

$Internal\ Assessment\ Test-II$

Sub:	Control Systems					Code:	BEC403		
Date:	24/ 05/ 2025	Duration:	90 mins	Max Marks:	50	Sem:	4 th	Branch:	ECE

Q.1 is Compulsory. Answer Any Four from Remaining

Q.1 is Compulsory. Answer Any Four from Remaining							
Q.1 is Compulsory				BE RBT			
1.	Sketch the bode plot for the following transfer function and determine phase margin and gain margin. G(s) = $\frac{50}{s(1+0.5s)(1+0.05s)}$	[10]	CO5	L3			
2.	a. Make use of the response curve of second order underdamped system to define and derive the expression for (i) Peak time b. For a unity feedback system $G(s) = \frac{20(s+2)}{s(s+3)(s+4)}$, find the steady state error for $r(t)=3u(t)+5tu(t)$	[06]	CO3	L2			
3.	Determine the ranges of k such that the characteristic equation is $s^3 + (2k + 3)s^2 + (6k + 7)s + (7k + 8.5) = 0$ has roots more negative than s=-1.	[10]	CO3	L3			
4.	The open loop transfer function of a unity feedback control system is given by $\frac{K}{(s+2)(s+4)(s^2+6s+25)}$. Determine the range of values of k for the system stability. What is the value of k which gives sustained oscillations and what is the oscillation frequency.	[10]	CO3	L3			
5.	Sketch the root locus for a negative feedback control system with $G(s)H(s) = \frac{K}{S(s+4)(S^2+4S+20)}$	[10]	CO4	L3			
6	a) Analyze the Bode plot shown in Fig below to estimate the transfer function of a onumber of the Bode plot shown in Fig below to estimate the transfer function of a control system:	[10]	CO5	L3			
7.	a. Develop a state model for the electrical network shown such that e1(t) and e2(t) are inputs and output is taken across the resistor R. b. Find state transmission matrix for $\begin{bmatrix} 0 & 1 \\ -3 & -4 \end{bmatrix}$	[06]	CO5	L3			

	Sketch the bode plot for the following transfer function and determine			
1.	phase margin and gain margin. G(s) = $\frac{50}{s(1+0.5s)(1+0.05s)}$	[10]	CO5	L3
	3(1+0.053)(1+0.053)	'		

Solution

Putting $s = j\omega$, we get

$$GH(j\omega) = \frac{50}{j\omega(0.5j\omega + 1)(0.05j\omega + 1)}$$

$$Y(j\omega) = \frac{50}{j\omega}$$

$$|Y(j\omega)| = \frac{50}{\omega}$$

$$\Rightarrow \qquad 20\log|Y(j\omega)| = 20\log 50 - 20\log \omega \tag{7.11}$$

Putting $\omega = 0.1$ (starting value of ω in the semilog sheet), we get

$$20 \log |Y(j\omega)|_{\omega=0.1} = 54 \text{ dB}$$

Please note that the general from of $Y(j\omega)$ is $K(j\omega)^{\pm N}$, where N is any integer including 0.

The table shown below helps in the process of drawing the Bode magnitude plot. The various factors of $GH(j\omega)$ are entered into the table so that the corner frequencies of the individual factors are in the ascending order.

Factor	Corner frequency	Magnitude and slope characteristics of various asymptotes [2ex]
<u>50</u> سر	·	This factor has a magnitude = 54 dB at $\omega = 0.1$ and slope = -20 dB/decade (cofficient of log ω in equation (7.11)) upto next corner frequency, ω_1 .
1 1+0.6 _{jω}		Net slope between ω_1 and ω_2 = slope contributed by $(1 + 0.5j\omega)^{-1}$ for $\omega > \omega_1$ + previous slope = $-20 - 20 = -40$ dB/decade.
1 1+0.05jω	$\omega_2 = \frac{1}{0.05}$ $= 20$	Net slope ω_2 onwards = slope contributed by $(1 + 0.05j\omega)^{-1}$ for $\omega > \omega_2$ + previous slope = $-20 - 40 = -60$ dB/decade.

mocedure and tips for drawing the magnitude plot:

- 1. It is not possible to plot the magnitude plot down to zero frequency because of the logarithmic frequency values ($\log 0 = -\infty$), the minimum value of ω on the log scale is normally taken as 0.1 (one may start from 0.01 as well depending on the requirement).
- 2. The construction lines of slope = -20, -40 and -60 dB/decade are drawn as shown in the semilog sheet.
- 3. Draw a straight line having an intercept of 54 dB at $\omega = 0.1$ and it must be parallel to the construction line of slope = -20 dB/decade. This line should terminate at $\omega_1 = 2$ rad/sec.
- 4. Draw a line parallel to the construction line of slope = -40 dB/decade between the corner frequencies ω_1 and ω_2 .
- 5. Finally draw a line parallel to the construction line of slope =-60 dB/decade

Phase plot:

$$\phi(\omega) = -90^{\circ} - \tan^{-1} 0.5\omega - \tan^{-1} 0.05\omega$$

ω (rad/sec)	$\phi(\omega)(\deg)$	ω (rad/sec)	$\phi(\omega)(\deg)$
2	-140	7	-183.3
3	-154.8	8	-187.8
4.	-164.7	9	-191.7
5	-172.2	10	-195.25
6	-178.2	20	-219.3
6.32	-180.0		

From the Bode magnitude and phase diagrams:

$$GM = -8 dB$$

$$\mathrm{PM} = \phi_M = -15.25^o$$

Comment on stability: Since GM in dB and PM in degree are negative, the closed-loop in tem is unstable.

Derivation of Puch Time (Tp):->

- 50mt Sin (Wat +0) where

C(t) = 1 - e Sin (Wat +0) where

$$0 = \tan^{-1} \sqrt{1-5^2}$$

bat = Tr= ct will ach we it omaxima.

So differentitis citi. W. E.Y. land, but get !

Substituti ad = w ~ 1-52.

Subject
$$\omega_d = \omega_m \sqrt{1-5^2}$$

$$-\frac{2\omega_m t_p}{\sqrt{1-5^2}} \cdot \lim_{n \to \infty} (\omega_d t_p + \theta) - \omega_m \sqrt{1-5^2} \cdot e \cdot (\omega_d t_p + \theta) = 0$$

$$= \sqrt{1-5^2} \cdot \lim_{n \to \infty} (\omega_d t_p + \theta) - \frac{\omega_m \sqrt{1-5^2}}{\sqrt{1-5^2}} \cdot e \cdot (\omega_d t_p + \theta) = 0$$

Man = 502 tp. = 0.

but for our early analys use more:

Go = 5 2 find =
$$\sqrt{1-5^2}$$

End that (2) or (3) or (5)

Go + (4) or (4) or (4)

Si $(4+6)$ = find + (6) + (6) + (6) + (6) + (6)

Find + (6) - find + (6) - find (6)

Here $A = (4)$ + (6) - find (6)

Here $a = (4)$ + (6) - find (6) + (6)

	9ut = 3 mt + 5 t mo			
	$\frac{90!}{5} \text{ Rs} = \frac{3+5}{5^2}$ $e_{55} = \frac{\text{lend}}{3+0} = \frac{5}{1+60} = \frac{5}{1+20} = \frac{3+5}{5}$ $\frac{9\times 1}{5} = \frac{3+5}{5} = \frac$			
	$= \lim_{3 \to 0} \frac{3s + 5}{\frac{1}{5}} = \lim_{3 \to 0} \frac{(35+5)(5+3)(5+3)(5+3)}{\frac{1}{5}(5+3)(5+4)} = \lim_{3 \to 0} \frac{(35+5)(5+3)(5+4)}{\frac{1}{5}(5+3)(5+4)} = \lim_{3 \to 0} \frac{(35+5)(5+3)(5+3)(5+3)(5+3)}{\frac{1}{5}(5+3)(5+3)(5+3)(5+3)} = \lim_{3 \to 0} \frac{(35+5)(5+3)(5+3)(5+3)(5+3)}{\frac{1}{5}(5+3)(5+3)(5+3)(5+3)(5+3)(5+3)(5+3)(5+3)$	44)		
	$= \frac{5 \times 3 \times \cancel{A}}{20 \times 2} = \frac{3}{2} = 1.5$ $\Rightarrow = \sqrt{2} = \sqrt{3} = 1.5$			
3.	Determine the ranges of k such that the characteristic equation is $s^3 + (2k + 3)s^2 + (6k + 7)s + (7k + 8.5) = 0$ has roots more negative than s=-1.	[10]	CO3	L3
4.	The open loop transfer function of a unity feedback control system is given by $\frac{K}{(s+2)(s+4)(s^2+6s+25)}$. Determine the range of values of k for the system stability. What is the value of k which gives sustained oscillations and what is the oscillation frequency.	[10]	CO3	L3

To have relative statisty at s=-1, pars= (x-1) or char-cog.

(x-1)+ (x+3)(x-1)+ (x+7)(x-1)+ 7K+8.5=0

 $\frac{3}{(a-b)^{3}} = \begin{bmatrix} a^{3} - 3a^{2}b + 3ab^{2} - b^{3} \end{bmatrix}$

-6K-7 +7K+8.5- =0

 $\frac{2^{3}-3x^{2}+3x-1+2k(x^{3})-4kx+2k+3x^{2}-6x+3+6k(x)}{+7x-6k-7+7k+8\cdot5-0}$

 $\frac{3}{2} + \frac{2}{2} \left(-3 + 2k + 3 \right) + \times \left(3 - 4k - 6 + 6k + 7 \right)$ $+ \left(-1 + 2k + 3 - 6k - 7 + 7k + 8 - 5 \right) = 0$

3+2K(x) + (4+2k) x + (3.5+3K) =0

Solution: The open loop poles are located at

$$s = 0, -4$$
 and $s = \frac{-4 \pm \sqrt{16 - 80}}{2} = -2 \pm j 4$

Step 1: Initial data: P = 4, Z = 0, N = P = 4 branches,

$$P - Z = 4$$
 approaching to ∞ .

Starting points = 0, -4, -2 + j + 4, -2 - j + 4

Terminating points = ∞ , ∞ , ∞ , ∞ .

Step 2: Section of real axis

Step 3: Angles of asymptotes

$$\theta = \frac{(2q+1)180^{\circ}}{P-Z}, q = 0, 1, 2, 3$$

$$\theta_1 = \frac{180^{\circ}}{4} = 45^{\circ} \qquad \theta_2 = \frac{3\times180^{\circ}}{4} = 135^{\circ}$$

$$\theta_3 = \frac{5\times180^{\circ}}{4} = 225^{\circ} \qquad \theta_4 = \frac{7\times180^{\circ}}{4} = 315^{\circ}$$

Step 4: Centroid

$$\sigma = \frac{\sum R. P. \text{ of poles} - \sum R. P. \text{ of zeros}}{P - Z}$$

$$= \frac{(0 - 4 - 2 - 2) - (0)}{4} = -2$$

Step 5: Breakaway points

1 + G(s)H(s) = 0 i.e. 1 +
$$\frac{K}{s(s+4)(s^2+4s+20)}$$
 = 0

9-51

Root Locus

$$\frac{dK}{ds} = -4s^3 - 24s^2 - 72s - 80$$
i.e. $K = -s^4 - 8s^3 - 36s^2 - 80s$
... (1)

Solving,
$$s = -2$$
 and $-2 \pm j2.45$

All are valid breakaway points. The validity of -2±j 2.45 as a breakaway point can be confirmed by using angle condition. (Refer example 9.17)

At
$$s = -2$$
, $K = 64$, from equation (1).

Step 6: Intersection with imaginary axis

The characteristic equation is already obtained as,

$$s^4 + 8s^3 + 36s^2 + 80s + K = 0$$

These are the intersection points with imaginary axis.

Step 7: Angle of departure

$$\phi_{PI} = 180^{\circ} - x = 180^{\circ} - \tan^{-1} \left(\frac{4}{2}\right) = 180^{\circ} - 63.43^{\circ} = + 116.56^{\circ}$$

 $\phi_{P2} = + 90^{\circ} \text{ and } \phi_{P3} = \tan^{-1} \left(\frac{4}{2}\right) = +63.43^{\circ}$

$$\sum \phi_{P} = 116.56^{\circ} + 90^{\circ} + 63.43^{\circ} = 270^{\circ}, \quad \sum \phi_{Z} = 0^{\circ}$$

$$\Rightarrow \qquad \phi = \sum \phi_{P} - \sum \phi_{Z} = 270^{\circ}$$

$$\phi_{\rm d} = 180^{\circ} - \phi = 180^{\circ} - 270^{\circ} = -90^{\circ} \quad at - 2 + j4$$

While ϕ_d at -2 - j4 is, $\phi_d = +90^\circ$

of staton save level biles a list

12 dB/octave = 40 dB/decade

Now the equation of line after $\omega = 0.5$ is,

$$M = 20 \log \omega + C$$

at
$$\omega = 1$$
, $M = +32$ dB shown

At
$$\omega = 0.5$$
, $M = 20 \text{ Log } 0.5 + 32 = +26 \text{ dB}$

Now ω = 0.5, M = 26 dB is also on the initial line whose equation is

$$M = +40 \log \omega + C_1$$

At
$$\omega = 0.5$$
, $+ 26 = 40 \log 0.5 + C_1$

$$C_1 = 38.0412 \text{ dB}$$

Now this line must have M = 0 dB at $\omega = 1$ for K = 1.

But at $\omega = 1$, $M = 40 \log 1 + 38.0412$

i.e.
$$M = 38.0412 dB$$

This is due to contribution of system gain constant K.

$$K = 79.8$$

At $\omega_{\rm C}$ = 0.5, slope changed by -20, there is simple pole.

Factor =
$$\frac{1}{(1+T_1 \text{ s})}$$
, where $T_1 = \frac{1}{\omega_C} = \frac{1}{0.5} = 2 = \frac{1}{(1+2 \text{ s})}$ ope changed by -20 , there is simple pole.

At $\omega_C = 1$, slope changed by -20, there is simple pole.

Factor =
$$\frac{1}{1+T_2 \text{ s}}$$
, where $T_2 = \frac{1}{\omega_C} = \frac{1}{1} = 1 = \frac{1}{1+s}$

At $\omega_{\rm C}$ = 5, slope further changed by –20, there is simple pole.

Factor
$$=$$
 $\frac{1}{1+T_3 \text{ s}}$, where $T_3 = \frac{1}{\omega_C} = \frac{1}{5} = 0.2 = \frac{1}{(1+0.2 \text{ s})}$

Hence the transfer function is

$$G(s)H(s) \approx \frac{79.8 s^2}{(1+2 s) (1+s) (1+0.2 s)}$$

a. Develop a state model for the electrical network shown such that e1(t) and e2(t) are inputs and output is taken across the resistor R.

[04]

[06]

CO5

L3

7.

b. Find state transmission matrix for $\begin{bmatrix} 0 & 1 \\ -3 & -4 \end{bmatrix}$

Let:

• $i_1(t)$: current through L_1

ullet $i_2(t)$: current through L_2

ullet $v_C(t)$: voltage across capacitor C

We'll choose the state variables:

$$x_1 = i_1(t), \quad x_2 = i_2(t), \quad x_3 = v_C(t)$$

Inputs:

$$u_1 = e_1(t), \quad u_2 = e_2(t)$$

Inputs:

$$u_1 = e_1(t), \quad u_2 = e_2(t)$$

Output:

$$y = ext{voltage across } R = R \cdot i_1 = R \cdot x_1$$

Left loop (KVL):

$$e_1(t) = Ri_1 + L_1 \frac{di_1}{dt} + v_C \Rightarrow u_1 = Rx_1 + L_1 \dot{x}_1 + x_3 \Rightarrow \dot{x}_1 = rac{1}{L_1} (u_1 - Rx_1 - x_3)$$

Right loop (KVL):

$$e_2(t) = L_2 rac{di_2}{dt} + v_C \Rightarrow u_2 = L_2 \dot{x}_2 + x_3 \Rightarrow \dot{x}_2 = rac{1}{L_2} (u_2 - x_3)$$

Capacitor Current (KCL at center node):

Current into capacitor:

$$i_C=i_1-i_2=Crac{dv_C}{dt}\Rightarrow \dot{x}_3=rac{1}{C}(x_1-x_2)$$

State-Space Equations

$$egin{align} \dot{x}_1 &= rac{1}{L_1}(u_1 - Rx_1 - x_3) \ \dot{x}_2 &= rac{1}{L_2}(u_2 - x_3) \ \dot{x}_3 &= rac{1}{C}(x_1 - x_2) \ y &= Rx_1 \ \end{align*}$$

Matrix Form (State-Space Model)

Let

$$ullet \mathbf{x} = egin{bmatrix} x_1 \ x_2 \ x_3 \end{bmatrix}$$

•
$$\mathbf{u} = \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$$

•
$$y = Rx_1$$

State Equation:

$$\dot{\mathbf{x}} = \begin{bmatrix} -\frac{R}{L_1} & 0 & -\frac{1}{L_1} \\ 0 & 0 & -\frac{1}{L_2} \\ \frac{1}{C} & -\frac{1}{C} & 0 \end{bmatrix} \mathbf{x} + \begin{bmatrix} \frac{1}{L_1} & 0 \\ 0 & \frac{1}{L_2} \\ 0 & 0 \end{bmatrix} \mathbf{u}$$

Output Equation:

$$y = \begin{bmatrix} R & 0 & 0 \end{bmatrix} \mathbf{x}$$

Sati Thomston matrix for
$$\begin{bmatrix} 0 & 1 \\ -3 & -4 \end{bmatrix}$$

where $A = \begin{bmatrix} 0 & 1 \\ -3 & -4 \end{bmatrix}$

$$\Rightarrow \begin{bmatrix} SI \cdot A \end{bmatrix} = \begin{bmatrix} 3 & -1 \\ 3 & s+4 \end{bmatrix}$$

$$\Rightarrow \begin{bmatrix} SI \cdot A \end{bmatrix} = \begin{bmatrix} 44 & [SI - A] \\ -3 & s \end{bmatrix}$$

$$= \begin{bmatrix} (s+k) \\ (s+1) & (s+3) \end{bmatrix}$$

$$\frac{(s+4)}{(s+3)} = \frac{A}{s+1} + \frac{B}{s+3} \text{ whin, for field } \frac{1}{s} \text{ soctors we set } A = \frac{3}{2}, B = \frac{1}{2}$$

$$\frac{(s+4)}{(s+3)} = \frac{3}{s+1} + \frac{(-1/2)}{(s+3)} = \frac{3}{2}(s+1) - \frac{1}{2}(s+3).$$

$$|\int_{0}^{1} \frac{1}{(s+1)(s+3)} = \frac{1}{2(s+1)} - \frac{1}{2(s+3)} \longrightarrow 2$$

$$|\int_{0}^{1} \frac{1}{(s+1)(s+3)} = \frac{-3}{2(s+1)} + \frac{3}{2(s+3)} \longrightarrow 3$$

$$|\int_{0}^{1} \frac{1}{(s+1)(s+3)} = \frac{-1}{2(s+1)} + \frac{3}{2(s+3)} \longrightarrow 4$$

$$|\int_{0}^{1} \frac{1}{(s+1)(s+3)} = \frac{1}{2(s+3)} = \frac{3}{2(s+3)} = \frac{3}{$$

is the state Toans I'm materix.