching the next instruction while other
instruction are being decoded and executed.
e Figure 1 shows the ARMY7 three-stage pipeline.
a Y A M\ A A
| Fetch |~ {» Decode |- »|Execute| |
(Vi AV AV AV \/ AV
Figure 1: ARM7 Three-stage pipeline
e Fetch loads an instruction from memory.
e Decode identifies the instruction to be executed.
e Execute processes the instruction and writes the result back to a register.
e Figure 2 illustrates the pipeline using a simple example. It shows a sequence of three instructions
being fetched, decoded and executed by the processor.
e Each instruction takes a single cycle to complete after the pipeline is filled.

0 Inthe first cycle, the core fetches the ADD instruction from the memory.
0 Inthe second cycle, the core fetches the SUB instruction and decode the ADD instruction.



0 In the third cycle, the core fetches CMP instruction from the memory, decode the SUB
instruction and execute the ADD instruction.

0 The ADD instruction is executed, the SUB instruction is decoded, and the CMP instruction
is fetched. This procedure is called filling the pipeline.

Fetch Decode Execute

cyote 1 (] ADD [+ 4o H-6 )
Time | yoez () sue ()5 ADD [} # ()
Cydte 3 (| OMP (i sus [+ apD [

v

The pipeline design for each ARM family differs. For example, the ARM9 core increases the
pipeline length to five stages as shown in the figure below.

IFetch | »Decode > Execute| > Memory > Wiite

The ARM10 increases the pipeline length still further by adding a sixth stage as shown in the figure
below.

" Fetch | »lssue |+ P Decode - Execute - »Memory - Wite

L

As the pipeline length increases the amount of work done at each stage is reduced, which allows
the processor to attain a higher operating frequency. This in turn increases the performance.
Pipeline Executing Characteristics

a. The ARM pipeline has not processed an instruction until it passes completely through the
execute stage. For example, an ARM7 pipeline (with three stages) has executed an instruction
only when the fourth instruction is fetched. Figure below shows an instruction sequence on an
ARMY pipeline.



Fetch Decode Execute

r
Time | Cycle | MSR IFtc?’VC

Cycle2 ((ADD ) mcfglc
Cycle3  (_AND (oo ) m?ss;c

Cycled  ( SUB ) AND ) (‘00 )
ycle L J !

In the execute stage, the pc
always points to the address of the instruction plus 8 bytes. In other words, the pc always points to the
address of the instruction being executed plus two instructions ahead as shown in figure 2 below

Time 0x8000 LDR pc, [pc,#0]
0x8004 NOP
0x8008 DCD jumpAddress

Fetch Decode Execute
( oco ) nop ) LOR )
pc+8
(0x8000 + 8)

Figure 2: Example: pc = address + 8
The execution of a branch instruction or branching by the direct modification of the pc causes the
ARM core to flush its pipeline.
a. ARMI10 uses branch prediction, which reduces the effect of a pipeline flush by predicting
possible branches and loading the new branch address prior to the execution of the instruction.
b. Aninstruction in the execute stage will complete even though an interrupt has been raised.

Q.2.C
There are three core extensions wrap around ARM processor: cache and tightly coupled memory, memory
management and the coprocessor interface.
1. Cache and tightly coupled memory: The cache is a block of fast memory placed between main
memory and the core. With a cache the processor core can run for the majority of the time without
having to wait for data from slow external memory.
0 ARM has two forms of cache. The first found attached to the Von Neumann-style cores. It

combines both data and instruction into a single unified cache as shown in the figure 1
below.

[ ARM core )

[L'niﬁud cach-:]

s -
L Logic and control j

- { AMBA bus interface unit —— j Main memory |

On-chip AMBA bus
Figure 1: A simplified Von Neumann architecture with cache.




0 The second form, attached to the Harvard-style cores, has separate cache for data and
instruction as shown figure 2

Figure 2: A
Harvard
with TCMs.

0o Acache
overall
will not
execution.

0 But for

L ARM core

I

i 2
Logic and control

D I |
( Data [ Instruction
kTC M J TCM

D

L { AMBA bus interface unit —

D+1T

B

R
El Main memory |
s

On-chip AMBA bus

systems it is paramount that code execution is deterministic.
0 This is achieved using a form of memory called tightly coupled memory (TCM).
0 TCM is fast SRAM located close to the core and guarantees the clock cycles required to
fetch instructions or data.

Q3. a

Data Processing Instructions

simplified
architecture

provides an
increase in
performance but
give predictable

real-time

® The data processing instructions manipulate data within registers. They are move
instructions, arithmetic instructions, logical instructions, compare instructions and multiply

instructions.

Most data processing instructions can process one of their operands using the barrel shifter.
If S is suffixed on a data processing instruction, then it updates the flags in the cpsr.



Syntax: <instruction> {<cond>} {S} Rd, N

MoV Move a 32-bit value into a register Rd=N

MVN move the NOT of the 32-bit value into a register Rd =~N

ARITHMETIC INSTRUCTIONS:
e The arithmetic instructions implement addition and subtraction of 32-bit signed and
unsigned values.
Syntax: <instruction>{<cond>} {S} Rd, Rn, N

ADC | add two 32-bit values and carry Rd = Rn+ N+ carry
ADD | add two 32-bit values Rd=Rn+ N
RSB | reverse subtract of two 32-bit values Rd = N — Rn

RSC | reverse subtract with carry of two 32-bit values | Rd = N — Rn—!(carry flag)

SBC | subtract with carry of two 32-bit values Rd = Rn — N—!(carry flag)
SUB | subtract two 32-bit values Rd=Rn—N
LOGICAL INSTRUCTIONS:

e Logical instructions perform bitwise operations on the two source registers.
Syntax: <instruction> {<cond>} {S} Rd, Rn, N

AND logical bitwise AND of two 32-bit values Rd=Rn&N
ORR logical bitwise OR of two 32-bit values Ri=En|N
EOR logical exclusive OR of two 32-bit values Rd=Rn"™N
BIC logical bit clear (AND NOT) Rd = Rn& ~N




COMPARISON INSTRUCTIONS:
e The comparison instructions are used to compare or test a register with a 32-bit value.
They update the cpsr flag bits according to the result, but do not affect other registers.
e After the bits have been set, the information can be used to change program flow by
using conditional execution.
Syntax: <instruction> {<cond>} Rn, N

CMN compare negated flags setasaresultof Rn+ N
CMP compare flags set as a result of Rn— N
TEQ test for equality of two 32-bit values flags set as a result of Rn * N
TST test bits of a 32-bit value flags set as a result of Rn& N

MULTIPLY INSTRUCTIONS:
e The multiply instructions multiply the contents of a pair of registers and depending upon
the instruction, accumulate the results in another register.
e The long multiplies accumulate onto a pair of registers representing a 64-bit value.
Syntax: MLA {<cond>} {S} Rd, Rm, Rs, Rn
MUL {<cond>} {S} Rd, Rm, Rs

MLA multiply and accumulate Rd = (Rm*Rs) + Rn

MUL multiply Rd = Rm*Rs

Syntax: <instruction> {<cond>} {S} RdLo, RdHi, Rm, Rs

SMLAL | signed multiply accumulate long | [RdHi, RdLo] = [RdHi, RdLo] + (Rm*Rs)

SMULL | signed multiply long [RdHi, RdLo] = Rm*Rs

UMLAL | unsigned multiply accumulate [RdHi, Rdlo] = [RdHi, RdlLo] + (Rm *Rs)
long

UMULL | unsigned multiply long [RdHi, RdLo] = Rm*Rs

Q.3b



A branch instruction changes the flow of execution or is used to call a routine.
This type of instruction allows programs to have subroutines, if-then-else structures, and

loops.

The change of execution flow forces the program counter (pc) to point to a new address.
Syntax: B{<cond>} label

BL{<cond>} label
BX{<cond=>} Rm
BLX{<cond>)} label | Rm

B branch pc=1abel
BL | branch with link pc=1abel
Ir=address of the next instruction after the BL
BX | branch exchange pc=Rm & Oxfffffffe, T=Rm & 1
BLX | branch exchange with link | pc=1abel, T=1
pc=Rm & Oxfffffffe, T=Rm & 1
Ir=address of the next instruction after the BLX

T refers to the Thumb bit in the cpsr.

When instruction set T, the ARM switches to Thumb state.
The example shown below is a forward branch. The forward branch skips three

instructions.

B forward

ADD rl, rz, #

ADD rO, r6, #2

ADD r3, r7, #
forward

SUB rl, r2, #

e The branch with link (BL) instruction changes the execution flow in addition
overwrites the link register Ir with a return address. The example shows below a
fragment of code that branches to a subroutine using the BL instruction.

BL
CMP
MOVEQ

subroutine

subroutine : branch to subroutine
rl, # ; compare rl with 5
rl, #0 ; if (rl==5) then rl =0

<subroutine code=

MOV

pc, Ir ; return by moving pc = Ir

e The branch exchange (BX) instruction uses an absolute address stored in register Rm.
It is primarily used to branch to and from Thumb code. The T bit in the c¢psr is updated
by the least significant bit of the branch register.

e Similarly, branch exchange with link (BLX) instruction updates the T bit of the cpsr
with the least significant bit and additionally sets the link register with the return
address.



Q.3.c

mov ri, r2
- Copy the value of r2 into ri.
add r1, r2, r4
- Add r2 and r4, store result in ri.
bic r3, r2, r5
- Clear bits in r2 where r5 has 1s, store in r3.
(r3 = r2 & (~r5))

cmp r3, r4

— Compare r3 and r4 by subtracting (sets flags, no result stored).

UMLAL ri, r2, r3, r4
— Multiply r3 x r4, add to 64-bit value in r2 :r1, store result in r2 : r1.

Q4.a
LOAD-STORE INSTRUCTIONS ( Memory Access Instructions)

e Load-store instructions transfer data between memory and processor registers. There are
three types of load-store instructions: single-register transfer, multiple-register transfer,
and swap.

a) Single-Register Transfer

e These instructions are used for moving a single data item in and out of a register.

e Here are the various load-store single-register transfer instructions.

Syntax: <LDR|STR>{<cond>}{B} Rd, addressing*
LDR{<cond>}SB|H|SH Rd, addressing?
STR{<cond>}H Rd, addressing?




LDR | load word into a register

Rd <- mem32[address|

STR | save byte or word from a register

Rd > mem32[address]
[ 4 d

LORE | load byte into a register

Rd <- mem8|address]

STRE | save byte from a register

Rd - mem8|address]

LDRH load halfword into a register Rd <- mem16[address]
STRH | save halfword into a register Rd -> mem16[address]
LDRSB | load signed byte into a register Rd <- SignExtend

(mem8[address])

LDRSH | load signed halfword into a register | Rd <- SignExtend

(mem16[address])

1. LDRO, [r1]

Example:

0 This instruction loads a word from the address stored in register rl1 and places it

into register r0.

2. STR0, [r1]

e This instruction goes the other way by storing the contents of register r0 to the

address contained in register rl.

A full descending stack is a stack that grows downward (decreasing memory addresses),
and the stack pointer (SP) always points to the last used (full) location in the stack.

Full — SP points to a full (occupied) location.

Descending — Stack grows to lower addresses (top moves down).
STMFD SP!, {r0} ; Store r0 in stack, Full Descending (STMFD)

STMFD = Store Multiple Full Descending
SP! = Update SP after storing (post-decrement)

{r@} = Register to push
DecrementSP—-SP = SP - 4

Store r@ at new SP address
When popping (restoring) a value:

asm
CopyEdit
LDMFD SP!, {ro} ; Load r@ from stack

, Full Descending (LDMFD)



e | DMFD = Load Multiple Full Descending
e SP! =Update SP after loading (post-increment)

e {r0} =Register to pop into

This does:

1. Load r© from address at SP

2. IncrementSP—-SP = SP + 4

Example:

STMFD SP!, {r0, r1, r2} ; Pushr0, r1, r2 (r2 at lowest addr)
LDMFD SP!, {r0, r1, r2} ; Popr0, rl, r2

Assume initial SP = 0x1000

Address  Value
OxOFF4  r2 value
OxOFF8  rl value
OxOFFC  r0 value

0x1000  (old SP)

New SP = OxO0FF4 (after pushing 3 registers)
Q4.c

AREA SUM10, CODE, READONLY
EXPORT __main
__main
ENTRY
MOV R1, #0X01
MOV R2, #0

LOOP ADD R2, R2, R1
ADD R1, R1, #1
CMP R1, #0X0B
BNE LOOP



LDR RO, = Result
STRB R2, [RO]
STOP B STOP

AREA data2, DATA, READWRITE

Result DCB 0x0
END

output:
R1=01
R2=00
R2=37
Result is 55 but in the hexadecimal it is 37 so it will gives output as 37

Q.5.a

On most 32-bit ARM systems, the basic C data types and their typical sizes are:

Data Type Size (Bytes) Description
char 1 8-bit character
short 2 16-bit integer
int 4 32-bit signed integer
unsigned 4 32-bit unsigned integer
int
long 4 32-bit signed integer (same as int)
float 4 32-bit IEEE-754 floating point
double 8 64-bit IEEE-754 floating point
void* 4 32-bit address pointer

C Program to Compute Checksum
of 64-Word Packet

#include <stdio.h>
#include <stdint.h>



#define PACKET_SIZE 64

// Function to compute checksum
uint32_t compute_checksum(uint32_t packet[PACKET_SIZE]) {
uint32_t checksum = 0;
for (int i = 0; 1 < PACKET_SIZE; i++) {
checksum += packet[i];

ky

return checksum;

by

int main() {
/I Sample data packet
uint32_t data_packet[PACKET_SIZE];
for (int i = 0; i < PACKET_SIZE; i++) {
data_packet[i] = i + 1; // Fill with values 1 to 64

uint32_t result = compute_checksum(data_packet);
printf("Checksum: %u\n", result);

return O;

¥

Sample Compiler Output

compute_checksum:

PUSH {r4,Ir}
MOV  r2, #0 ; checksum =0
MOV 13, #0 ;1=0
L2:
CMP 13, #64
BGE .L3
LDR r1,[r0, r3, LSL #2] ; load packet[i]
ADD r2,r2,rl ; checksum += packet][i]
ADD r3,r3,#1 ; I+t
B L2
L3:
MOV 10, r2
POP  {r4, pc}

Q.5b



1. for Loop

«Best when the number of iterations is known in advance.

c
CopyEdit
for (initialization; condition; increment) {
// Loop body
}
for (inti=0;i<5; i++){
printf(**%d\n™, i);
}

2.while Loop

¥/Best when the number of iterations is not known, but depends on a condition.

C

CopyEdit

while (condition) {

// Loop body

}

inti=0;

while (i <5){
printf(*"%d\n™', i);
i++;

}

3.do...while Loop

¥Best when the loop must run at least once, even if the condition is false initially.

C
CopyEdit
do {

// Loop body
} while (condition);
inti=0;
do {



printf(**%d\n", i);
i++;

} while (i < 5);

The termination condition

SUBS rl1,rl1,#1 ; compare i with 1, i=i-1
BGT loop ; if (i+1>1) goto loop

SUB r1,rl,#1 ; i--
CMP r1,#0 ; compare i with O
BGT loop ; if (i=0) goto loop

il=0 for signed or unsigned loop counters. It saves one instruction over the
condition i>0 for signed i.

Loops with a Fixed Number of Iterations

int checksum_v5(int *data)

{

unsigned int i;

int sum=0;

for (i=0; i<64; i++)
{

sum += *(data++);
}

return sum;

}



Loops Using a Variable Number of Iterations

int checksum_v7(int *data, unsigned int N)

{

int sum=0;

for (; N!=0; N--)

{

sum += *(data++);
}

return sum;

}

Q.5.c



Pointer Aliasing

* Two pointers are said to alias when they point to the same
address.

*» If you write to one pointer, it will affect the value you read
from the other pointer.

¢ In a function, the compiler often doesn’t know which pointers
can alias and which pointers can’t. The compiler must be very
pessimistic and assume that any write to a pointer may affect
the value read from any other pointer, which can significantly
reduce code efficiency.

void timers_v1(int *timer1, int *timer2, int *step)
{

*timerl += *step;

*timer2 += *step;

}

timers_v1

LDR r3,[r0,#0] ; r3 = *timerl
LDR r12,[r2,#0] ; r12 = *step
ADD r3,r3,r12 ;r3 +=r12
STR r3,[r0,#0] ; *timerl =r3
LDR r0,[r1,H#0] ; rO = *timer2
LDR r2,[r2,#0] ; r2 = *step
ADD r0,rO,r2 ; rO +=r2

STR r0,[r1,#0] ; *timer2 =t0
MOV pc,rl4 ; return



Usually a compiler optimization called common subexpression
elimination would kick in so that *step was only evaluated once,
and the value reused for the second occurrence.

However, the compiler can’t use this optimization here. The
pointers timerl and step might alias one another.

In other words, the compiler cannot be sure that the write to
timerl doesn’t affect the read from step.

In this case the second value of *step is different from the first and
has the value *timer1.

This forces the compiler to insert an extra load instruction.

Structure

typedef struct {int step;} State;
typedef struct {int timerl, timer2;} Timers;
void timers_v2(State *state, Timers *timers)
{
timers->timerl += state->step;
timers->timer2 += state->step;
}

Q.6.a



Function Calls

ARM Procedure Call Standard (APCS): how to pass function arguments
and return values in ARM registers.

ARM-Thumb Procedure Call Standard (ATPCS):covers ARM and Thumb
interworking as well.

sp+ 16 | Argument 8
sp+ 12 | Argument 7
sp+8 Argument 6

sp+4 Argument 5

sp Argument 4
r3 Argument 3
r2 Argument 2
rl Argument |
r0 Argument 0 | Return value

Figure 5.1 ATPCS argument passing.

Four-register rule

*» Functions with four or fewer arguments are far more efficient
to call than functions with five or more arguments.

¢ For functions with four or fewer arguments, the compiler can
pass all the arguments in registers.

¢ For functions with more arguments, both the caller and callee
must access the stack for some arguments.

* For C++ the first argument to an object method is the this
pointer. This argument is implicit and additional to the explicit
arguments.

¢ If your C function needs more than four arguments, or your C++

method more than three explicit arguments, then it is almost

always more efficient to use structures.

Group related arguments into structures, and pass a structure

pointer rather than multi?le arguments.

Which arguments are related will depend on the structure of

your software.
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Register Allocation

» Provided the compiler is not using software stack checking or a

frame pointer, then the C compiler can use registers rO to r12 and
r14 to hold variables. It must save the callee values of r4 to r11 and
rl4 on the stack if using these registers.

In theory, the C compiler can assign 14 variables to registers without
spillage.

In practice, some compilers use a fixed register such as r12 for
intermediate scratch working and do not assign variables to this
register.

Also, complex expressions require intermediate working registers to
evaluate. Therefore, to ensure good assignment to registers, you
should try to limit the internal loop of functions to using at most 12
local variables.

Efficient Register Allocation

m Try to limit the number of local variables in the internal loop of
functions to 12. The compiler should be able to allocate these to ARM
registers.

= You can guide the compiler as to which variables are important by
ensuring these variables are used within the innermost loop.
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Portability Issues-char type

On the ARM, char is unsigned rather than signed as for many other
processors.

A common problem concerns loops that use a char loop counter i and

the continuation condition i > 0, they become infinite loops. In this
situation, armcc produces a warning of unsigned comparison with zero.

You should either use a compiler option to make char signed or change
loop counters to type int.

Portability Issues-int type

Some older architectures use a 16-bit int.

May cause problems when moving to ARM’s 32-bit int type although
this is rare nowadays.

Expressions are promoted to an int type before evaluation.
Therefore if i =-0x1000,

the expression i == 0xFOO0OQ is true on a 16-bit machine

but false on a 32- bit machine.

Porta b|||ty |SSU€S-UnaIigned data pointers

Some processors support the loading of short and int typed values
from unaligned addresses.

A C program may manipulate pointers directly so that they become
unaligned.

for example, by casting a char * to an int *.
ARM architectures up to ARMV5TE do not support unaligned pointers.

To detect them, run the program on an ARM with an alignment
checking trap.

For example, you can configure the ARM720T to data abort on an
unaligned access.



Porta blllty |Ssues-endian assumptions

C code may make assumptions about the endianness of a memory
system, for example, by casting a char * to anint *.

If you configure the ARM for the same endianness the code is
expecting, then there is no issue.

Otherwise, you must remove endian-dependent code sequences and
replace them by endian-independent ones.

Portabil Ity |SSueS-Function prototyping

The armcc compiler passes arguments narrow, that is, reduced
to the range of the argument type.

If functions are not prototyped correctly, then the function may return
the wrong answer.

Other compilers that pass arguments wide may give the correct answer
even if the function prototype is incorrect.

Always use ANSI prototypes.
Portability Issues-use of bit-fields

The layout of bits within a bit-field is implementation and endian

dependent. If C code assumes that bits are laid out in a certain order,
then the code is not portable.



Porta blllty ISsues-use of enumerations

Although enum is portable, different compilers allocate different
numbers of bytes to an enum.
The gcc compiler will always allocate four bytes to an enum

type. The armcc compiler will only allocate one byte if the enum takes
only eight-bit values.

Therefore you can’t cross-link code and libraries between different
compilers if you use enums in an API structure.

Porta bl|lty ISsues-inline assembly

Using inline assembly in C code reduces portability between
architectures.

You should separate any inline assembly into small inlined functions
that can easily be replaced.

It is also useful to supply reference, plain Cimplementations

of these functions that can be used on other architectures, where this
is possible.

Porta blllty ISSues-The volatile keyword

Use the volatile keyword on the type definitions of ARM
memory-mapped peripheral locations.

This keyword prevents the compiler from optimizing away the memory
access.

It also ensures that the compiler generates a data access of the correct
type.
For example, if you define a memory location as a volatile short

type, then the compiler will access it using 16-bit load and store
instructions LDRSH and STRH.
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« What is an exception?

An exception is any condition that needs to halt
normal execution of the instructions

« Examples
*Resetting ARM core
*Failure of fetching instructions
*HWI
SWI

= Exceptions and modes

Each exception causes the ARM core to enter a specific
mode.

Exception Mode Purpose

Fast Interrupt Request FIQ Fast interrupt handling

Interrupt Request IRQ Normal interrupt handling

SWI and RESET Svc Protected mode for OS

Pre-fetch or data abort ABT Memory protection handling
Undefined Instruction UND SW emulation of HW coprocessors




= Vector table

It is a table of addresses that the ARM core branches to
when an exception is raised and there is always branching
instructions that direct the core to the ISR.

ﬂ Address Exception Mode on entry
0x00000000

- - Reset Supervisor
At this place in memory, we
find a branching instruction

0x00000004 | Undefined instruction | Undefined

0x00000008 Software interrupt Supervisor

Idr pc, [pc, #_IRQ_handler_offset] 0x0000000C | Abort (prefetch) Abort
0x00000010 | Abort (data) Abort
0x00000014 | Reserved Reserved

L 0x00000018 | IRQ IRQ
0x0000001C | FIQ FiQ

o

= EXxception priorities

itself can be
interrupted during
execution or not?

decide which of the
currently raised

exceptions is more

important

Exception Priority Ibit | Fbit
Reset 1 1 1
Both are caused by an Data Abort 2 !
instruction entering FIQ 3 1 1
the execution stage of IRQ 4 1
the ARM instruction Prefetch abort 5 1
pipeline SWI 6 1
{ Undefined instruction | 6 1

Q.7.b
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« Assigning interrupts

It is up to the system designer who can decide
which HW peripheral can produce which interrupt.

But system designers have adopted a standard
design for assigning interrupts:

*SWI are used to call privileged OS routines.
*IRQ are assigned to general purpose interrupts like

periodic timers.
*FIQ is reserved for one single interrupt source that
requires fast response time.

= Interrupt latency

It is the interval of time from an external interrupt
signal being raised to the first fetch of an instruction
of the ISR of the raised interrupt signal.

System architects try to achieve two main goals:
*To handle multiple interrupts simultaneously.

*To minimize the interrupt latency.

And this can be done by 2 methods:

«allow nested interrupt handling
-give priorities to different interrupt sources



iIRQ and FIQ Exceptions

1 « The processor changes to a specific interrupt request mode, which reflects the

interrupt being raised.

2. The previous mode’s cpsr is saved into the spsr of the new interrupt request
mode.

3. The pcis saved in the Ir of the new interrupt request mode.

4. Interrupt/s are disabled—either the IRQ or both IRQ and FIQ exceptions are
disabled in the cpsr. This immediately stops another interrupt request of the same
type being raised.

5. The processor branches to a specific entry in the vector table.

iInterrupt Request (IRQ).

IRQ
1. [nzcvqj i ft__usr}
A A4
2. | nzcvqjIft_irq
Return to spsr_'i rg=cpsr
user mode rl4 irq=pc
code pc=0x18
v
3. | Software

handler




iFast Interrupt Request (FIQ).

FI1Q

1. (nzcvq:j i ft_usr}

.

A4
nzcvqjIFt_figq

!»)

Return to spsr_fiqg=cpsr
user mode rl4 fiqg=pc
code pc=0x1c

B
3. | Software
handler

Interrupts

= Enabling and disabling Interrupt

This is done by modifying the CPSR, this is done using only
3 ARM instruction:

MRS To read CPSR MSR

To store in CPSR BIC

Bit clear instruction ORR

OR instruction

Enabling an IRQ/FIQ Disabling an IRQ/FIQ
Interrupt: Interrupt:

MRS r1, cpsr MRS 1, cpsr

BICr1, r1, #0x80/0x40 ORR 1, r1, #0x80/0x40

MSR cpsr c, 1 MSR cpsr _c, r1



| Enabling FIQ and IRQ Exceptions

cpsrvalue  1RQ FIQ
Pre nzevgIFt_SVC nzevqjlFt_SVC
Code enable_irg enable fig
MRS rl, cpsr MRS rl, cpsr
BIC rl, rl, #0x80 BIC rl, rl, #0x40
MSR  cpsr c, rl MSR  cpsr c, rl
Post nzevqjiFt_SVC nzevqlft_SVC

*Disabling an interrupt

cpst  IRQ FIQ

Pre  nzevgjift_SVC nzevgjift_SVC

Code disable irqg disable fig
MRS rl, cpsr MRS rl, cpsr
ORR rl, rl1, #0x80 ORR rl, rl, #0x40
MSR cpsr ¢, rl MSR cpsr ¢, rl

Post  nzevgjlft_SVC nzevgjiFt_SVC




« Interrupt stack

Stacks are needed extensively for context switching
between different modes when interrupts are raised.

The design of the exception stack depends on two factors:
*OS Requirements.
*Target hardware.

A good stack design tries to avoid stack overflow because it
cause instability in embedded systems.

iInterrupt Handling Schemes

= A nonnested interrupt handler handles and services
individual interrupts sequentially. It

is the simplest interrupt handler.

= A nested interrupt handler handles multiple interrupts
without a priority assignment.

= A reentrant interrupt handler handles multiple interrupts
that can be prioritized.

= A prioritized simple interrupt handler handles prioritized
interrupts.



i Interrupt Handling Schemes

® A prioritized standard interrupt handler handles higher-priority
interrupts in a shorter

time than lower-priority interrupts.

= A prioritized direct interrupt handler handles higher-priority
interrupts in a shorter time

and goes directly to a specific service routine.

= A prioritized grouped interrupt handler is a mechanism for
handling interrupts that are

grouped into different priority levels.

= A VIC PL190 based interrupt service routine shows how the
vector interrupt controller

(VIC) changes the design of an interrupt service routine.

Nonnested Interrupt Handler

1. Disable interrupt/s

2. Save context

3. Interrupt handler

4. Interrupt service routine
5. Restore context

6. Enable interrupts raised.

Q.8.a
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ﬁe firmware is the deeply embedded, low-level
software that provides an interface between the
hardware and the application/operating system level
software.

It resides in the ROM and executes when power is
applied to the embedded hardware system.

Firmware can remain active after system initialization
and supports basic system operations.

The choice of which firmware to use for a particular
ARM-based system depends upon the specific
application, which can range from loading and executing
a sophisticated operating system to simply relinquishing
control to a small microkernel.

. The bootloader is a small application that

installs the operating system or application
onto a hardware target.

The bootloader only exists up to the point
that the operating system or application is
executing, and it is commonly incorporated
into the firmware.



> 'RedBoot is a firmware tool developed by Red
Hat. It is provided under an open source
license with no royalties or up front fees.
RedBoot is designed to execute on different
CPUs (for instance, ARM, MIPS, SH, and so
on).
It provides both debug capability through
GNU Debugger (GDB), as well as a
bootloader.

> The RedBoot software core is based on a HAL

= Communication—configuration is over serial or Ethernet.
= RedBoot supports a range of network standards, such as
bootp, telnet, and tftp.

= Flash ROM memory management—provides a set of filing
system routines that can

download, update, and erase images in flash ROM.

= In addition, the images can either be compressed or
uncompressed.

= Full operating system support—supports the loading and
booting of Embedded Linux,

Red Hat eCos, and many other popular operating systems. For
Embedded Linux,

RedBoot supports the ability to define parameters that are
passed directly to the kernel upon booting.
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Sandstone Directory Layout

Sandstone can be found on our Website.
The structure follows a standard style.

Summary of Sandstone.

Feature Configuration

Code ARM instructions only
Tool chain ARM Developer Suite 1.2
Image size 700 bytes

Source 17 KB

Memory remapped

Standstone directory layout

[Sand]

I I | |
makefile readme.txt [build] [payload]

| | | | slos.bin

[src]  [obj] [image] [log]

sand.s



Sandstone Code Structure

Sandstone consists of a single assembly file.
The file structure is broken down into a
number of steps, where each step corresponds
to a stage in the execution flow of Sandstone

Sandstone execution flow.

Step Description

1 Take the Reset exception

2 Start initializing the hardware

3 Remap memory

4 Initialize communication hardware

5 Bootloader—copy payload and relinquish control




Cache Architecture

Address issued Cache Cache
by processor core controller memory
31 — R Miss
Directory
Hit store  Status Data
Tag \ = =
[ '—@Q Cache-tag |v |d [word3 [ word2 | word 1 | word0 }Cache
Cache-tag )v |d | word3 | word2 [ word1 | word0 line
12 _< Cache-tag [ v |d |word3 | word2 | word1 | wordO
11 ’
ot } Cache-tag [v[d [word3 [ word2 [word1 | word0
index Cache-tag |v|d [ word3 | word2 [ wordT | word0 || A ddress/data
Cache-tag | v|d |word3 | word2 |word1 | wordO || s
‘;'_. Cache-tag | v |d |word3 | word2 | word1 | wordO
Cache-tag | v |d | word3 | word2 [ word] | wordO
Data -
index j L J
oL ¥

Cache Controller

- The cache controller is hardware that copies code or data from main memory to cache

memory automatically.

It performs this task automatically to conceal cache operation from the software it supports.

The same application software can run unaltered on systems with and without a cache.

The cache controller intercepts read and write memory requests before passing them on to

the memory controller. It processes a request by dividing the address of the request into

three fields, the tag field, the set index field, and the data index field.

- The controller uses the set index portion of the address to locate the cache line within the
cache memory that might hold the requested code or data. This cache line contains the
cache-tag and status bits, which the controller uses to determine the actual data stored
there.

v i

- The controller then checks the valid bit to determine if the cache line is active, and
compares the cache-tag to the tag field of the requested address.

If both the status check and comparison succeed, it is a cache hit.

If either the status check or comparison fails, it is a cache miss.

On a cache miss, the controller copies an entire cache line from main memory to cache
memory and provides the requested code or data to the processor.

The copying of a cache line from main memory to cache memory is known as a cache line
fill.

On a cache hit, the controller supplies the code or data directly from cache memory to the
processor.

To do this it moves to the next step, which is to use the data index field of the address
request to select the actual code or data in the cache line and provide it to the processor.

v
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Figure 12.7 A 4 KB, four-way set associative cache. The cache has 256 total cache lines, which are
separated into four ways, each containing 64 cache lines. The cache line contains four

words.



Set Associativity
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A data or code block from main memory can be allocated to any of the four

ways in a set without affecting program behavior; in other words the storing of

data in cache lines within a set does not affect program execution.

% Two sequential blocks from main memory can be stored as cache lines in the
same way or two different ways.

< The important thing to note is that the data or code blocks from a specific
location in main memory can be stored in any cache line that is a member of
a set.

% The placement of values within a set is exclusive to prevent the same code or

data block from simultaneously occupying two cache lines in a set.

) S Ox3FF
4G main memory

OxFFFFFFFF F

™ )

Tache tag v [d[word3 [ word2 [wordl [ wordo | OX224 ——

0x000
Ox3FF

Way 2
0x00000C00

Cache tag v [d [words [ word2 [word | [word0 | Ox224 ~—|

0x00000800

0x000
Ox3FF

Way 1
0x00000400

1 FLB-{:
0x00000000

0x224 ——|

0x000
Ox3FF

0] Ox224 ——|

0x000

| x| 2. .2 4
tag set index | data index
31 10 9 4 3

Address issued by processor core

Figure 12.8 Main memory mapping to a four-way set associative cache.

e The bit field for the tag is now two bits larger, and the set index bit field is two bits
smaller.

e This means four million main memory addresses now map to one set of four cache
lines, instead of one million addresses mapping to one location.

e The size of the area of main memory that maps to cache is now 1 KB instead of 4 KB.
This means that the likelihood of mapping cache line data blocks to the same set is
now four times higher. This is offset by the fact that a cache line is one fourth less
likely to be evicted.

e The incidence of thrashing would quickly settle down as routine A, routine B, and the
data array would establish unique places in the four available locations in a set.
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Write Buffers

A write buffer is a very small, fast FIFO memory buffer that temporarily holds
data that the processor would normally write to main memory.

In a system without a write buffer, the processor writes directly to main
memory.

In a system with a write buffer, data is written at high speed to the FIFO and
then emptied to slower main memory.

The write buffer reduces the processor time taken to write small blocks of
sequential data to main memory.

The FIFO memory of the write buffer is at the same level in the memory
hierarchy as the L1 cache.

The efficiency of the write buffer depends on the ratio of main memory writes
to the number of instructions executed.

Over a given time interval, if the number of writes to main memory is low or
sufficiently spaced between other processing instructions, the write buffer will
rarely fill.

If the write buffer does not fill, the running program continues to execute out
of cache memory using registers for processing, cache memory for reads and
writes, and the write buffer for holding evicted cache lines while they drain to
main memory.

The efficiency of the write buffer depends on the ratio of main memory writes
to the number of instructions executed.

Over a given time interval, if the number of writes to main memory is low or
sufficiently spaced between other processing instructions, the write buffer will
rarely fill.

If the write buffer does not fill, the running program continues to execute out
of cache memory using registers for processing, cache memory for reads and
writes, and the write buffer for holding evicted cache lines while they drain to
main memory.



A write buffer also improves cache performance.

The improvement occurs during cache line evictions.

If the cache controller evicts a dirty cache line, it writes the cache line to the write buffer instead of

main memory.

> The new cache line data will be available sooner, and the processor can continue operating from
cache memory.

> Data written to the write buffer is not available for reading until it has exited the write buffer to main

memory.

The same holds true for an evicted cache line: it too cannot be read while it is in the write buffer.

This is one of the reasons that the FIFO depth of a write buffer is usually quite small, only a few cache

lines deep.

> Some write buffers are not strictly FIFO buffers. The ARM10 family, supports coalescing—the merging
of write operations into a single cache line.

>  The write buffer will merge the new value into an existing cache line in the write buffer if they represent

the same data block in main memory. Coalescing is also known as write merging, write collapsing, or

write combining.

vvyy

Measuring Cache Efficiency

There are two terms used the cache hit rate and the cache miss rate.

The hit rate is the number of cache hits divided by the total number of memory
requests over a given time interval.

The value is expressed as a percentage:

) cache hits
hit rate = x 100
memory requests

% The hit rate and miss rate can measure reads, writes, or both, which means
that the terms can be used to describe performance information in several
ways.

Two other terms used in cache performance measurement are the hit
time—the time it takes to access a memory location in the cache

The miss penalty—the time it takes to load a cache line from main memory
into cache.
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Cache Policy

There are three policies that determine the operation of a cache: the write
policy, the replacement policy, and the allocation policy.

The cache write policy determines where data is stored during processor
write operations.

The replacement policy selects the cache line in a set that is used for the
next line fill during a cache miss.

The allocation policy determines when the cache controller allocates a cache
line.

Write Policy

When the processor core writes to memory, the cache controller has two
alternatives for its write policy.

The controller can write to both the cache and main memory, updating the
values in both locations; this approach is known as writethrough.

The cache controller can write to cache memory and not update main
memory, this is known as writeback or copyback.

Writethrough

When the cache controller uses a writethrough policy, it writes to both cache
and main memory when there is a cache hit on write, ensuring that the cache
and main memory stay coherent at all times.

Under this policy, the cache controller performs a write to main memory for
each write to cache memory.

Because of the write to main memory,a writethrough policy is slower than a
writeback policy.

Writeback

When a cache controller uses a writeback policy, it writes to valid cache data
memory and not to main memory.

Valid cache lines and main memory may contain different data.

The cache line holds the most recent data, and main memory contains older
data, which has not been updated.



vy

in the cache line status information block.

When a cache controller in writeback writes a value to cache memory, it sets
the dirty bit true.

If the core accesses the cache line at a later time, it knows by the state of the
dirty bit that the cache line contains data not in main memory.

If the cache controller evicts a dirty cache line, it is automatically written out to
main memory.

The controller does this to prevent the loss of vital information held in cache
memory and not in main memory.

cache is in the frequent use of temporary local variables by a subroutine.
These variables are transient in nature and never really need to be written to
main memory.

An example of one of these transient variables is a local variable that
overflows onto a cached stack because there are not enough registers in the
register file to hold the variable.

Cache Line Replacement Policies

On a cache miss, the cache controller must select a cache line from the
available set in cache memory to store the new information from main
memory.

The cache line selected for replacement is known as a victim.

If the victim contains valid, dirty data, the controller must write the dirty data
from the cache memory to main memory before it copies new data into the
victim cache line.

The process of selecting and replacing a victim cache line is known a
eviction.

The strategy implemented in a cache controller to select the next victim is
called its replacement policy.

The replacement policy selects a cache line from the available associative
member set; that is, it selects the way to use in the next cache line
replacement.

To summarize the overall process, the set index selects the set of cache lines
available in the ways, and the replacement policy selects the specific cache
line from the set to replace.



vy

Replacement Policies

ARM cached cores support two replacement policies, either pseudorandom or
round-robin.

Most ARM cores support both policies

The round-robin replacement policy has greater predictability, which is
desirable in an embedded system.

A round-robin replacement policy is subject to large changes in performance
given small changes in memory access.

Round-robin or cyclic replacement:

>
>

>

Simply selects the next cache line in a set to replace.
The selection algorithm uses a sequential,
incrementing victim counter that increments each time
the cache controller allocates a cache line.

When the victim counter reaches a maximum value, it
is reset to a defined base value.

Pseudorandom replacement policy:

>
>

>

Randomly selects the next cache line in a set to replace.

The selection algorithm uses a nonsequential incrementing victim
counter.

In a pseudorandom replacement algorithm the controller increments
the victim counter by randomly selecting an increment value and
adding this value to the victim counter.

When the victim counter reaches a maximum value, it is reset to a
defined base value.
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