

Internal Assesment Test-II									
Sub:	Electromagnetic Theory					Code:	BEC401		
Date:	23/05/2025	Duration:	90 mins	Max Marks:	50	Sem:	4th	Branch:	ECE(A,B,C,D)
Answer any FIVE FULL Questions									

Marks CO RBT

1.a) Starting from the Gauss's law deduce Poisson's and Laplace's equations. Write [07] CO3 L2 Laplace's equations in all three co-ordinate systems.

Denve Poisson's and Laplace's exposion

$$\overrightarrow{\nabla}.\overrightarrow{D} = \overrightarrow{P_0} \qquad \overrightarrow{D}$$

$$\overrightarrow{E} = -\overrightarrow{\nabla}V \qquad \overrightarrow{3}$$

$$\overrightarrow{\nabla}.\overrightarrow{D} = \overrightarrow{\nabla}. (\varepsilon_0 \overrightarrow{E}) = \varepsilon_0 (\overrightarrow{\nabla}.\overrightarrow{E}) = \overrightarrow{P_0}$$
or
$$\varepsilon_0 (\overrightarrow{\nabla}. (-\overrightarrow{\nabla}V)) = \overrightarrow{P_0}$$
or
$$-\varepsilon_0 (\overrightarrow{\nabla}. (\overrightarrow{\nabla}V)) = \overrightarrow{P_0} \qquad \overrightarrow{A}$$

$$\overrightarrow{\nabla}. (\overrightarrow{\nabla}V)$$

$$= (\overrightarrow{A}_{X} \overrightarrow{d} + \overrightarrow{A}_{X} \overrightarrow{d}_{Y} + \overrightarrow{A}_{Z} \overrightarrow{d}_{Z}) \cdot (\overrightarrow{d}V \overrightarrow{A}_{X} + \overrightarrow{d}V \overrightarrow{A}_{Y} \xrightarrow{A}_{Y} + \overrightarrow{d}V \overrightarrow{A}_{Y} \xrightarrow{A}_{Y} + \overrightarrow{d}V \xrightarrow{A}_{Y} \xrightarrow{A}_{Y} + \overrightarrow{d}V \xrightarrow{A}_{Y} \xrightarrow{A}_{Y$$

· egm. 4 gredness to E0 V2V = - P, OR TV = - for -> Poisson's equation Nove if Po=0 -> | 72 V =0 } Laplace is -> Zero volume charge density, but allowing point charges, line charge and surface density to exect at engular locations as somes of the field. TV > Laplacian of V. In rectangular co-ordinate system, $\nabla^2 V = \frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} + \frac{\partial^2 V}{\partial z^2}$ In cylindrical co-oxidinates, $\nabla^2 V = \frac{1}{\rho} \frac{\partial}{\partial \rho} \left(\rho \frac{\partial V}{\partial \rho} \right) + \frac{1}{\rho^2} \frac{\partial^2 V}{\partial \phi^2} + \frac{\partial^2 V}{\partial z^2}$ In spherical co-ordinates, V2V = \frac{1}{912} \frac{1}{23} \left(x^2 \frac{1}{2}x \right) + \frac{1}{932410} \frac{1}{10} \left(\text{emo} \frac{1}{2}v \right) + 320020 242

$$V = \left(\frac{\partial V}{\partial \rho} + \frac{\partial V}{\partial \rho}\right) + \frac{1}{\rho^2} \frac{\partial^2 V}{\partial \phi^2} + \frac{\partial^2 V}{\partial z^2}$$

$$\frac{\partial V}{\partial \rho} = \frac{\partial}{\partial \rho} \left(\frac{\rho \cos \phi}{\partial \rho}\right) + \frac{1}{\rho^2} \frac{\partial^2 V}{\partial \phi^2} + \frac{\partial^2 V}{\partial z^2}$$

$$\frac{\partial V}{\partial \rho} = \frac{\partial}{\partial \rho} \left(\frac{\rho \cos \phi}{\partial \phi}\right) = \cos \phi$$

$$1 \text{ at term} = \frac{1}{\rho} \frac{\cos \phi}{\partial \phi}$$

$$1 \text{ at term} = \frac{1}{\rho} \frac{\cos \phi}{\partial \phi}$$

$$\frac{\partial^2 V}{\partial \phi^2} = \frac{\partial}{\partial \phi} \left(-\rho \cos \phi + 2\right) = -\rho \cos \phi$$

$$\frac{\partial^2 V}{\partial \phi^2} = \frac{\partial}{\partial \phi} \left(-\rho \cos \phi\right) = -\rho \cos \phi$$

$$\frac{\partial^2 V}{\partial \phi^2} = \frac{\partial}{\partial \phi} \left(-\rho \cos \phi\right) = \frac{1}{\rho^2} \left(-\rho \cos \phi\right)$$

$$\frac{\partial^2 V}{\partial \phi^2} = \frac{\partial}{\partial \phi} \left(-\rho \cos \phi\right) = \frac{1}{\rho^2} \left(-\rho \cos \phi\right)$$

$$\frac{\partial^2 V}{\partial \phi^2} = 0 = 3 \text{ at term}$$

$$\frac{\partial^2 V}{\partial \phi^2} = 0 = 3 \text{ at term}$$

$$\frac{\partial^2 V}{\partial \phi^2} = 0 = 3 \text{ at term}$$

$$\frac{\partial^2 V}{\partial \phi^2} = 0 = 3 \text{ at term}$$

$$\frac{\partial^2 V}{\partial \phi^2} = 0 = 3 \text{ at term}$$

$$\frac{\partial^2 V}{\partial \phi^2} = 0 = 3 \text{ at term}$$

$$\frac{\partial^2 V}{\partial \phi^2} = 0 = 3 \text{ at term}$$

$$\frac{\partial^2 V}{\partial \phi^2} = 0 = 3 \text{ at term}$$

$$\frac{\partial^2 V}{\partial \phi^2} = 0 = 3 \text{ at term}$$

$$\frac{\partial^2 V}{\partial \phi^2} = 0 = 3 \text{ at term}$$

$$\frac{\partial^2 V}{\partial \phi^2} = 0 = 3 \text{ at term}$$

$$\frac{\partial^2 V}{\partial \phi^2} = 0 = 3 \text{ at term}$$

$$\frac{\partial^2 V}{\partial \phi^2} = 0 = 3 \text{ at term}$$

$$\frac{\partial^2 V}{\partial \phi^2} = 0 = 3 \text{ at term}$$

$$\frac{\partial^2 V}{\partial \phi^2} = 0 = 3 \text{ at term}$$

$$\frac{\partial^2 V}{\partial \phi^2} = 0 = 3 \text{ at term}$$

$$\frac{\partial^2 V}{\partial \phi^2} = 0 = 3 \text{ at term}$$

$$\frac{\partial^2 V}{\partial \phi^2} = 0 = 3 \text{ at term}$$

2. Find the capacitance between the two concentric spheres of radii r = b, and r = a, [10] CO3 L2 such that b>a. If the potential V = 0 at r = b and V = V0 at r = a using Laplace's equation.

$$\frac{1}{2} \frac{d}{dx} \left(\frac{x^2 dy}{dx} \right) = 0$$

$$\frac{1}{2} \frac{d}{dx} \left(\frac{x^2 dy}{dx} \right) = 0$$

$$\frac{1}{2} \frac{d}{dx} = C_1$$

$$\frac{1}{2} \frac{1}{2} \frac{d}{dx} = C_1$$

$$\frac{1}{2} \frac{1}{2} \frac{1$$

3.a) Write the equations to compare electric circuit and magnetic circuit parameters.

Electric Circuit	Magnetic Circuit						
$\mathbf{E} = -\nabla V$	$\mathbf{H} = -\nabla V_m$						
$V_{AB} = \int_A^B \mathbf{E} \cdot d\mathbf{L}$	$V_{mAB} = \int_{A}^{B} \mathbf{H} \cdot d\mathbf{L}$						
J = oE	$\mathbf{B} = \mu \mathbf{H}$						
$I = \int_{S} \mathbf{J} \cdot d\mathbf{S}$	$\Phi = \int_{S} \mathbf{B} \cdot d\mathbf{S}$						
V = IR	$V_m = \Phi \mathfrak{R}$						
$R = \frac{d}{\sigma S}$	$\Re = \frac{d}{\mu S}$						
$\oint \mathbf{E} \cdot d\mathbf{L} = 0$	$\oint \mathbf{H} \cdot d\mathbf{L} = I_{\text{total}}$						

3.b) An air core toroid has 500 turns, mean radius of 15 cm, cross-sectional area of 6 cm². The magnetomotive force is 2000 A.t. Calculate total reluctance, flux, flux-density, magnetic field intensity inside the agree

[04] CO4 L3

[06]

L2

density, magnetic field intensity inside the core. $N_{m} = NI = 500 \times 4 = 2000 \text{ A.t.}$ $N_{m} = 4R$ N_{m}

4.a) Discuss the force on a differential current element and obtain the expression for [05] CO4 L2 force.

4.b) Write a short note on magnetic materials

[05] CO4 L2

We consider a simple atomic model, which assumes that there is a central positive nucleus surrounded by electrons in various circular orbits.

- An electron in an orbit is analogous to a small current loop. It is considered that orbiting electrons in the material would shift in such a way as to add their magnetic fields to the applied field
- A second moment, however, is attributed to electron spin.
- A third contribution to the moment of an atom is caused by nuclear spin.
- Each atom contains many different component moments, and their combination determines the magnetic characteristics of the material and provides its general magnetic classification.

We describe briefly six different types of material: (i) diamagnetic, (ii) paramagnetic,

(iii) ferromagnetic, (iv) antiferromagnetic, (v) ferrimagnetic, and (vi) superparamagnetic.

Diamagnetic: Let us first consider atoms in which the small magnetic fields produced by the motion of the electrons in their orbits and those produced by the electron spin combine to produce a net field of zero. The material in which the permanent magnetic moment of each atom is zero is termed diamagnetic. E.g. Metallic bismuth, hydrogen, helium, the other "inert" gases, sodium chloride, copper, gold, silicon, germanium, graphite, and sulfur.

Paramagnetic: an atom in which the effects of the electron spin and orbital motion do not quite cancel. The atom as a whole has a small magnetic moment, but the random orientation of the atoms in a larger sample produces an average magnetic moment of zero. The material shows no magnetic effects in the absence of an external field. E.g Potassium, oxygen, tungsten.

Ferromagnetic: Each atom has a relatively large dipole moment, caused primarily by uncompensated electron spin moments. Interatomic forces cause these moments to line up in a parallel fashion over regions containing a large number of atoms. These regions are called domains. The only elements that are ferromagnetic at room temperature are iron, nickel, and cobalt, and they lose all their ferromagnetic characteristics above a temperature called the Curie temperature, which is 1043 K (770 °C) for iron.

Antiferromagnetic: The forces between adjacent atoms cause the atomic moments to line up in an antiparallel fashion. The net magnetic moment is zero, and antiferromagnetic materials are affected only slightly by the presence of an external magnetic field. E.g. manganese oxide, nickel oxide (NiO), ferrous sulfide (FeS), and cobalt chloride (CoCl2). Antiferromagnetism is only present at relatively low temperatures, often well below room temperature.

Ferrimagnetic: The ferrimagnetic substances also show an antiparallel alignment of adjacent atomic moments, but the moments are not equal. A large response to an external magnetic field therefore occurs, although not as large as that in ferromagnetic materials. The iron oxide magnetite (Fe₃O₄) is an examples of this class of materials.

Superparamagnetic: materials are composed of an assembly of ferromagnetic particles in a nonferromagnetic matrix. Although domains exist within the individual particles, the domain walls cannot penetrate the intervening matrix material to the adjacent particle. An important example is the magnetic tape used in audiotape or videotape recorders.

5. Using Maxwell's equation derive an expression for uniform plane wave in free [10] CO5 L2 space.

Differentiating
$$(7)$$
 w.x.t t,

$$(\frac{\partial^2 E_X}{\partial t \partial z}) = -\mu_0 \frac{\partial^2 H_0}{\partial t^2} \cdot (12)$$
Differentiating (8) w.x.t (2) ,

$$\frac{\partial^2 H_0}{\partial z^2} = -\epsilon_0 (\frac{\partial^2 E_X}{\partial t \partial z}) \cdot (13)$$

$$\frac{\partial^2 H_0}{\partial z^2} = \epsilon_0 \mu_0 (\frac{\partial^2 H_0}{\partial t^2})$$

$$\frac{\partial^2 H_0}{\partial z^2} = \mu_0 \epsilon_0 \frac{\partial^2 H_0}{\partial t^2} - (14)$$
Wave equation for the negative field.

6.a) What is the inconsistency of Ampere's law with the continuity of current equation? [07] CO5 L2 Derive a modified form of Ampere's law for time-varying fields.

Amperers circuital law for time-vorying magnetic field:

According to Amperers law,

$$\overrightarrow{\nabla} \times \overrightarrow{H} = \overrightarrow{J}$$
 . \overrightarrow{U}
 $\overrightarrow{\nabla} \times \overrightarrow{H} = \overrightarrow{J}$. \overrightarrow{U}

8. th According to continuity of current equal \overrightarrow{V} . $\overrightarrow{J} = -\frac{\partial f_0}{\partial t}$. \overrightarrow{V} . $\overrightarrow{V} = \overrightarrow{V}$. $\overrightarrow{J} + \overrightarrow{V}$. \overrightarrow{G}

1. $\overrightarrow{V} \times \overrightarrow{H} = \overrightarrow{J} + \overrightarrow{G}$. $\overrightarrow{V} \times \overrightarrow{H} = \overrightarrow{J} + \overrightarrow{G}$. $\overrightarrow{V} \times \overrightarrow{U} = \overrightarrow{U}$. $\overrightarrow{J} + \overrightarrow{V} \times \overrightarrow{G}$

1. $\overrightarrow{V} \times \overrightarrow{U} = \overrightarrow{V} \times \overrightarrow{J} + \overrightarrow{V} \times \overrightarrow{G}$

1. $\overrightarrow{V} \times \overrightarrow{U} = \overrightarrow{U} \times \overrightarrow{J} + \overrightarrow{V} \times \overrightarrow{G}$

1. $\overrightarrow{V} \times \overrightarrow{U} = \overrightarrow{U} \times \overrightarrow{U} = \overrightarrow{U}$

$$\frac{\partial \vec{D}}{\partial t} = \vec{J}_D = Displacement current density density. Point form of Amperentian,
$$\vec{D} = \vec{J}_D = \vec{J}_D = Displacement current density de$$$$

Find magnetization in magnetic material where:

 μ = 1.8x10⁻⁵H/m, H = 120A/m

[03] L3 CO4

Solution 17 III, IT 12018III

$$M = \frac{1.9 \times 10^{-5} \text{ H/m}}{M} \text{ and } \overrightarrow{H} = 120 \text{ A/m}$$

$$M = \frac{4m}{H}$$

$$M = \frac{4m}{H}$$

$$M = \frac{1.8 \times 10^{-5}}{4\pi \times 10^{-7}} = 14.32$$

$$M_{\Lambda} = (1+\frac{4m}{m})$$
or
$$4m = \frac{1.3 \cdot 32}{4\pi \times 10^{-7}} = 1598.8 \text{ A/m}$$

$$\therefore \overrightarrow{M} = \frac{4m}{H} = (13.32 \times 120) \text{ A/m} = 1598.8 \text{ A/m}$$
List the Maxwell equations in point form

7.a) List the Maxwell equations in point form.

[04] L2 CO₅

Point form of Maxwell equations

$$\overrightarrow{\nabla}.\overrightarrow{D} = P_0 \longrightarrow \text{Granis law of electrostatics}$$
 $\overrightarrow{\nabla}.\overrightarrow{B} = 0 \longrightarrow \text{Granis law of magnetostatics}$
 $\overrightarrow{\nabla}.\overrightarrow{E} = -\frac{\partial \overrightarrow{B}}{\partial t} \longrightarrow \text{Founday is Law}$
 $\overrightarrow{\nabla}.\overrightarrow{F} = \overrightarrow{J} + \frac{\partial \overrightarrow{D}}{\partial t} \longrightarrow \text{Anferens law}$
 $\overrightarrow{\nabla}.\overrightarrow{F} = \overrightarrow{J} + \frac{\partial \overrightarrow{D}}{\partial t} \longrightarrow \text{Anferens law}$

- A 9.375 GHz uniform plane wave is propagating in polyethylene ε_r =2.26. If the [06] amplitude of the E is 500 V/m and the material is assumed to be lossless, find
 - (a) phase constant, (b) wavelength, (c) velocity of propagation, (d) intrinsic impedance, and (e) magnetic field intensity.

9.375 CHZ wiform plane wave propagating
in polyethylene. If the amplitude of electric
field intensity is soover, and the motional is
1 1 - leader had.
1) Place constant
in waiselenth as polyethylene. My = 1
Wedouty of propagation.
to - triver imperior
a Amplitude of my. free
les radium E = 0
Soldier For Leuten 12 (β = 0+1 β = 0+
(A) 1/2 = 1/
$= \frac{2\pi f}{c} \sqrt{m_{\chi} \epsilon_{\chi}} = \frac{2\pi \times 9.375 \times 10^{9}}{3 \times 10^{8}} \sqrt{2.26}$
= 295 90d/m [: C= 1,000
= 295 god/m [: C= JmoEv]
(ii) $\lambda = \frac{2\pi}{295} = \frac{2\pi}{295} = 2.13 \text{ cm}$
ß
(i) υρ = (i) 99 x 108 m/4
$\eta = \eta_0 \pi_1 = \frac{377.1}{\sqrt{2.26}} = 250.7.12$
(1) Hy = Ex = 500 = 1.99 A/m, = 7.
7. 250/

CI Signature CCI Signature HoD Signature