
 

 

 
VTU Question Paper Answer scheme & Solutions-June /July 2025 

 

Sub: BIG DATA ANALYTICS 
Sub 

Code: 
BCS601 

Branch

: 

     

AInDS/CSDS 

Date: 
23/06/20

25 
Duration: 3hrs 

Max 

Marks: 
100 Sem  VI OBE 

Answer any FIVE Questions 
MA

RKS 
CO RBT 

1 a 

Explain the classification of big data with a diagram 

 

Big Data classification refers to the categorization of data based on different 

parameters such as the source, structure, and processing method. 

Classification of Big Data 

Big Data can be classified in three major ways: 

Based on Data Format (Structure) 

Type Description 

Structured Data that is organized into rows and columns (e.g., SQL databases). 

Semi-Structured Data that has some structure but not in a rigid format (e.g., XML, JSON). 

Unstructured Data with no predefined format (e.g., videos, images, social media posts). 

 

 2. Based on Data Source 

Type Description 

Human-Generated Data created by people (e.g., emails, social media content, blogs). 

Machine-Generated Data produced by machines or sensors (e.g., logs, IoT sensors, satellites). 

 

3. Based on Processing Requirements 

Type Description 

Batch Processing Processing large volumes of data collected over time (e.g., Hadoop). 

Stream 

Processing 

Real-time or near real-time processing of continuous data streams (e.g., Spark 

Streaming, Apache Flink). 

Classification of Big Data 

Here's a simple conceptual diagram: 

vbnet 

CopyEdit 

                       ┌────────────────────────┐ 

                       │     Big Data           │ 

                       └─────────┬──────────────┘ 

                                 │ 

           ┌────────────────────┼────────────────────┐ 

           │                    │                    │ 

  Based on Structure   Based on Source                       Based on Processing 

           │                    │                    │ 

 ┌─────────┼──────────┐    ┌────┼─────┐        

┌─────┼──────┐ 

 │Structured          │    │Human     │        │Batch       │ 

 │Semi-Structured     │    │Machine   │        │Stream       │ 

 │Unstructured        │    └──────────┘        └────────────┘ 

 └────────────────────┘ 

 

   



 

b 

Define Big Data, explain its characteristics and challenges 

 

 Definition of Big Data 

Big Data refers to extremely large datasets that are complex, high in volume, and 

generated at high speed, making traditional data processing tools inadequate to 

store, manage, and analyze them. It requires advanced technologies and frameworks 

for effective storage, processing, and analysis. 

Characteristics of Big Data (The 5 V’s) 

Big Data is commonly described using five key characteristics, also known as the 5 

Vs: 

1. Volume: Refers to the massive amount of data generated every second. 

● Example: Facebook generates terabytes of data daily. 

2. Velocity: Refers to the speed at which data is generated and processed. 

● Example: Real-time data from stock markets or IoT sensors. 

3. Variety: Refers to the different types of data (structured, semi-structured, and 

unstructured). 

● Example: Emails, tweets, videos, logs, XML files, etc. 

4. Veracity: Refers to the uncertainty or trustworthiness of the data. 

● Big Data can be noisy or biased, affecting data quality. 

5. Value: Refers to the usefulness of data in decision-making. 

● The goal is to derive insights and value from raw data. Challenges of Big 

Data. 

 Big Data brings significant challenges: 

1. Data Storage 

● Storing petabytes of data efficiently is a challenge. 

● Requires scalable storage systems like HDFS or cloud platforms. 

2. Data Processing 

● Processing huge datasets in real-time or near real-time requires high 

computational power. 

● Frameworks like Apache Hadoop, Spark are used. 

3. Data Quality 

● Ensuring accuracy, consistency, and completeness of data is difficult due to 

noise and redundancy. 

4. Security & Privacy 

● Protecting sensitive data (especially user data) from breaches is critical. 

● Compliance with regulations like GDPR adds complexity. 

5. Integration 

● Integrating data from multiple sources and formats into a single system can 

be complex and time-consuming. 

   



 

2 a 

 What is NoSQL explain different types of NoSQL with example 

  

NoSQL stands for "Not Only SQL". 

It is a non-relational database system designed to handle large volumes of 

unstructured, semi-structured, or structured data. Unlike traditional relational 

databases (RDBMS), NoSQL databases do not use fixed schema, allow horizontal 

scaling, and are optimized for performance, flexibility, and scalability. 

 Key Features of NoSQL: 

● Schema-less (flexible data models) 

● High scalability (can handle large-scale distributed systems) 

● Fast for read/write operations 

● Supports unstructured and semi-structured data 

● Suited for Big Data and real-time applications 

 

 Types of NoSQL Databases with Examples 

NoSQL databases are mainly classified into four types: 

 

1.  Document-based NoSQL 

● Stores data in documents (usually JSON, BSON, or XML formats). 

● Each document is a self-contained unit with its own structure. 

● Highly flexible and good for hierarchical data. 

Feature Description 

Format JSON / BSON 

Example MongoDB, CouchDB 

Use Case Content management systems, blogging platforms, catalogs 

Example (MongoDB): 

{ 

  "name": "Alice", 

  "age": 25, 

  "skills": ["Python", "ML"] 

} 

 

2.  Key-Value Stores 

● Stores data as key-value pairs (like a dictionary or hash table). 

● Very fast and scalable, but limited querying capabilities. 

Feature Description 

Format Key: "user123", Value: "{name: John}" 

Example Redis, DynamoDB, Riak 

Use Case Caching, session management, user profiles 

 Example (Redis): 

SET user:1234 "{name: 'John', age: 30}" 

 

3.  Column-based Stores (Wide-Column Stores) 

● Stores data in columns instead of rows, allowing fast read/write for specific 

columns. 

   



 

● Ideal for analytical queries on large datasets. 

Example (Cassandra): 

UserID | Name   | Email           | Age 

1001   | Alice  | alice@mail.com  | 24 

 

4. Graph Databases 

● Stores data as nodes and relationships (edges). 

● Excellent for querying connected data (e.g., social networks, fraud 

detection). 

Feature Description 

Format Node-Edge Graph 

Example Neo4j, ArangoDB, OrientDB 

Use Case Social networks, recommendation systems, fraud detection 

Example (Neo4j): 

(Alice)-[:FRIEND]->(Bob) 

 

 

 



 

b 

Explain shared nothing architecture, CAP theorem and its advantage 

1. Shared Nothing Architecture 

     Definition: 

Shared Nothing Architecture is a distributed computing architecture where each 

node (server) is independent and self-sufficient, and does not share memory or disk 

storage with other nodes. 

Each node: 

● Has its own memory 

● Has its own storage 

● Communicates with others via a network 

     Key Features: 

● No contention for resources (CPU, disk, RAM) 

● Highly scalable (can add more nodes easily) 

● Fault isolation (failure in one node doesn't affect others) 

      Examples: 

● Hadoop Distributed File System (HDFS) 

● Google File System (GFS) 

● Cassandra, MongoDB, and Amazon DynamoDB 

     Diagram: 

+---------+     +---------+     +---------+ 

|  Node 1 |     |  Node 2 |     |  Node 3 | 

| CPU,Mem|     | CPU,Mem|     | CPU,Mem| 

| Disk   |     | Disk   |     | Disk   | 

+---------+     +---------+     +---------+ 

      \             |             / 

         \      Network       / 

               \___________/ 

2. CAP Theorem (Brewer’s Theorem) 

     Definition: 

The CAP Theorem states that a distributed database system can satisfy only two out 

of the following three guarantees at the same time: 

🔺 C - Consistency 

● All nodes see the same data at the same time. 

● Like traditional RDBMS behavior. 

🔺 A - Availability 

● Every request receives a non-error response, even if some nodes are down. 

🔺 P - Partition Tolerance 

  



 

● The system continues to operate despite network failures between nodes. 

     CAP Trade-offs: 

Combination Description 

CA (No Partition Tolerance) Good for centralized systems, not practical in distributed setups. 

CP (No Availability) 
Prioritizes consistency during network issues, but may reject 

requests. 

AP (No Consistency) Ensures uptime, but may serve stale data. 

📌 In distributed systems, Partition Tolerance (P) is a must. So the real trade-off is 

between Consistency (C) and Availability (A). 

     Examples: 

System Model CAP Choice 

MongoDB AP High availability, eventual consistency 

HBase CP Strong consistency, can sacrifice availability 

Cassandra AP High availability, tunable consistency 

Google BigTable CP Consistency prioritized over availability 

 Advantages of Shared Nothing Architecture 

Advantage Explanation 

   High Scalability Add more nodes without performance bottlenecks. 

   Fault Isolation Node failures don’t affect other nodes. 

   No Resource Contention Each node uses its own memory and disk, avoiding competition. 

   Cost-Efficient Uses commodity hardware; scales horizontally. 

   Improved Performance 
Parallel processing allows faster execution for big data 

workloads.  



 

   3 a 

Differentiate between RDBMS and Hadoop 

Maper and Reducer 

 1. RDBMS vs Hadoop 

Feature RDBMS Hadoop (HDFS + MapReduce) 

Data Type Structured data only 
Structured, semi-structured, and 

unstructured data 

Schema Fixed schema; predefined tables Schema-less or flexible schema 

Storage Centralized (single or few servers) 
Distributed storage across many nodes 

(HDFS) 

Processing 
Single-node or limited cluster 

processing 

Distributed parallel processing using 

MapReduce 

Scalability Vertical (scale up) Horizontal (scale out by adding nodes) 

Fault Tolerance Limited; mostly manual recovery 
Built-in fault tolerance through data 

replication 

Cost Often expensive (licensed) 
Open-source and runs on commodity 

hardware 

Use Case OLTP (transactional systems) 
Big data analytics, large-scale batch 

processing 

Examples MySQL, Oracle, SQL Server Apache Hadoop, Hive, Pig 

 2. Mapper vs Reducer (MapReduce Components) 

Feature Mapper Reducer 

Role 
Processes input data and produces key-

value pairs 

Aggregates and summarizes mapper 

output 

Execution Time First phase of MapReduce Second phase after shuffle and sort 

Input Format Raw data from HDFS 
Output of the Mapper (key-value 

pairs) 

Output Format Intermediate key-value pairs 
Final result (aggregated key-value 

pairs) 

Number of 

Tasks 
One per input split (many mappers) Fewer reducers (usually < mappers) 

Example Parsing log files, counting words 
Summing word counts from all 

mappers 

 

📝 Example (Word Count in MapReduce): 

● Mapper Input: 

"ChatGPT is smart" 

● Mapper Output: 

("ChatGPT", 1), ("is", 1), ("smart", 1) 

● Reducer Input: 

("ChatGPT", [1, 1, 1]) 

● Reducer Output: 

("ChatGPT", 3 

 

   



 

b 

Identify and explain key aspects and components of Hadoop 

Here’s a complete and easy-to-understand explanation of the key aspects and 

components of Hadoop, useful for exams, interviews, and presentations. 

What is Hadoop? 

Hadoop is an open-source framework by the Apache Foundation used for storing 

and processing large volumes of data in a distributed and fault-tolerant manner 

across clusters of computers. 

It follows a distributed computing model, allowing big data to be stored and 

processed efficiently using commodity hardware. 

 Key Aspects of Hadoop 

Aspect Description 

Open-source Freely available under the Apache license 

Scalable Can handle petabytes of data by adding more nodes 

Fault-tolerant Automatically replicates data to handle hardware failures 

Distributed Storage Data is split and stored across many nodes using HDFS 

Parallel Processing Uses MapReduce for fast and efficient processing 

Cost-effective Works on low-cost commodity hardware 

Core Components of Hadoop Ecosystem 

Hadoop has four main core components: 

1. HDFS (Hadoop Distributed File System) 

      Purpose: 

● Storage layer of Hadoop. 

● Stores large data files across multiple machines in a distributed manner. 

     Key Concepts: 

Concept Description 

Block Files are split into fixed-size blocks (default: 128MB/256MB). 

NameNode Master node; manages metadata, file structure, and directory tree. 

DataNode Worker node; stores actual data blocks. 

Replication Data blocks are replicated across nodes (default: 3 copies) 

 

2.  MapReduce 

     Purpose: Processing layer of Hadoop. 

A programming model for processing large datasets in parallel. 

 Phases: 

Phase Description 

Map Splits input data and processes into key-value pairs 

Shuffle Sorts and groups data by key between Map and Reduce 

Reduce Aggregates results and writes final output 

 

  



 

3.      YARN (Yet Another Resource Negotiator) 

     Purpose: 

● Resource Management layer of Hadoop. 

● Manages and schedules resources across the cluster. 

 Key Components: 

Component Role 

ResourceManager (RM) Allocates resources to applications 

NodeManager (NM) Runs on each node to monitor resources 

ApplicationMaster (AM) Manages the lifecycle of individual jobs 

 

4. Hadoop Common 

     Purpose: Provides common utilities and libraries used by other Hadoop modules. 

 Includes: 

● File system and I/O utilities 

● Serialization, Java libraries, configuration files, etc. 

Optional Tools in Hadoop Ecosystem 

Tool Function 

Hive SQL-like query engine for Hadoop 

Pig High-level scripting for MapReduce 

HBase Column-oriented NoSQL database on top of HDFS 

Sqoop Transfers data between Hadoop and RDBMS 

Flume Ingests streaming data into HDFS 

Oozie Workflow scheduler for Hadoop jobs 

 

📌 Diagram: Hadoop Architecture Overview 

         +-----------------------------+ 

         |       Hadoop Application    | 

         +-----------------------------+ 

                   ↓ 

           +------------------+ 

           |      YARN        |  ← Resource Management 
           +------------------+ 

            /               \ 

     +------------+     +------------+ 

     | MapReduce  |     |  Others    |  ← Processing 

     +------------+     +------------+ 

            ↓ 

        +---------+ 

        |  HDFS   |  ← Storage 

        +---------+ 

       /           \ 

  NameNode       DataNode 



 

   4 a 

Explain HDFS with a diagram 

 

What is HDFS? 

HDFS (Hadoop Distributed File System) is the storage component of the Hadoop 

ecosystem. It allows storage of large files across multiple machines (nodes) in a 

distributed, fault-tolerant manner. 

HDFS is highly fault-tolerant, scalable, and suitable for applications with large 

datasets. 

 Key Features of HDFS 

Feature Description 

Distributed Storage Data is split and stored across multiple machines 

Block-Based Files are broken into large blocks (default size: 128 MB or 256 MB) 

Replication 
Each block is replicated across multiple nodes (default replication = 

3) 

Fault Tolerance If one node fails, data is available from replicas 

Write Once, Read Many HDFS is optimized for high-throughput data access, not updates 

 Components of HDFS 

Component Role 

NameNode 
The master node: Manages metadata, file-to-block mapping, and cluster 

namespace 

DataNode The worker nodes: Store actual data blocks and serve read/write requests 

Secondary 

NameNode 

Periodically takes snapshots of NameNode's metadata (for checkpointing, 

not a backup) 

Simple Diagram of HDFS Architecture 

Here’s a conceptual diagram of how HDFS works: 

                     HDFS Architecture 

 

                        +-----------------+ 

                        |    Client       | 

                        +--------+--------+ 

                                 | 

                                 v 

                        +--------+--------+ 

                        |     NameNode    |  ← Metadata manager 

                        +--------+--------+ 

                                 | 

        +------------------------+-------------------------+ 

        |                        |                         | 

        v                        v                         v 

   +---------+            +---------+               +---------+ 

   | DataNode|            | DataNode|               | DataNode| 

   |   (A)   |            |   (B)   |               |   (C)   | 

   +---------+            +---------+               +---------+ 

     |   |   |              |   |   |                 |   |   | 

     |   |   +→ Block 1     |   +→ Block 1 (replica)  +→ Block 2 (replica) 
     |   +→ Block 2         +→ Block 3                +→ Block 3 (replica) 

   



 

How HDFS Works (Step-by-Step) 

     Write Operation: 

1. Client requests to write a file. 

2. NameNode splits the file into blocks and assigns DataNodes to store each 

block. 

3. Blocks are replicated to ensure fault tolerance. 

4. Data is stored on DataNodes as per assignment. 

     Read Operation: 

1. Client requests a file. 

2. NameNode sends block locations (metadata). 

3. Client reads blocks directly from DataNodes 

Example: 

● File size = 300 MB 

● Block size = 128 MB 

● File will be split into 3 blocks: 

o Block 1 = 128 MB 

o Block 2 = 128 MB 

o Block 3 = 44 MB 

● Each block is replicated 3 times across different DataNodes. 



 

b 

What is CRUD operation operation in Mongo DB ?  

Explain the following commands insert method update an array save method 

 

What is CRUD in MongoDB? 

CRUD stands for: 

Operation Description 

C – Create Insert new documents into a collection 

R – Read Query and retrieve documents 

U – Update Modify existing documents 

D – Delete Remove documents from a collection 

MongoDB supports these operations via its methods and commands on collections 

(like tables in RDBMS). 

1. insert() Method 

 Purpose: Used to add new documents to a collection. 

     Syntax: 

db.collection.insert(document) 

     Example: 

db.students.insert({ 

  name: "Alice", 

  age: 21, 

  skills: ["Python", "MongoDB"] 

}) 

● Adds a new student document to the students collection. 

● If _id is not provided, MongoDB automatically generates it. 

You can also insert multiple documents: 

db.students.insert([ 

  { name: "Bob", age: 22 }, 

  { name: "Carol", age: 23 } 

]) 

 2. Update an Array in a Document 

MongoDB allows modifying arrays within documents using operators like $push, 

$addToSet, $pull, etc. 

a) Add to Array using $push 

db.students.update( 

  { name: "Alice" }, 

  { $push: { skills: "Node.js" } } 

) 

● Adds "Node.js" to the skills array of Alice. 

 

  



 

     b) Add only if not present using $addToSet 

db.students.update( 

  { name: "Alice" }, 

  { $addToSet: { skills: "Python" } } 

) 

● Adds "Python" only if it doesn’t already exist in the array. 

 c) Remove an item from an array using $pull 

db.students.update( 

  { name: "Alice" }, 

  { $pull: { skills: "MongoDB" } } 

) 

● Removes "MongoDB" from the skills array. 

      d) Update element at a specific position 

db.students.update( 

  { name: "Alice" }, 

  { $set: { "skills.1": "Express.js" } } 

) 

● Changes the second element (index 1) in the array to "Express.js". 

 3. save() Method 

      Purpose: 

Inserts a new document or updates it if it already exists (based on _id). 

     Syntax: 

db.collection.save(document) 

 Example: 

db.students.save({ 

  _id: ObjectId("60a7..."),  

  name: "Alice", 

  age: 22 

}) 

● If _id exists, it replaces the entire document. 

● If _id doesn't exist, it inserts the new document. 



 

   5 

 
a 

What is CRUD operation in MongoDB? Explain the following commands. 

I. Insert method 

II. Update on array 

III. Save method 

CRUD stands for the four basic types of operations you can perform on a database: 

● C – Create (Insert documents) 

● R – Read (Find/query documents) 

● U – Update (Modify existing documents) 

● D – Delete (Remove documents) 

MongoDB, a NoSQL database, performs these operations on collections of JSON-

like documents using intuitive syntax and powerful query operators. 

The insert() method is used to add new documents to a MongoDB collection. 

 Syntax: 

db.collection.insert({ key1: value1, key2: value2, ... }) 

 Example: 

db.students.insert({ name: "Alice", age: 22, subjects: ["Math", "CS"] }) 

● Adds a new document to the students collection. 

● Automatically creates the collection if it doesn’t exist. 

● _id field is added automatically if not provided. 

insertOne() and insertMany() are modern alternatives to insert a 

single or multiple documents. 

MongoDB allows updating specific elements inside an array in a document using 

$set, $push, $addToSet, or positional operators like $. 

Example: Update a specific element in an array 

db.students.update( 

  { name: "Alice", "subjects": "Math" }, 

  { $set: { "subjects.$": "Physics" } } 

) 

● Finds the document with name: "Alice" and subjects array 

containing "Math". 

● Replaces "Math" with "Physics". 

 Example: Push a new value to an array 

db.students.update( 

  { name: "Alice" }, 

  { $push: { subjects: "English" } } 

) 

● Adds "English" to the subjects array. 

The save() method is used to insert a new document or update an existing 

document based on _id. 

 

 

  



 

 Syntax: 

db.collection.save({ _id: ObjectId("..."), key1: value1, ... }) 

 Example: 

db.students.save({ _id: ObjectId("64fba..."), name: "Alice", age: 23 }) 

● If the _id exists, the document is updated (replaced). 

● If the _id doesn’t exist, a new document is inserted. 

● save() is deprecated in newer MongoDB drivers. Use insertOne() or 

replaceOne() instead. 



 

b 

Determine and explain the characteristics of MongoDB

MongoDB is a popular open-source NoSQL database designed for storing, 

managing, and retrieving large volumes of unstructured or semi-structured data. 

Unlike traditional relational databases, MongoDB stores data in JSON-like 

documents called BSON (Binary JSON), offering flexibility, scalability, and high 

performance. 

Key Characteristics of MongoD 

1.  Document-Oriented Storage Data is stored in collections as documents 

(similar to JSON objects). 

● Each document can have a different structure (schema-less). 

Example: 

 

 { 

  "_id": 1, 

  "name": "Alice", 

  "age": 24, 

  "skills": ["Python", "MongoDB"] 

} 

2.  Schema-Less (Flexible Schema) 

● Documents in the same collection can have different fields. 

● Makes it easy to evolve applications without strict table definitions. 

3.  High Performance 

● Fast read/write operations. 

● Supports embedded documents and indexes, reducing the need for 

expensive JOINs. 

4.  Horizontal Scalability (Sharding) 

● MongoDB supports automatic sharding, distributing data across multiple 

servers. 

● Useful for applications that need to handle big data or high traffic. 

5.  Powerful Query Language 

● Supports rich and expressive queries using: 

 

○ find(), update(), aggregate() 

○ Operators like $gt, $lt, $in, $regex, $and, $or, etc. 

6.  Indexing Support 

● Fields in documents can be indexed to improve search performance. 

● Supports single field, compound, geospatial, and text indexes. 

7. Aggregation Framework 

● Provides a way to perform complex data processing and transformation 

in pipelines. 

● Example operations: $group, $sort, $match, $project. 

 

 

   



 

8.  Replication and High Availability 

● MongoDB uses replica sets for redundancy and fault tolerance. 

● Automatically promotes a secondary to primary if the main node fails. 

9.  Security Features 

● Supports authentication, authorization, encryption, and role-based 

access control. 

10.  Cross-Platform & Cloud-Ready 

● Runs on Windows, Linux, macOS, and supports cloud platforms like 

MongoDB Atlas. 

● Easily integrates with programming languages like Python, Node.js, Java, 

etc. 



 

6 a. 

Write short notes on 

I. Aggregate function 

II. Map reduce function in MongoDB 

 I. Aggregate Function in MongoDB 

🔹 Definition: 

The aggregate function in MongoDB is used to process data records and return 

computed results. It allows users to perform data transformation, grouping, 

filtering, and summarization using a pipeline approach. 

🔹 Key Concepts: 

● The aggregation framework processes documents in stages, called a 

pipeline. 

● Each stage transforms the data and passes it to the next stage. 

🔹 Common Stages: 

Stage Purpose 

$match Filters documents (like WHERE) 

$group Groups data by a field and performs operations like sum, avg, 

count 

$sort Sorts the documents 

$proje
ct 

Selects specific fields to return 

$limit Limits the number of documents 

🔹 Example: 

db.orders.aggregate([ 

  { $match: { status: "delivered" } }, 

  { $group: { _id: "$customer", total: { $sum: "$amount" } } } 

]) 

II. MapReduce Function in MongoDB 

🔹 Definition: 

MapReduce is a powerful data processing paradigm in MongoDB that allows 

developers to process large volumes of data in two phases: 

● Map: Extract and emit key-value pairs 

● Reduce: Combine values with the same key 

  Syntax: 

db.collection.mapReduce( 

   



 

  mapFunction, 

  reduceFunction, 

  { 

    out: "output_collection" 

  } 

) 

🔹 Example: 

var mapFunction = function() { 

  emit(this.category, 1); 

}; 

 

var reduceFunction = function(key, values) { 

  return Array.sum(values); 

}; 

 

db.products.mapReduce(mapFunction, reduceFunction, { out: "category_counts" }); 



 

 b 

Determine and explain creation of database, dropping of database  

 

Creating and Dropping a Database in MongoDB 

MongoDB handles databases dynamically — you don't need to create one explicitly 

before using it. You simply switch to a database using the use command, and it is 

created when you insert the first collection or document. 

 I. Creating a Database 

🔹 Syntax: 

use database_name 

● If the database doesn’t exist, MongoDB prepares to create it. 

● The database is created only after inserting data into it. 

 Example: 

use studentDB 

This switches to (or prepares to create) a database called studentDB. 

 Insert to Create: 

db.students.insertOne({ name: "Alice", age: 21 }) 

Now studentDB is officially created with a collection named students. 

 II. Dropping a Database 

To permanently delete a database, use the dropDatabase() command. 

🔹 Syntax: 

db.dropDatabase() 

● This command removes the current active database and all its collections. 

● Be careful — this action cannot be undone. 

Example: 

use studentDB 

db.dropDatabase() 

This deletes studentDB along with all its data. 

   



 

7 a 

Define Hive. Explain its main task and features 

 

Apache Hive is a data warehouse system built on top of Hadoop that facilitates 

querying, analyzing, and managing large datasets stored in Hadoop Distributed File 

System (HDFS) using a SQL-like language called HiveQL. Hive allows data 

analysts to perform SQL-style queries on big data without needing to write complex 

MapReduce programs. 

The primary task of Hive is to: 

● Convert SQL-like queries (HiveQL) into low-level MapReduce jobs (or 

Spark/Tez jobs) 

● Allow users to perform data summarization, ad-hoc queries, and analysis on 

large-scale structured datasets in Hadoop. 

Key Features of Hive 

Feature Description 

HiveQL (SQL-like 

Language) 

Supports familiar SQL syntax for data analysis 

Schema on Read Data schema is applied only during query time, not 

when data is loaded 

Large-Scale Data 

Handling 

Designed for querying petabytes of data in Hadoop 

Execution Engine Uses MapReduce (default), can also run on Apache 

Tez or Apache Spark 

 Partitioning and 

Bucketing 

Improves query performance by organizing data into 

parts 

 Storage Integration Works seamlessly with HDFS, Apache HBase, and 

other Hadoop file systems 

 Extensibility Supports user-defined functions (UDFs) for custom 

operations 

 Data Warehouse 

Support 

Ideal for data summarization, OLAP operations, and 

batch processing 

 

   



 

 b 

Analyze Hive architecture with its diagram 

Hive Architecture 

Hive is a data warehousing system built on top of Hadoop, designed to enable users 

to query and analyze large datasets stored in HDFS using HiveQL, a SQL-like 

query language. The architecture of Hive consists of various components that 

interact to convert HiveQL queries into executable MapReduce, Tez, or Spark jobs. 

Main Components of Hive Architecture 

Component Description 

1. User 

Interface 

Allows users to interact with Hive using Hive CLI, Beeline, or 

JDBC/ODBC clients 

2. Driver Manages the lifecycle of a HiveQL statement: parsing, 

compiling, optimizing, and executing 

3. Compiler Converts HiveQL queries into DAGs of stages and ultimately 

into MapReduce/Spark/Tez jobs 

4. Metastore Stores metadata about tables, schemas, partitions, and data 

types in an RDBMS like MySQL/PostgreSQL 

5. Execution 

Engine 

Communicates with Hadoop to execute queries and fetch 

results 

6. HDFS 

(Storage) 

Hive stores its data in Hadoop Distributed File System 

(HDFS) for scalability and fault tolerance 

Hive Architecture Diagram 

       +---------------------+ 

        |  User Interface     | 

        | (CLI, Web UI, JDBC) | 

        +----------+----------+ 

                   | 

                   v 

        +----------+----------+ 

        |         Driver       | 

        +----------+----------+ 

                   | 

         +---------+---------+ 

         |      Compiler      | 

         +---------+---------+ 

                   | 

         +---------+---------+ 

         |       Optimizer     | 

         +---------+---------+ 

                   | 

         +---------+---------+ 

         | Execution Engine   | 

         +---------+---------+ 

                   | 

   



 

         +---------+---------+ 

         |      Hadoop (HDFS) | 

         +--------------------+ 

 

          <------->           

        Metadata Access       

          <------->           

          +---------------+   

          |   Metastore   |   

          +---------------+   

Workflow Summary: How Hive Executes a Query 

1. User submits HiveQL via UI (CLI/Beeline). 

2. Driver receives query and passes it to the Compiler. 

3. Compiler parses, validates, and converts HiveQL into an execution plan. 

4. Optimizer improves execution using techniques like predicate pushdown. 

5. Execution Engine sends jobs to Hadoop (MapReduce/Spark/Tez). 

6. Hive interacts with Metastore to fetch metadata (table schemas, partitions, 

etc.). 

7. Results are fetched from HDFS and sent back to the user. 

Key Advantages of Hive Architecture 

● Separates query logic from data storage 

● Scales to big data volumes 

● Leverages Hadoop’s fault tolerance and distributed processing 

● Uses metadata for fast planning and schema enforcement 

 



 

8 a 

Define Pig. Explain its feature, anatomy and philosophy 

Apache Pig is a high-level platform built on top of Hadoop for analyzing large 

datasets. It uses a language called Pig Latin, which is a data flow scripting language 

designed to simplify the process of writing MapReduce jobs. 

 Features of Apache Pig 

Feature Description 

High-Level Language (Pig 
Latin) 

Simplifies the creation of MapReduce jobs 

using a simple script-like syntax 

 Handles Structured & Semi-

Structured Data 

Supports data from HDFS, HBase, JSON, 

CSV, etc. 

 Extensible Allows user-defined functions (UDFs) in 

Java, Python, etc. 

 Automatic Optimization Optimizes execution plans internally before 

job submission 

 Platform Independent Can run in local mode (single machine) or 

distributed mode (Hadoop cluster) 

 Schema Flexibility Works even with partial or unknown schema 

(optional typing) 

 Interoperable with Hadoop 

Ecosystem 

Works well with Hive, HDFS, and HCatalog 

Anatomy of Apache Pig 

The anatomy of Pig refers to the components involved in writing, compiling, and 

executing a Pig script. 

🔹 1. Pig Latin Script 

● Written by the user to define the data flow (load → transform → store) 

🔹 2. Parser 

● Parses the script to check for syntax errors 

● Produces a logical plan 

🔹 3. Logical Optimizer 

● Performs rule-based optimizations (e.g., projection pushdown) 

🔹 4. Physical Plan Generator 

   



 

● Converts the logical plan into a physical plan (series of physical operators) 

🔹 5. MapReduce Plan Generator 

● Translates physical plan into MapReduce jobs 

🔹 6. Execution Engine 

● Submits the job(s) to Hadoop MapReduce 

● Collects results and returns output 

Pig Architecture Diagram (Simplified) 

  +------------------+ 

   |  Pig Latin Script| 

   +--------+---------+ 

            | 

         Parser 

            | 

   +--------v---------+ 

   |  Logical Plan     | 

   +--------+---------+ 

            | 

      Logical Optimizer 

            | 

   +--------v---------+ 

   | Physical Plan     | 

   +--------+---------+ 

            | 

    MapReduce Compiler 

            | 

   +--------v---------+ 

   |  Hadoop Engine    | 

   +------------------+ 

Apache Pig is designed with a data flow and procedural philosophy, contrasting 

with SQL’s declarative nature. 

🔹 1. Think Like a Pipeline 

● Pig processes data as a sequence of steps, similar to a pipeline. 

● Each step applies transformations to the data (e.g., filter, group, join). 

🔹 2. Script-Driven Programming 

● Pig favors writing scripts that describe how data should be transformed, 

rather than just what output is needed (as in SQL). 

🔹 3. Handles Complex Workflows 

● Designed to manage ETL tasks, data preparation, and batch processing, 

making it powerful for big data transformation. 

🔹 4. Developer-Focused: Built for programmers, not analysts; integrates 

easily with code and custom logic via UDFs. 



 

 b 

Examine identifiers, keywords, data types and operators of PIG with an 

example 

1. Identifiers in Pig 

Identifiers are the names used for relations, fields, aliases, and variables in Pig Latin 

scripts. 

● Must start with a letter or underscore (_) 

● Can contain letters, digits, and underscores 

● Case-sensitive 

 Example: 

data = LOAD 'students.csv' USING PigStorage(',') AS (name:chararray, age:int); 

 

● data and name are identifiers 

2. Keywords in Pig 

Keywords are reserved words that have a special meaning in Pig Latin. They cannot 

be used as identifiers. 

 Common Keywords: 

LOAD, STORE, FILTER, GROUP, FOREACH, GENERATE, ORDER, LIMIT, 

BY, USING, AS 

 Example: 

students = LOAD 'students.csv' USING PigStorage(',') AS (name:chararray, 

marks:int); 

passed = FILTER students BY marks > 35; 

 

● LOAD, FILTER, BY, AS are keywords 

Data Types in Pig 

Pig supports both primitive and complex data types. 

Primitive Data Types: 

Type Description Example 

int 32-bit integer 10 

long 64-bit integer 100000L 

float 32-bit float 3.14f 

double 64-bit float 3.14159 

chararr
ay 

String of characters "Alice" 

   



 

bytearr
ay 

Raw binary data - 

boolean True/False true 

Complex Data Types: 

Type Description Example 

Tupl
e 

Ordered set of fields (10, "Alice") 

Bag Collection of tuples (like a table) {(10, "Alice"), (20, 
"Bob")} 

Map Key-value pairs [name#'Alice', age#22] 

 4. Operators in Pig 

Operators perform actions like loading, filtering, joining, grouping, etc. 

📌 Types of Operators: 

Category Operators & Usage 

Relational LOAD, STORE, FILTER, GROUP, JOIN, 

UNION 

Arithmetic +, -, *, /, % 

Comparison ==, !=, <, >, <=, >= 

Logical AND, OR, NOT 

Casting (type) → (int)myField 

Example Script: Pig Latin Overview 
-- Load the dataset 

students = LOAD 'students.csv' USING PigStorage(',')  

          AS (name:chararray, age:int, marks:int); 

 

-- Filter students who passed 

passed_students = FILTER students BY marks >= 40; 

 

-- Group by age 

grouped = GROUP passed_students BY age; 

 

-- Calculate average marks 

result = FOREACH grouped GENERATE group AS age, 

AVG(passed_students.marks) AS avg_marks; 

 



 

-- Store the result 

STORE result INTO 'output' USING PigStorage(','); 

Analysis: 

● students, passed_students, grouped, and result are 

identifiers. 

● LOAD, FILTER, GROUP, FOREACH, STORE are keywords. 

● chararray, int are data types. 

● >=, AVG() are operators. 



 

9 a 

Analyze spark SQL and Pandas for data analysis 

Analyzing Spark SQL vs Pandas for Data Analysis 

Both Spark SQL and Pandas are popular tools used for data manipulation and 

analysis, but they are designed for different use cases and data scales. 

Tool Description 

Pandas A Python library for data analysis and manipulation in-memory, 

optimized for small to medium datasets. 

Spark 

SQL 

A module in Apache Spark that allows querying structured data using 

SQL and DataFrame APIs, optimized for big data and distributed 

computing. 

2. Core Comparison Table 

Feature Pandas Spark SQL 

Data Size In-memory (best under ~1-

2 GB) 

Handles terabytes to petabytes 

of data 

Performance Fast for small data; single 

machine 

Distributed & parallel; scales 

with cluster 

Language Python SQL, Scala, Python, Java, R 

Execution Engine Single-core/multi-core 

(limited by RAM) 

Cluster-based distributed 

engine (Spark Core) 

Syntax (Query) Pythonic (e.g., 

df[df['col'] > 5]) 

SQL-style or DataFrame API 

(df.filter()) 

Speed (Large 

Data) 

Slow or crashes Optimized with Catalyst and 

Tungsten engines 

Ease of Use Simple for beginners Requires knowledge of Spark 

setup 

Join & Grouping Slower on large joins Optimized join strategies in 

Spark SQL 

I/O Support CSV, Excel, SQL, JSON, 

etc. 

HDFS, Hive, Parquet, ORC, 

Avro, JDBC, etc. 

Deployment Local systems, notebooks Big data clusters, cloud 

platforms 

Missing Value 

Handling 

Excellent built-in support Supported with fillna, 

dropna, etc. 

   



 

3. Code Comparison Example 

Pandas: 

import pandas as pd 

 

df = pd.read_csv('sales.csv') 

filtered = df[df['region'] == 'East'] 

summary = filtered.groupby('category')['sales'].sum() 

print(summary) 

Spark SQL: 

from pyspark.sql import SparkSession 

 

spark = SparkSession.builder.appName("SalesAnalysis").getOrCreate() 

df = spark.read.csv("sales.csv", header=True, inferSchema=True) 

df.createOrReplaceTempView("sales") 

 

result = spark.sql("SELECT category, SUM(sales) FROM sales WHERE region = 

'East' GROUP BY category") 

result.show() 

 

4. When to Use What? 

Use Case Choose 

Small to medium datasets (< 1GB) Pandas 

Exploratory Data Analysis (EDA) Pandas 

Running on personal computer or notebook Pandas 

Massive datasets (GBs to TBs+) Spark SQL 

Distributed computing (cluster/cloud) Spark SQL 

Need SQL-like querying on large data Spark SQL 

Real-time or big data pipeline Spark SQL 

 



 

 b 

Determine and explain component, features of spark architecture. 

Apache Spark is an open-source, distributed computing framework designed for fast 

processing of large-scale data. It supports batch processing, streaming, SQL, 

machine learning, and graph processing — all in a unified engine. 

 1. Components of Spark Architecture 

Spark follows a master-slave architecture with a central driver program and 

distributed executors running on a cluster. 

Key Components: 

Component Description 

Driver Program Main controller that runs the SparkContext, 

coordinates tasks, and keeps track of job progress. 

Cluster Manager Allocates resources (CPU & memory) to Spark 

applications. Types: Standalone, YARN, Mesos, 

Kubernetes. 

Workers (Executors) Run on cluster nodes. Execute tasks and return 

results to the driver. Each executor also caches data 

for reuse. 

Tasks Smallest unit of work sent to executors. A job is 

broken into multiple tasks. 

RDD/DataFrame/Datase

t 

Abstractions to represent data for processing. RDD 

= Resilient Distributed Dataset. 

Job A complete computation triggered by an action (e.g., 

.collect() or .save()). 

Stage A group of tasks that can be executed in parallel. 

Spark divides jobs into stages using DAG. 

DAG (Directed Acyclic 

Graph) 

Represents logical execution flow. Spark optimizes 

and schedules tasks using DAG 

 

 

 

 

 

 

 

 

 

 

 

   



 

Spark Architecture Diagram 
                +-----------------------------+ 

                 |       Driver Program        | 

                 |  - SparkContext             | 

                 |  - DAG Scheduler            | 

                 |  - Task Scheduler           | 

                 +-----------------------------+ 

                             | 

                             | Sends tasks 

                             ↓ 

          +--------------------------+       +--------------------------+ 

          |      Executor (Worker 1) | <--->  |      Executor (Worker 2) | 

          |  - Executes Tasks        |        |  - Executes Tasks        | 

          |  - Stores Data in Cache  |        |  - Stores Data in Cache  | 

          +--------------------------+        +--------------------------+ 

                             ↑ 

                             | 

                 +-----------------------------+ 

                 |      Cluster Manager         | 

                 |  (YARN, Standalone, Mesos)   | 

                 +-----------------------------+ 

2. Key Features of Apache Spark 

Feature Description 

In-Memory 

Processing 

Stores intermediate data in memory (RAM), making it 

100x faster than Hadoop MapReduce. 

 Unified 

Framework 

Supports batch, streaming, SQL, MLlib (Machine 

Learning), and GraphX (graph processing). 

 Fault Tolerant Uses RDD lineage to recompute lost data automatically. 

 Lazy Evaluation Operations are not executed until an action is called, 

which optimizes job execution. 

 DAG Execution 

Engine 

Replaces MapReduce by representing computation as a 

DAG for better task optimization. 

 Language Support Supports Scala, Java, Python (PySpark), and R. 

 MLlib Integration Built-in library for scalable machine learning algorithms. 

 Spark 
Streaming 

Enables real-time data processing from sources like 

Kafka, Flume, or socket. 

 SQL Support Spark SQL allows querying structured data using familiar 

SQL syntax or DataFrame API 



 

 . 

 



 

10 a 

Analyze different phase of text mining process with a diagram. 

 

Text Mining, also known as Text Data Mining or Text Analytics, is the process of 

extracting useful insights, patterns, and knowledge from unstructured text data 

using techniques from NLP (Natural Language Processing), Machine Learning, and 

Data Mining. 

 The text mining process consists of sequential and interdependent phases, each 

designed to transform raw text into structured, analyzable insights.  

1. Text Preprocessing (Cleaning) 

Goal: Prepare raw text for analysis by removing noise. 

 Includes: 

● Tokenization – Splitting text into words or phrases 

● Stop-word removal – Removing common words (e.g., "the", "is") 

● Lowercasing – Converting all text to lowercase 

● Stemming / Lemmatization – Reducing words to their root forms 

● Noise removal – Removing punctuation, numbers, HTML tags, etc. 

2. Text Transformation (Feature Generation) 

Goal: Convert cleaned text into structured format. 

 Techniques: 

● Vectorization – Convert text to numeric format using: 

○ Bag of Words (BoW) 

○ TF-IDF (Term Frequency-Inverse Document Frequency) 

○ Word Embeddings (e.g., Word2Vec, GloVe) 

3. Feature Selection / Dimensionality Reduction 
Goal: Reduce feature space and improve performance. 

● Chi-square 

● Information Gain 

● PCA (Principal Component Analysis) 

● LDA (Latent Dirichlet Allocation) 

4. Text Mining / Analysis 
Goal: Extract patterns or build predictive models. 

● Classification (e.g., spam detection) 

● Clustering (e.g., document grouping) 

● Sentiment Analysis 

● Topic Modeling 

● Named Entity Recognition (NER) 

5. Interpretation & Visualization 

Goal: Make results understandable and useful. 

● Word clouds 

● Bar plots of term frequency 

● Topic graphs 

   



 

● Heatmaps for document-term matrices 

Text Mining Process Diagram 
+------------------+ 

| Raw Text Sources | 

+--------+---------+ 

         | 

         v 

+-----------------------+ 

| 1. Text Preprocessing | 

| (Cleaning + Parsing) | 

+-----------------------+ 

         | 

         v 

+----------------------------+ 

| 2. Text Transformation     | 

| (BoW / TF-IDF / Embedding)| 

+----------------------------+ 

         | 

         v 

+----------------------------+ 

| 3. Feature Selection       | 

| (Reduce dimensionality)    | 

+----------------------------+ 

         | 

         v 

+----------------------------+ 

| 4. Text Mining Algorithms  | 

| (Clustering, Classification)| 

+----------------------------+ 

         | 

         v 

+----------------------------+ 

| 5. Visualization & Output  | 

| (Word Clouds, Charts, etc.)| 

+----------------------------+ 



 

 b 

Identify and explain preprocessing steps mining task for content. 

Preprocessing is the first and most crucial step in any content/text mining task. 

It involves transforming raw, unstructured text into a clean, structured, and 

analyzable format. 

Without preprocessing, the text is too noisy and inconsistent for meaningful 

analysis. 

 Key Preprocessing Steps in Text Mining 

🔹 1. Text Cleaning 

Removes unwanted characters, formatting, and non-textual content. 

● Remove punctuation (!, ,, .) 

● Remove special characters (@, #, $) 

● Remove HTML tags (e.g., <div>) 

● Remove numbers if irrelevant 

  2. Tokenization 

Breaks the text into individual units called tokens (usually words or phrases). 

 Example: 

"Data mining is useful." → ["Data", "mining", "is", "useful"] 

 

  3. Lowercasing 

Converts all characters to lowercase to avoid treating the same word 

differently. 

 Example: 

"Machine" and "machine" → "machine" 

 

  4. Stop-word Removal 

Removes commonly used words that do not carry much meaning in analysis. 

Examples of stop words: 

["the", "is", "at", "which", "on", "and"] 

  5. Stemming or Lemmatization 

Reduces words to their root form. 

Stemming Lemmatization 

"running" → 
"run" 

"running" → 
"run" 

"better" → 
"better" 

"better" → 
"good" 

   



 

● Stemming cuts off prefixes/suffixes. 

● Lemmatization uses vocabulary & grammar rules. 

  6. Part-of-Speech (POS) Tagging (optional but useful) 

Tags each word with its grammatical role (noun, verb, adjective, etc.). 

 Example: 

"Data mining is interesting" → [("Data", NN), ("mining", VBG), 
("interesting", JJ)] 

 

  7. Named Entity Recognition (NER) 

Identifies names of people, places, organizations, dates, etc. 

 Example: 

"Apple Inc. was founded by Steve Jobs" → [ORG: Apple Inc., PERSON: 
Steve Jobs] 

  8. Text Vectorization 

Converts cleaned text into numeric format for ML algorithms. 

● Bag of Words (BoW) 

● TF-IDF (Term Frequency-Inverse Document Frequency) 

● Word Embeddings (Word2Vec, GloVe) 

  9. Handling Negation (contextual) 

Detects negative expressions like "not good", "wasn't happy" which invert 

sentiment.   10. Spelling Correction / Normalization (optional) 

Corrects typos and standardizes slang or abbreviations. 

 Example: 

"u r gr8" → "you are great" 

Preprocessing Pipeline Summary 
Raw Text 

   ↓ 

Clean Text (remove noise) 

   ↓ 

Tokenization 

   ↓ 

Lowercasing 

   ↓ 

Stopword Removal 

   ↓ 

Stemming / Lemmatization 

   ↓ 

Vectorization (BoW, TF-IDF, Word2Vec) 

   ↓ 

→ Ready for Mining Task (Classification, Clustering, Sentiment Analysis, 
etc.) 



 

 


