omR UsN| [[[[[[|

INSTITUTE OF

* CMR INSTITUTE OF TECHNOLOGY, RENGAL

TECHNOLOGY
Internal Assessment Test - |1
Sub: | Embedded System Design Code: BEC601
Date: 27/05/2025 | Duration: |90 mins | Max Marks: | 50 | Sem: [6th | Branch: ECE
Answer Any FIVE FULL Questions
Marks OBE

Co

RBT

Compare (i) DFG and CDFG models with an example.

Data Flow Graph/Diagram (DFG) Model

The Data Flow Graph (DFG) model translates the data processing requirements into a data flow graph. The
Data Flow Graph (DFG) model is a data driven model in which the program execution is determined by data.
This model emphasises on the data and operations on the data which transforms the input data to output data.
Indeed Data Flow Graph (DFG) 1s a visual model in which the operation on the data (process) 1s represented
using a block (circle) and data flow 1s represented using arrows. An inward arrow to the process (circle)
represents input data and an outward arrow from the process (circle) represents output data in DFG notation.

Embedded applications which are computational intensive and data driven are modeled using the DFG
model. DSP applications are typical examples for it. a b p
Now let’s have a look at the implementation of a DFG.
Suppose one of the functions in our application contains
the computational requirement x =a + b and v = x — c.
Figure 7.1 illustrates the implementation of a DFG
maodel for implementing these requirements.

In a DFG model, a data path is the data flow path
from mput to output. A DFG model 1s said to be acyclic
DFG (ADFG) if 1t doesn’t contain multiple values for
the input variable and multiple output values for a given
set of input(s). Feedback inputs (Output is fed back
to Input), events, etc. are examples for non-acyclic
inputs. A DFG model translates the program as a single Fip. 71 Data flow graph (DFG) model
sequential process execution.

Data Tow node

Data flow node

¥

7.2.2 Control Data Flow Graph/
Diagram (CDFG)

We have seen that the DFG model 1s a data driven model in

which the executionis controlled by dataand itdoesn’tinvolve Control node
any control operations (conditionals). The Control DFG
(CDFG) model is used for modelling applications involving a b

conditional program execution. CDFG models contains
both data operations and control operations. The CDFG
uses Data Flow Graph (DFG) as element and conditional o
(constructs) as decision makers. CDFG contains both data Data flow node
flow nodes and decision nodes, whereas DFG contains only

data flow nodes. Let us have a look at the implementation of

the CDFG for the following requirement. Data flow node
[fflag=1l,x=a+bielsey=a-b;
This requirement contains a decision making process. o

The CDFG model for the same is given in Fig. 7.2. Fig. 72 Control Data Flow Braph (COFE) Model

The control node is represented by a “Diamond” block which is the decision muaking element in a normal
flow chart based design. CDFG translates the requirement, which is modeled to a concurrent process model.
The decision on which process is to be executed is determined by the control node.

A real world example for modelling the embedded application using CDFG i1s the capturing and saving
of the image to a format set by the user in a digital still camera where everything is data driven starting from
the Analog Front End which converts the CCD sensor generated analog signal to Digital Signal and the task
which stores the data from ADC (o a [rame buffer for the use ol a media processor which performs various
operations like, auto correction, white balance adjusting, etc. The decision on, in which format the image is
stored (formats like JPEG, TIFF, BMP, etc.) is controlled by the camera settings, configured by the user.

(ii) Cv/s Embedded C

[10]

[4]

CO2

L2

‘C"is a well structured, well defined and standardised general purpose programming language with extensive
bit manipulation support. “C’ offers a combination of the features of high level language and assembly and
helps in hardware access programming (system level programming) as well as business package developments
(Application developments like pay roll systems, banking applications, etc). The conventional ‘C’ language
follows ANSI standard and it incorporates various library files for different operating systems. A platform
(operating system) specific application, known as, compiler is used for the conversion of programs written in
‘C’ to the target processor (on which the OS 1s running) specific binary files. Hence it is a platform specific
development.

Embedded *C’ can be considered as a subset of conventional *C” language. Embedded “C” supports all
*C” instructions and incorporates a few target processor specific functions/instructions. It should be noted
that the standard ANSI *C” library implementation is always tailored to the target processor/controller library
files in Embedded *C’. The implementation of target processor/controller specific functions/instructions
depends upon the processor/controller as well as the supported cross-compiler for the particular Embedded
‘C" language. A software program called *Cross-compiler” is used for the conversion of programs written in
Embedded “C” to target processor/controller specific instructions (machine language).

(iii) Compiler v/s Cross-Compiler.

Compiler is a software tool that converts a source code written in a high level language on top of a particular
operating system running on a specific target processor architecture (e.g. Intel x86/Pentium). Here the
operating system, the compiler program and the application making use of the source code run on the same
target processor. The source code is converted to the target processor specific machine instructions. The
development is platform specific (OS as well as target processor on which the OS is running). Compilers are
generally termed as “Native Compilers’. A native compiler generates machine code for the same machine
(processor) on which it 1s running.

Cross-compilers are the software tools used in cross-platform development applications. In cross-platform
development, the compiler running on a particular target processor/OS converts the source code to machine
code for atarget processor whose architecture and instruction set is different from the processor on which the
compiler is running or for an operating system which is different from the current development environment
OS. Embedded system development is a typical example for cross-platform development where embedded
firmware 1s developed on a machine with Intel/AMD or any other target processors and the same 1s converted
into machine code for any other target processor architecture (e.g. 8051, PIC, ARM ete). Keil C51 is an
example for cross-compiler. The term *Compiler” is used interchangeably with *Cross-compiler” in embedded
firmware applications. Whenever you see the term ‘Compiler’ related to any embedded firmware application,
it could be referring to a cross-compiler.

[3]

[3]

\With the help of a neat diagram, explain the FSM model for automatic seat belt warning
system.

The State Machine model 1s used for modelling reactive or event-driven embedded systems whose processing
behaviour are dependent on state transitions. Embedded systems used in the control and industrial applications
are typical examples for event driven systems. The State Machine model describes the system behaviour with
‘States’, ‘Events’, ‘Actions” and “Transitions’. Stare is a representation of a current situation. An event is an
input to the state. The evenr acts as stimuli for state transition. Transition is the movement {rom one state (o
another. Action is an activity to be performed by the state machine.

A Finite State Machie (FSM) model 1s one in which the number of states are finite. In other words the
system is described using a finite number of possible states. As an example let us consider the design of an
embedded system for driver/passenger “Seat Belt Warning” in an automotive using the FSM model. The
system requirements are captured as.

1. When the vehicle ignition 1s turned on and the seat belt 1s not fastened within 10 seconds of ignition

ON, the system generales an alarm signal for 5 seconds.

2. The Alarm is turned off when the alarm time (5 seconds) expires or if the driver/passenger fastens the

belt or if the ignition switch is wrned off, whichever happens first.

Here the states are ‘Alarm Off", *Waiting” and ‘*Alarm On” and the events are ‘[gnition Key ON’,
‘Ignmition Key OFF", “Timer Expire’, *Alarm Time Expire” and ‘Seat Belt ON’. Using the FSM, the system
requirements can be modeled as given in Fig. 7.3.

[10]

[3]

COo2

L2

lgnmition Key ON

lgnition Key OFF Waiting

Seat Belt ON

Fig. 7.3 FSM Model for Automatic seat belt warning system

The ‘Ignition Key ON’ event triggers the 10 second timer and transitions the state to “Waiting™. If a *Seat
Belt ON" or ‘Ignition Key OFF" event occurs during the wait state, the state wransitions into “Alarm Off”.

When the wait timer expires in the waiting state, the event “Timer Expire’ is generated and it transitions
the state to *Alarm On” from the *Waiting” state. The *Alarm On” state continues until a ‘Seat Belt ON” or
‘Ignition Key OFF" event or *Alarm Time Expire” event, whichever occurs first. The oceurrence of any of
these events transitions the state o “Alarm OfT". The wait state is implemented using a timer. The timer also
has certain set of states and events for state transitions. Using the FSM model, the timer can be modeled as
shown in Fig. 7.4.

Event: Load Timer

Action: Timer Count = New Count

Fig. 7.4 FSM Model for timer

As seen from the FSM, the timer state can be either "IDLE" or ‘READY” or ‘RUNNING’. During the
normal condition when the timer is not running, it is said to be in the ‘IDLE’" state. The timer is said to be
in the ‘READY" state when the timer is loaded with the count corresponding Lo the required time delay.
The timer remains in the ‘READY” state until a *Start Timer™ event occurs. The timer changes its state to
‘RUNNING™ from the ‘READY” state on receiving a “Start Timer” event and remains in the ‘RUNNING’
state until the timer count expires or a ‘Stop Timer” even occurs. The timer state changes to ‘IDLE’ from
‘RUNNING” on receiving a “Stop Timer” or “Timer Expire” event.

[4]

[3]

With the help of a neat diagram, explain the operating system architecture.

[10]

COs3

L3

The operating system acts as a bridge between the user applications/tasks and the
p) = © . . pﬁ? o . LO 1 Understand
underlying system resources through a set of system functionalities and services. -
e S) . the basics of an
The OS manages the system resources and makes them available to the user
applications/tasks on a need basis. A normal computing system is a collection of
different I/O subsystems, working, and storage memory. The primary functions
ol an operaling system is
e Make the system convenient to use
e Organise and manage the system resources efficiently and correctly
Figure 10.1 gives an insight into the basic components of an operating system and their interfaces with

operating system
and the need for an
operating system

rest of the world.

.
8

User Applications]
VS AN A A y Application

i 41 41 1 > Applicatio
™~ programming

Vs
Memory management I " interface (APD)

¥

3]

Process management E

5 L

‘ Time management I)

=

‘ File system management I E

O oo o

/O system management
AN > / Device driver
10 IF " interface

Underlying hardware]

—

Fig. 0. The Dperating System Architecture

10.1.1 The Kernel

The kernel is the core of the operating system and is responsible for managing the system resources and the
communication among the hardware and other system services. Kernel acts as the abstraction layer between
system resources and user applications. Kernel contains a set of system libraries and services. For a general
purpose OS, the kernel contains different services for handling the following.

Process Management Process management deals with managing the processes/tasks. Process management
includes setting up the memory space for the process, loading the process’s code into the memory space.
allocating system resources, scheduling and managing the execution of the process, setting up and managing
the Process Control Block (PCB), Inter Process Communication and synchronisation, process termination/
deletion, etc. We will look into the description of process and process management in a later section of this
chapter.

Primary Memory Management The term primary memory refers to the volatile memory (RAM) where
processes are loaded and variables and shared data associated with each process are stored. The Memory
Management Unit (MMU) of the kernel is responsible for

e Keeping track of which part of the memory area is currently used by which process

* Allocating and De-allocating memory space on a need basis (Dynamic memory allocation).

File System Management Fileis acollection of related information. A file could be a program (source code
or executable), text files, image files, word documents, audio/video files, etc. Each of these files differ in the
kind of information they hold and the way in which the information is stored. The file operation is a useful
service provided by the OS. The file system management service ol Kernel is responsible for
¢ The creation, deletion and alteration of files
Creation, deletion and alteration of directories
Saving of files in the secondary storage memory (e.g. Hard disk storage)
Providing automatic allocation of file space based on the amount of free space available
Providing a flexible naming convention for the files
The various file system management operations are OS dependent. For example, the kernel of Microsoft®
DOS OS supports a specific set of file system management operations and they are not the same as the file
system operations supported by UNIX Kernel.

e & & »

[5]

[3]

I/0 System (Device) Management Kernel is responsible for routing the I/O requests coming from different
user applications to the appropriate I/O devices of the system. In a well-structured OS, the direct accessing
of /O devices are not allowed and the access o them are provided through a set of Application Programming
Interfaces (APIs) exposed by the kernel. The kernel maintains a list of all the I/O devices of the system. This
list may be available in advance. at the time of building the kernel. Some kernels, dynamically updates the
list of available devices as and when a new device is installed (e.g. Windows N'T kernel keeps the list updated
when a new plug ‘n” play USB device is attached to the system). The service ‘Device Manager” (Name may
vary across different OS kernels) of the kernel is responsible for handling all /O device related operations.
The kernel talks to the I/O device through a set of low-level systems calls, which are implemented in a
service, called device drivers. The device drivers are specific to a device or a class of devices. The Device
Manager 1s responsible for

¢ Loading and unloading of device drivers

e Exchanging information and the system specific control signals to and from the device
Secondary Storage Management The secondary storage management deals with managing the secondary
storage memory devices, if any, connected to the system. Secondary memory is used as backup medium for
programs and data since the main memory is volatile. In most of the systems, the secondary storage is kept in
disks (Hard Disk). The secondary storage management service of kernel deals with

* Disk storage allocation

e Disk scheduling (Time interval at which the disk 1s activated to backup data)

e Free Disk space management

Protection Systems Most of the modern operating systems are designed in such a way to support multiple
users with different levels of access permissions (e.g. Windows 10 with user permissions like "Administrator’,
‘Standard’, ‘Restricted’, etc.). Protection deals with implementing the security policies to restrict the access
to both user and system resources by different applications or processes or users. In multiuser supported
operating systems, one user may not be allowed to view or modify the whole/portions of another user’s data

the system resources. This kind of protection is provided by the protection services running within the kernel.

Interrupt Handler Kernel provides handler mechanism for all external/internal interrupts generated by the
system.

or profile details. In addition, some application may not be granted with permission to make use of some of

\What is a process/task? Explain with the help of a neat diagram the structure and
memory organization of a process.

A “Process’ 1s a program, or part of it, in execution. Process is also known as an instance of a program in
execution. Multiple instances of the same program can execute simultaneously. A process requires various
system resources like CPU forexecuting the process, memory for storing the code corresponding to the process
and associated variables, I/O devices for information exchange, ete. A process is sequential in execution.

The concept of “Process’ leads to concurrent execution (pseudo parallelism) of tasks and thereby the efficient
utilisation of the CPU and other system resources. Concurrent execution is achieved through the sharing of
CPU among the processes. A process mimics a processor in properties and holds a set of registers, process
status, a Program Counter (PC) to point to the next executable instruction of the process, a stack for holding the
local variables associated with the process and the code corresponding to the process. This can be visualised
as shown m Fig. 10.4.

A process which inherits all the properties of the CPU can be considered as a virtual processor, awaiting
its turn to have its properties switched into the physical processor. When the process gets its turn, its registers
and the program counter register becomes mapped to the physical registers of the CPU. From a memory
perspective, the memory occupied by the process is segregated into three regions, namely, Stack memory,
Data memorv and Code memorv (Fig. 10.5).

Process
Stack Memory

Stack
(Stack pointer) Stack memory | grows

downwards

Working registers

Data memory Jarows

Status registers upwards

Program counter (PC)

Data Memory

A J
Code memory
corresponding to the
Process

Code Memory

Fig. 0.4 Structure of a Process Fig.I05 Memory organisation of a Process

[10]

[3]

[4]

CO3

L2

all global data for the process. The code memory contains the program code (instructions) corresponding
to the process. On loading a process into the main memory, a specific area of memory is allocated for the
process. The stack memory usually starts (OS Kernel implementation dependent) at the highest memory
address from the memory area allocated for the process. Say for example, the memory map of the memory
area allocated for the process is 2048 1o 2100, the stack memory starts at address 2100 and grows downwards
to accommodate the variables local to the process.

[3]

The *Stack™ memory holds all temporary data such as variables local to the process. Data memory holds

What is a barrel shifter with respect to an ARM processor? Explain with the help of a
neat diagram and example.
BARREL SHIFTER

In Example 3.1 we showed a MOV instruction where N is a simple register. But N can be
more than just a register or immediate value; it can also be a register Rm that has been
preprocessed by the barrel shifter prior to being used by a data processing instruction.
Data processing instructions are processed within the arithmetic logic unit (ALU).
A unique and powerful feature of the ARM processor is the ability to shift the 32-bit binary
pattern in one of the source registers left or right by a specific number of positions before
it enters the ALU. This shift increases the power and flexibility of many data processing

operations.
There are data processing instructions that do not use the barrel shift, for example,

the MUL (multiply), CLZ (count leading zeros), and QADD (signed saturated 32-bit add)
instructions.

Pre-processing or shift occurs within the cycle time of the instruction. This is particularly
useful for loading constants into a register and achieving fast multiplies or division by
a power of 2.

2
‘7 Rn 2 Rm
7 - —
. '
E § (Barrel shiftcr]
P 5
= o Result N
Z
L} i

Arithmetic logic unit

Rd

Figure 3.1 Barrel shifter and ALU.

To illustrate the barrel shifter we will take the example in Figure 3.1 and add a shift
operation to the move instruction example. Register Rn enters the ALU without any pre-
processing of registers. Figure 3.1 shows the data flow between the ALU and the barrel
shifter.

ExamMpPLE This example shows a simple move instruction. The MOV instruction takes the contents of
3.1 register r5and copies them into register r7, in this case, taking the value 5, and overwriting
the value 8 in register r7.

PRE r5 =5

ri =8

MoV r7, rb ; let r7 = rb
POST r5 =25

r7 =5

[10]

[3]

[3]

[4]

CO4

L2

Table 3.2 Barrel shifter operations.

Mnemonic Description Shift Result Shift amount y
LSL logical shift left xLSLy XLy #0-31 or Rs
LSR logical shift right xLSRy (unsigned)x >y #1-32 or Rs
ASR arithmetic right shift ~ xASRy (signed)x >y #1-32 or Rs
ROR rotate right XRORy ((unsigned)x>» y) | (x<€ (32 —y)) #1-31o0rRs
RRX rotate right extended ~ xRRX (c flag <« 31) | ((unsigned)x>> 1) none

Note: x represents the register being shifted and y represents the shift amount.

' Y
Bit Bit Bit
0

31
(0}~ I (0] = 0x80000004
Condition Bags

31; i

-

(0)(0)------- (0)(0) - oxoo000008

— N—
Condition Bags

Condition flags
updated when
S is present

Figure 3.2 Logical shift left by one.

Table 3.3 Barrel shift operation syntax for data processing instructions.

N shift operations Syntax

Immediate #immediate

Register Rm

Logical shift left by immediate Rm, LSL #shift imm
Logical shift left by register Rm, LSL Rs

Logical shift right by immediate Rm, LSR #shift_imm
Logical shift right with register Rm, LSR Rs
Arithmetic shift right by immediate Rm, ASR #shift imm
Arithmetic shift right by register Rm, ASR Rs

Rotate right by immediate Rm, ROR #shift imm
Rotate right by register Rm, ROR Rs

Rotate right with extend Rm, RRX

List the different registers of ARM CORTEX — M3 and mention their use. Explain | [10]
the use of R13, R14 and R15 registers.

REGISTERS

General-purpose registers hold either data or an address. They are identified with the
letter r prefixed to the register number. For example, register 4 s given the label r4 [3] | co4
Figure 2.2 shows the active registers available in user mode—a protected mode normally

used when executing applications. The processor can operate in seven different modes,
which we will introduce shortly. All the registers shown are 32 bits in size.

There are up to 18 active registers: 16 data registers and 2 processor status registers. The
data registers are visible to the programmer as r0 to r15.

The ARM processor has three registers assigned to a particular task or special function:
r13, r14, and r15. They are frequently given different labels to differentiate them from the
other registers.

ri
r2
r3
rd
r5

r7
r8

rio
rii
ri2
rl3 sp
ri4ir
ri5 pc

cpsr

Figure 2.2 Registers available in user mode.

In Figure 2.2, the shaded registers identify the assigned special-purpose registers:

m Register r13is traditionally used as the stack pointer (sp) and stores the head of the stack
in the current processor mode.

m Register r14is called the link register (Ir) and is where the core puts the return address
whenever it calls a subroutine.

m Register r15is the program counter (pc) and contains the address of the next instruction
to be fetched by the processor.

Depending upon the context, registers r13 and r14 can also be used as general-purpose
registers, which can be particularly useful since these registers are banked during a processor
mode change. However, it is dangerous to use r13 as a general register when the processor
is running any form of operating system because operating systems often assume that r13
always points to a valid stack frame.

In ARM state the registers r0 to r13 are orthogonal—any instruction that you can apply
to rOyou can equally well apply to any of the other registers. However, there are instructions
that treat r/4 and rI5in a special way.

In addition to the 16 data registers, there are two program status registers: cpsrand spsr
(the current and saved program status registers, respectively).

The register file contains all the registers available to a programmer. Which registers are
visible to the programmer depend upon the current mode of the processor.

[4]

[3]

Explain the following ARM instructions with an example with pre and post

- lexecution conditions:

a) SUBSTrlrl#l

[10]

CO5

L2

The SUBS instruction is useful for decrementing loop counters. In this example we subtract
the immediate value one from the value one stored in register r1. The result value zero is
written to register r1. The cpsris updated with the ZC flags being set.

PRE cpsr = nzcvgiFt USER
rl = 0x00000001

POST cpsr = nZCvqiFt USER
rl = 0x00000000

b) RSB r0,r1,#0

This reverse subtract instruction (RSB) subtracts rI from the constant value #0, writing the
result to r0. You can use this instruction to negate numbers.

PRE r0 = 0x00000000
rl = 0x00000077

RSB r0, rl1, #0 ;3 Rd = 0x0 - rl

POST r0 = -rl = Oxffffffg9
c¢) BICrO,r1,r2

This example shows a more complicated logical instruction called BIC, which carrij
a logical bit clear.

PRE rl = 0b1111
r2 = 0b0101

BIC r0, rl, r2

POST r0 = Obl010
This is equivalent to

Rd = Rn AND NOT(N)

In this example, register r2 contains a binary pattern where every binary 1 in r2 clears
a corresponding bit location in register rI. This instruction is particularly useful when
clearing status bits and is frequently used to change interrupt masks in the cpsr.

The logical instructions update the cpsr tlags only if the S suffix is present. These
instructions can use barrel-shifted second operands in the same way as the arithmetic

[3]

[3]

[4]

instructions.

