

Microcontrollers_BCSE402

VTU SCheme

Q. 1.a

 The RISC philosophy is implemented with four major design rules:

a. Instructions: RISC has a reduced number of instruction classes. These classes

provide simple operations so that each is executed in a single cycle. Each

instruction is a fixed length to allow the pipeline to fetch future instructions before

decoding the current instruction.

b. Pipeline: The processing of instructions is broken down into smaller units that can

be executed in parallel by pipelines.

c. Register: RISC machines have a large general-purpose register set. Any register

can contain either data or an address.

d. Load-store architecture: The processor operates on the data held in registers.

Separate load and store instructions transfer data between the register bank and

external memory.

 These design rules allow a RISC processor to be simpler, and thus the core can operate

 at higher clock speed.

Q. 1.b

Q. 1.c

A programmer can think of an ARM core as functional units connected by data buses, as shown

in the following Figure.

The arrows represent the flow of data, the lines represent the buses, and the boxes represent either

an operation unit or a storage area.

Data enters the processor core through the Data bus. The data may be an instruction to execute

or a data item.

Figure shows a Von Neumann implementation of the ARM—data items and instructions share the

same bus. (In contrast, Harvard implementations of the ARM use two different buses).

The instruction decoder translates instructions before they are executed. Each instruction

executed belongs to a particular instruction set.

The ARM processor, like all RISC processors, uses load-store architecture—means it has two

instruction types for transferring data in and out of the processor:

-load instructions copy data from memory to registers in the core

 -store instructions copy data from registers to memory

There are no data processing instructions that directly manipulate data in memory. Thus, data

processing is carried out in registers.

Data items are placed in the register file—a storage bank made up of 32-bit registers.

Since the ARM core is a 32-bit processor, most instructions treat the registers as holding signed or

unsigned 32-bit values. The sign extend hardware converts signed 8-bit and 16-bit numbers to 32-

bit values as they are read from memory and placed in a register.

ARM instructions typically have two source registers, Rn and Rm, and a single result or destination

register, Rd. Source operands are read from the register file using the internal buses

A and B, respectively.

The ALU (arithmetic logic unit) or MAC (multiply-accumulate unit) takes the register values Rn

and Rm from the A and B buses and computes a result. Data processing instructions write the

result in Rd directly to the register file.

Load and store instructions use the ALU to generate an address to be held in the address register

and broadcast on the Address bus.

One important feature of the ARM is that register Rm alternatively can be preprocessed in the

barrel shifter before it enters the ALU. Together the barrel shifter and ALU can calculate a wide

range of expressions and addresses.

After passing through the functional units, the result in Rd is written back to the register file using

the Result bus.

For load and store instructions the Incrementer updates the address register before the core reads

or writes the next register value from or to the next sequential memory location.

The processor continues executing instructions until an exception or interrupt changes the normal

execution flow.

Q. 2.a

CPSR (Current Program Status Register)

Q6. Explain the various fields in current program status register (CPSR) with neat diagram.

Answer: Figure below shows the basic layout of a generic program status register.

● The cpsr is divided into four fields, each 8 bits wide: flags, status, extension and control.

● In current designs the extension and status fields are reserved for future use.

● The control field contains the processor mode, state and interrupts mask bits.

● The flag field contains the condition flags.

● The following table gives the bit patterns that represent each of the processor modes in the cpsr.

Mode Mode[4:0]

Abort 10111

Fast interrupt request 10001

Interrupt request 10010

Supervisor 10011

System 11111

Undefined 11011

User 10000

● When cpsr bit 5, T=1, then the processor is in Thumb state. When T=0, the processor is in ARM

state.

● The cpsr has two interrupt mask bits, 7 and 6 (I and F) which control the masking Interrupt request

(IRQ) and Fast Interrupt Request (FIR).

● Condition flags are updated by comparisons and the result of ALU operations that specify the S
instruction suffix.

● For example, if SUBS subtract instruction results in a register value of zero, then the Z flag in the

cpsr is set.
● The following table shows the conditional flags:

Flag Flag Name Set when

N Negative Bit 31 of the result is a binary 1

Z Zero The result is zero, frequently used to indicate equality

C Carry The result causes an unsigned carry

V Overflow The result causes a signed overflow

Q.2. b

● Pipeline is the mechanism to speed up execution by fetching the next instruction while other

instruction are being decoded and executed.

● Figure 1 shows the ARM7 three-stage pipeline.

Figure 1: ARM7 Three-stage pipeline

● Fetch loads an instruction from memory.

● Decode identifies the instruction to be executed.

● Execute processes the instruction and writes the result back to a register.

● Figure 2 illustrates the pipeline using a simple example. It shows a sequence of three instructions

being fetched, decoded and executed by the processor.

● Each instruction takes a single cycle to complete after the pipeline is filled.

o In the first cycle, the core fetches the ADD instruction from the memory.

o In the second cycle, the core fetches the SUB instruction and decode the ADD instruction.

o In the third cycle, the core fetches CMP instruction from the memory, decode the SUB

instruction and execute the ADD instruction.

o The ADD instruction is executed, the SUB instruction is decoded, and the CMP instruction

is fetched. This procedure is called filling the pipeline.

● The pipeline design for each ARM family differs. For example, the ARM9 core increases the

pipeline length to five stages as shown in the figure below.

● The ARM10 increases the pipeline length still further by adding a sixth stage as shown in the figure

below.

● As the pipeline length increases the amount of work done at each stage is reduced, which allows

the processor to attain a higher operating frequency. This in turn increases the performance.

● Pipeline Executing Characteristics

a. The ARM pipeline has not processed an instruction until it passes completely through the

execute stage. For example, an ARM7 pipeline (with three stages) has executed an instruction
only when the fourth instruction is fetched. Figure below shows an instruction sequence on an

ARM7 pipeline.

In the execute stage, the pc

always points to the address of the instruction plus 8 bytes. In other words, the pc always points to the
address of the instruction being executed plus two instructions ahead as shown in figure 2 below

 Figure 2: Example: pc = address + 8

The execution of a branch instruction or branching by the direct modification of the pc causes the

ARM core to flush its pipeline.
a. ARM10 uses branch prediction, which reduces the effect of a pipeline flush by predicting

possible branches and loading the new branch address prior to the execution of the instruction.

b. An instruction in the execute stage will complete even though an interrupt has been raised.

Q. 2. C

There are three core extensions wrap around ARM processor: cache and tightly coupled memory, memory

management and the coprocessor interface.

1. Cache and tightly coupled memory: The cache is a block of fast memory placed between main

memory and the core. With a cache the processor core can run for the majority of the time without

having to wait for data from slow external memory.

o ARM has two forms of cache. The first found attached to the Von Neumann-style cores. It

combines both data and instruction into a single unified cache as shown in the figure 1

below.

Figure 1: A simplified Von Neumann architecture with cache.

o The second form, attached to the Harvard-style cores, has separate cache for data and

instruction as shown figure 2

Figure 2: A simplified

Harvard architecture

with TCMs.

o A cache provides an

overall increase in

performance but

will not give predictable

execution.

o But for real-time

systems it is paramount that code execution is deterministic.

o This is achieved using a form of memory called tightly coupled memory (TCM).

o TCM is fast SRAM located close to the core and guarantees the clock cycles required to

fetch instructions or data.

Q.3. a

Data Processing Instructions

● The data processing instructions manipulate data within registers. They are move

instructions, arithmetic instructions, logical instructions, compare instructions and multiply

instructions.

● Most data processing instructions can process one of their operands using the barrel shifter.

● If S is suffixed on a data processing instruction, then it updates the flags in the cpsr.

Q. 3.b

Q.3.c

mov r1, r2
 → Copy the value of r2 into r1.

add r1, r2, r4
 → Add r2 and r4, store result in r1.

bic r3, r2, r5
 → Clear bits in r2 where r5 has 1s, store in r3.

 (r3 = r2 & (~r5))

cmp r3, r4
 → Compare r3 and r4 by subtracting (sets flags, no result stored).

UMLAL r1, r2, r3, r4
 → Multiply r3 × r4, add to 64-bit value in r2:r1, store result in r2:r1.

Q.4.a

LOAD-STORE INSTRUCTIONS (Memory Access Instructions)

● Load-store instructions transfer data between memory and processor registers. There are

three types of load-store instructions: single-register transfer, multiple-register transfer,

and swap.

a) Single-Register Transfer

● These instructions are used for moving a single data item in and out of a register.

● Here are the various load-store single-register transfer instructions.

Syntax: <LDR|STR>{<cond>}{B} Rd, addressing1

LDR{<cond>}SB|H|SH Rd, addressing2

STR{<cond>}H Rd, addressing2

Example:

1. LDR r0, [r1]

o This instruction loads a word from the address stored in register r1 and places it

into register r0.

2. STR r0, [r1]

● This instruction goes the other way by storing the contents of register r0 to the

address contained in register r1.

A full descending stack is a stack that grows downward (decreasing memory addresses),

and the stack pointer (SP) always points to the last used (full) location in the stack.

Full → SP points to a full (occupied) location.
Descending → Stack grows to lower addresses (top moves down).

STMFD SP!, {r0} ; Store r0 in stack, Full Descending (STMFD)

STMFD = Store Multiple Full Descending

SP! = Update SP after storing (post-decrement)

{r0} = Register to push

Decrement SP → SP = SP - 4

Store r0 at new SP address

When popping (restoring) a value:

asm

CopyEdit

LDMFD SP!, {r0} ; Load r0 from stack, Full Descending (LDMFD)

● LDMFD = Load Multiple Full Descending

● SP! = Update SP after loading (post-increment)

● {r0} = Register to pop into

This does:

1. Load r0 from address at SP

2. Increment SP → SP = SP + 4

Example:

STMFD SP!, {r0, r1, r2} ; Push r0, r1, r2 (r2 at lowest addr)

LDMFD SP!, {r0, r1, r2} ; Pop r0, r1, r2

Assume initial SP = 0x1000

Address Value

0x0FF4 r2 value

0x0FF8 r1 value

0x0FFC r0 value

0x1000 (old SP)

New SP = 0x0FF4 (after pushing 3 registers)

Q.4.c

 AREA SUM10, CODE, READONLY
 EXPORT __main

__main

ENTRY
 MOV R1, #0X01

 MOV R2, #0

LOOP ADD R2, R2, R1
 ADD R1, R1, #1

 CMP R1, #0X0B

 BNE LOOP

 LDR R0, = Result
 STRB R2, [R0]

STOP B STOP

 AREA data2, DATA, READWRITE

Result DCB 0x0

 END

output:

R1=01
 R2=00

 R2=37

Result is 55 but in the hexadecimal it is 37 so it will gives output as 37

Q.5.a

On most 32-bit ARM systems, the basic C data types and their typical sizes are:

Data Type Size (Bytes) Description

char 1 8-bit character

short 2 16-bit integer

int 4 32-bit signed integer

unsigned
int

4 32-bit unsigned integer

long 4 32-bit signed integer (same as int)

float 4 32-bit IEEE-754 floating point

double 8 64-bit IEEE-754 floating point

void* 4 32-bit address pointer

C Program to Compute Checksum

of 64-Word Packet

#include <stdio.h>

#include <stdint.h>

#define PACKET_SIZE 64

// Function to compute checksum

uint32_t compute_checksum(uint32_t packet[PACKET_SIZE]) {

 uint32_t checksum = 0;

 for (int i = 0; i < PACKET_SIZE; i++) {

 checksum += packet[i];

 }

 return checksum;

}

int main() {

 // Sample data packet

 uint32_t data_packet[PACKET_SIZE];

 for (int i = 0; i < PACKET_SIZE; i++) {

 data_packet[i] = i + 1; // Fill with values 1 to 64

 }

 uint32_t result = compute_checksum(data_packet);

 printf("Checksum: %u\n", result);

 return 0;

}

Sample Compiler Output

compute_checksum:

 PUSH {r4, lr}

 MOV r2, #0 ; checksum = 0

 MOV r3, #0 ; i = 0

.L2:

 CMP r3, #64

 BGE .L3

 LDR r1, [r0, r3, LSL #2] ; load packet[i]

 ADD r2, r2, r1 ; checksum += packet[i]

 ADD r3, r3, #1 ; i++

 B .L2

.L3:

 MOV r0, r2

 POP {r4, pc}

Q. 5.b

1. for Loop

✅ Best when the number of iterations is known in advance.

c

CopyEdit

for (initialization; condition; increment) {
 // Loop body
}
for (int i = 0; i < 5; i++) {

 printf("%d\n", i);

}

2. while Loop

✅ Best when the number of iterations is not known, but depends on a condition.

c

CopyEdit

while (condition) {
 // Loop body
}
int i = 0;

while (i < 5) {

 printf("%d\n", i);

 i++;

}

3. do...while Loop

✅ Best when the loop must run at least once, even if the condition is false initially.

c

CopyEdit

do {
 // Loop body
} while (condition);
int i = 0;

do {

 printf("%d\n", i);

 i++;

} while (i < 5);

Q.5.c

Q.6.a

Q.6.b

Q.6.c

Q.7a

Q.7.b

Q.8.a

Q.8.b

Q.9.a

Q.9.b

Q.10.a

Q.10.b

	1. for Loop
	2. while Loop
	3. do...while Loop

