BEC405A_Microcontrollers solution- June July 2025

GBESISCHENE

i | ' BEC405A

siter B.E./B.Tech. Degree Examination, June/July 2025
Microcontrollers

Max. Marks: 100

wer any FIVE full questions, choosing ONE full guestion from each module.
: Murks , Lr Bloom's level , C2 Conrse oufoomes,

Module - 1 _ — IM|L]| C
A, With disgrams, explain the RAM structure of 8051 microcontroller. 8 | L2 | COl |

b. With necessary sketches, explain B | L2 CO1
| i) Flags and program status word
(1] Sluck operation. - i i
e. | Write a note on Embedded Microcontrollers. 4 |L1|col
1 |
OR
Q.2 | a. With a neat diagram, explain the block diagram of 8051 microcontroller. | 8 | L2 | CO1 |
b, Write an interfacing disgram of 3051 microcontroller interfaced to 16K | 8 | L2 | CO1 |
{ byles of RAaM. |
| ¢. ' Compare CISC amd RISC arehitecture. 4 L2 col

Module — 2

locations 40 H 1o 44 H using,
(i) Direct addressing mode, [
(i) Register indirect addressing mode without 2 |||~1p '
(i) and with a loop

Q3 |a Write a program segment to copy the value 55 H into RAM memory | 6 ‘ L2|coz

b. I:::plﬁln the following instructions with :wmpl:i 1] 1| L2 | CO2
(i) Move A, @A + DPTR .
(i) RRCA [|
{ii) DAA | |
¢. | Briefly explain the anthmetics instructions of BD31 microcontroller. | 8 | L2 | CO2 |
~v o0 : |

a. | Wrile an assembly langusge program to multiply the number present in | 8 | L3 | CO2
external memory bocation 800 AH and 8050 H. Store the lower byte of | [
| result obtained in RO and higher byvie in R1. |

Explain the role of CALL and subroutines in 8051 microcontroller | 4 | L2 | CO2 |
programming. Give an example, |

]

¢. IM the number AGH is placed in cxternal RAM between locations 0100H I § |L3|COD2|

and 0200H, Write an assembly language program to lind the address of that | [
location and place that address in Ré and R7 registers,

. ~ Module - 3]
a. Explain the functions of each bit in the TMOD register. ~ | 6 |1Lz2|CO3 |
b. Explain MODE-1 programming of timers in 8051, 6 | L2|CO3 |
e. Write a 8051 C program to transmit the messuge ‘ECE’ using serial | 8 | L2 | CO3 |

communication port of 8051, Use baud rate 4800

lalf2

BEC405A

| OR
{ Q.6 [a. Explain the importace of T1 flag and R flag. 6 |L2|cC03
b. Write the steps required for programming 8051 to transmit and receive the | 6 | L2 | CO3
| data serially,
|' e, Explain how limers are used as counters and also explain the.counters | 8 | L1 | CO3
operation using a code snippet.
! Module-4 e
0.7 |[a. | Explain the following : B L2 COd
(i} Interrupt ;
(i} Interrupt Service Routine (ISR) |
(iii} _ Interrupt Yector Table (IVT)
b. | Write the instructions Lo : 6 | L2| cD4
(i) Enable the serial interrupt, timer O interrupl and external |
hardware interrupt. |
(ii) Dizable the timer (0 intermapl. |
(i) Disable all interrupts with a single instruction.
Use hit manipulation instructions for all the cases.
c. Explain the bit contents of 1E register. 6 | L2 | CO4
T OR
Q.8 [a. List the steps involved in executing interrupts in 8051 microcontroller. 6 (L2 | CO4)|
b, | Assume XTAL = 11.0592 MHz. Use timer 0 to create the square wave. | § | L3 | CO4 |
Write a assembly program that continuously gets a 8 bit of data from P(0)
and sends'it to P{1). While simultancously creating square wave of 200 ps
penod on P25, ¥ —
¢. Write the intermupt priority upon reset in 8051, Also cxw the | 6 | L2 | CO4
pricrity of the interrupts can be set using I register. < W e
Muodule - §) & |
Q.9 |a Wih neal diagram, write an assembly language program to interface | 10 | L3 | COS
stepper motor to 8051 microcontroller.
b. Explain DAC interface with diagram and also wrile program to gencrate | 10 | L3 | COS5
triangular waveform.
= . M _—
OR |
Q.10 | a. With neal diagram, write an assembly language program o interface LCD | 10 | L3 i CO5 |
| o 8051 microcontroller.
b. | A door scnsor is connected to the P11 pin and a buzzer is connected to | 10 | L2 | €05
| P1.7. Write 8051 C program lo monitor the door sensor and when it opens,
sound the buzzer, The buzeer can he sound by sending a square wave of a
few hundred Hz.

—
*EEEE

VTU QP_Solution

Module -1 . M|L| C |
Q.1 | a. With diagrams, explain the RAM structure of 8051 microcontroller. 8 |L2|CO1|
b. | With necessary sketches, explain 8 | L2 | CO1
(i) Flags and program status word |
(i) Stuck operation. - |
¢. | Write a note on Embedded Microcontrollers. 4 | L1 |CO1
la)
Internal RAM organization
&7 T .
— -
7] T o w ki
&3 18 77 7
IE 7F
Ml 1% f0
[I i e | e
R7 [F g wl® =
[T
[iz - o i
R] M a8
[E] Ny I
Rz iz
H1 1 n
L) LU | 37 e
BT OF [T | FI]
T = -
BS___ 0D - M
7] aC u | aF 1 |32
[H T3 o |17 T a1
[P
]] 30
] [M| ez ol
&7 o7
-E’ g = General purpose memory
[] = Bit addressable memory
[] 03 = =
HE (K]
Bi o1
A

Warking Registers

Register Banks: 00h to 1Fh. The 8051 uses 8 general-purpoese registers RO through R7 (RO, R1,
RZ, R3, R4, R5, R6, and RT). There are four such register banks. Selection of register bank can be
done through RS1,RS0 hits of PSW. On reset, the default Hegister Bank 0 will he selected.

Bit Addressable RAM: 20h to 2Fh . The 8051 supports a special feature which allows access to bit
variables. This is where individual memory hits in Internal RAM can be set or cleared. In all there
are 128 bits numbered 00h to 7Fh. Being bit variables any one variable can have a value 0 or 1. A bit
variable can be set with a command such as SETB and cleared with a command such as CLR.
Example instructions are:

SETE 25h ; setx the bit 25h (becomes 1)

CLR 25h : clears bit 25h {becomes (1)

Naote, bit 25h is actually bit 5 of Internal RAM location 24h.

The Bit Addressable area of the RAM is just 16 bytes of Internal RAM located between 20h and 2Fh.

General Purpose RAM: 30h to 7Fh. Even if 80 bytes of Internal RAM memory are available for
general-purpose data storage, user should take care while using the memory location from 00 -2Fh

since these locations are also the default register space, stack space, and bit addressable space. It is
a good practice to use general purpose memory from 30 - 7Fh. The general purpose RAM can be
accessed using direct or indirect addressing modes.

1b)

PSW Register in 8051 Microcontroller | Program Status Word

e Flags are single bit register and used to store the result of certain function after executing
instruction. Flags are grouped inside PSW and PCON registers.

e PSW register in 8051 microcontroller contains math flags and PCON contains general
user flags.

e Math flags are grouped in PSW of microcontroller 8051 and they are Carry(C), Auxiliary
Carry (AC), Over flow (OV), and Parity (P). The general user flags are GFO and GF1
which are grouped in PCON register.

PSW Register in 8051

e The PSW is accessible fully as an 8-bit register, with the address DOH.
e The bit pattern of this flag register is

http://ww1.microchip.com/downloads/en/devicedoc/doc4113.pdf

A

Figure 1: Format of PSW register in 8051 Microcontroller

Parity bit (P)

e This parity flag bit is used to show the number of 1s in the accumulator only. If the
accumulator register contains an odd number of 1s, then this flag set to 1.
e [f accumulator contains even number of 1s, then this flag cleared to 0.

Overflow flag (OV)

e This flag is set during ALU operations, to indicate overflow in the result. It is set to 1 if
there is a carry out of either the D7 bit or the D6 bit of the accumulator.
e Overflow flag is set when arithmetic operations such as add and subtract result in sign

conflict.

o The conditions under which the OV flag is set are as follows:
e Positive + Positive = Negative
e Negative + Negative = Positive
e Positive — Negative = Negative
e Negative — Positive = Positive
Register bank select bits (RS1 and RS0)

e These two bits are used to select one of four register banks of RAM. By setting and
clearing these bits, registers RO-R7 are stored in one of four banks of RAM as follows.

RS1 RSO Bank Selected Address of Registers

0 0 Bank 0 00h-07h

0 1 Bank 1 08h-0Fh
1 0 Bank 2 10h-17h

1 1 Bank 3 18h-1Fh

e These bits are user-programmable. They can be set by the programmer to point to the
correct register banks.
e The register bank selection in the programs can be changed using these two bits.
General-purpose flag (F0)

e This is a user-programmable flag; the user can program and store any bit of his/her
choice in this flag, using the bit address.
Auxiliary carry flag (AC)

°
e It is used in association with BCD arithmetic. This flag is set when there is a carry out
of the D3 bit of the accumulator.
Carry flag (CY)
[J

e This flag is used to indicate the carry generated after arithmetic operations. It can also
be used as an accumulator, to store one of the data bits for bit-related Boolean
instructions.

The 8051 supports bit manipulation instructions.

This means that in addition to the byte operations, bit operations can also be done using bit

data.

e For this purpose, the contents of the PSW are bit-addressable.

The Stack and the Stack Pointer ¢ The stack refers to an area of internal RAM that is used in
conjunction with certain opcodes to store and retrieve data quickly. « The 8-bit stack pointer (SP)
register is used by the 8051 to hold an internal RAM address that is called the "top of the stack."
* The top of the stack is the location in internal RAM where the last byte of data was stored by a
stack operation. * The SP increments before storing data on the stack so that the stack grows up
as data is stored. * As data is retrieved from the stack, the byte is read from the stack, and then

the SP decrements to point to the next available byte of stored data. « The SP is set to 07h when
the 8051 is reset and can be changed to any internal RAM address by the programmer.

Stack Operation
Store Data Get Data
SP = OA Address DA i SP = DA
Store Data Get Data
SP =08 - - Addrass 09 - 3F = 09
tode Dat Get Dats
5P =08 Store et Address 08 2 - SP =08
5P = 07 Address OF 5P = Q7
Storing Data on the Stack Internal RAM Geting Data From the Stack
lIncrement then store] [Get then decrement)

Ic) Embedded microcontrollers are small, powerful devices that control and interact with the
physical world. They're essentially single-chip computers that contain a processing core,
memory, and input/output peripherals, making them ideal for specific tasks within larger
systems.

Key Features:

- Compact Design: Small size fits into tight spaces
- Low Power Consumption: Perfect for battery-powered devices
- Real-Time Processing: Handles urgent tasks, like in medical devices or car safety features

- Versatile Communication: Works with various protocols like UART, SPI, and 12C

Applications:

- Consumer Electronics: Smartphones, smart TVs, gaming consoles, and home automation
systems

- Automotive Systems: Engine control, safety systems, and infotainment systems

- Industrial Automation: Control machinery, monitor equipment, and provide real-time feedback

- IoT Devices: Connects and regulates smart devices, enabling automation and data exchange

Popular Microcontrollers:

- ATmega328P (Arduino Uno): Great for beginners, hobbyists, and DIY projects
- STM32 (Series of ARM Cortex-M chips): Robust, flexible, and user-friendly for newcomers
- ESP32: Excellent for IoT projects with built-in Wi-Fi and Bluetooth

- RP2040 (Raspberry Pi Pico): Powerful, affordable, and easy to use for real-time control and
DIY electronics

Benefits:

- Increased Efficiency: Automate tasks, process data quickly, and work with sensors and
actuators

- Improved Accuracy: Reduce errors and improve performance in various applications

- Cost-Effective: Available at a range of prices, suitable for mass-produced devices

Future Trends:

- Artificial Intelligence (AI): Integration of Al algorithms for intelligent decision-making and
control

- Edge Computing: Processing data locally, reducing dependence on cloud servers

- Increased Connectivity: Seamless communication with other devices and systems for advanced
data collection and analysis

Q.2 | a. Witha neat diagram, explain the block diagram of 8051 microcontroller. | 8 | L2 | COl

T
b. Write an interfacing diagram of 8051 nuu‘umnlmllu interfaced to 16K | § | L2 | COl
bytes of 1. "a Wi

¢. | Compare C ISC and RISC architecture 4 L2 COl
2a)
8051 Architecture
EXTERMAL
ITERRUPTS
+ 4 ix
INTERRUPT [+ RO 128 Byt RAM TIMERY COUNTER
conTROL Y - m— ¥ INPUTS
; 1
L) v ¢
QEC BUS CONTROL 4 W0 PORTE SERIAL CONTROL
I_D—J A P2 Pl P3 THD RAD
L
T T ACDRESS
BATA

General Block Diagram of 8051 Microcontroller

Salient features of 8051 microcontroller are given below.

= Eight bit CPU

“* On chip clock oscillator

“» 4Kbytes of internal program memory (code memory) [ROM]
“» 128 bytes of internal data memory [RAM]

“» 64 Kbytes of external program memory address space.

“» 64 Kbytes of external data memory address space.

“» 32 bi directional I/O lines (can be used as four 8 bit ports or 32 individually addressable I/O
lines)

“* Two 16 Bit Timer/Counter :TO, T1

“» Full Duplex serial data receiver/transmitter

“* Four Register banks with 8 registers in each bank.

“» Sixteen bit Program counter (PC) and a data pointer (DPTR)

“» 8 Bit Program Status Word (PSW)

“» 8 Bit Stack Pointer
“* Five vector interrupt structure (RESET not considered as an interrupt.)

“» 8051 CPU consists of 8 bit ALU with associated registers like accumulator ‘A’, B register,
PSW,

SP, 16 bit program counter, stack pointer.

“ ALU can perform arithmetic and logic functions on 8 bit variables.
“» 8051 has 128 bytes of internal RAM which is divided into

o Working registers [00 — 1F]

o Bit addressable memory area [20 — 2F]

o General purpose memory area (Scratch pad memory) [30-7F]
2b)

Bolutien: Giwven, Memory size: lék
that means we reguire 2'1ék ::n address lines
here n=14 :: Ap to Mgy address lines are required.
A and Ry are connected through OR gate to CS pin of external RAM.
when A, and A, _both are lew {logic '0'), external data memory (RAM) is
selected.
Address Decoding(Memory Map) for 16k x B RAM.

Address Pas B Aus Biz Aun BAio BoAs A: Ac A: A: A A: A Ax HEX
adrs.
starting ov0™0.0 0 0 020 o o0 0 0 o o0 o 0 0000H
v end 09 1 1 1 1 11 11 1 1 1 1 1 1 3FFFH
| PO, 7 D7=D(
EA
PO.0 |
ALE o -) 16k = 8
L > L
8051 __|__ RAM
o b =
> AB-A13
P2.5
P2.6 o
P2.7 7| cs
TSEN _
P3.6 WH
P3.7 RD
FIGURE 5 16K X B MEMORY (RAM) INTERFACING TO pC BOSL

2¢)

CISC

Instruction takes one or two cycles

Instruction takes multiple cycles

Only load/store instructions are used to
ACCess Memory

In additions to load and store

instructions, memory access is possible
with other instructions also.

Instructions executed by hardware

Instructions executed by the micro program

Fixed format instruction

Variable format instructions

Few addressing modes

Many addressing modes

Few instructions

Complex instruction set

Most of the have multiple register banks

Single register bank

Highly pipelined

Less pipelined

Complexity is in the compiler

Complexity in the microprogram

A& Module — 2 i R
Q.3 | a. Write a program segment to copy the value 55 H into RAM memory | 6 | L2 | CO2
: locations 40 H to 44 H using, | i
i (1) Direct addressing mode, i |
(11} Rezister indirect addressing mode without a loop
L (i) andwithaloop = ' B S
Y Explain the following instructions with examples: 6 | L2 | CO2
(i) Move A, @A + DPTR . '
{11} RRC A |
(iii) DA A |
| CO2

| ¢. | Briefly explain the arithmetics instructions of 8051 microcontroller.

3a)

Direct addressing mode:

MOV A, #55H ; Load accumulator with 55h
MOV 40H, A ; Copy 55h into RAM location 40h
MOV 41H, A ; Copy 55h into RAM location 41h
MOV 42H, A ; Copy 55h into RAM location 42h

MOV 43H, A ; Copy 55h into RAM location 43h
MOV 44H, A ; Copy 55h into RAM location 44h

SIMP $; Stay here (infinite loop)

Register indirect addressing mode without loop

MOV A, #55H ; Load immediate data 55H into Accumulator
MOV RO, #40H ; Load starting address 40H into RO

MOV @RO, A ; Store 55H at 40H
INC RO ; Point to 41H
MOV @RO, A ; Store 55H at 41H
INC RO ; Point to 42H
MOV @RO, A ; Store S5H at 42H
INCRO ; Point to 43H
MOV @RO, A ; Store 55H at 43H
INC RO ; Point to 44H
MOV @RO, A ; Store 55H at 44H

SIMP $; Stay here forever (stop program)

Register indirect addressing mode with loop

MOV A, #55H ; Load accumulator with 55H
MOV RO, #40H ; Initialize RO with starting address (40H)
MOV R1, #05H ; Counter = 5 (since 40H to 44H — 5 locations)

LOOP: MOV @RO0, A ; Store 55H into address pointed by RO
INC RO ; Point to next memory location

DINZ R1, LOOP ; Decrement R1, repeat until 0

SJMP $; Stop program (infinite loop)

3b)
b. Explain the I-i:.n-ll..m-||1gTﬁﬁﬁ'ucumu with l_‘.;-..:llﬁ]ﬂt"i: R 6 | L2 | C0O2
(i) Move A, @A + DPTR
(ii) RRC A
(i) DAA
3b) RRC A
RRC A Fotate the A register and the carry flag. as a ninth bit, one hit position to
the right; bit AD to the carry Aag, carry flag 1o AT, A7 1o AS, A6 10
A5, ASto A4, Ad o AZ Al o A2, A2 to AL, and Al to AD
l_‘-1 7 -] 5 4 3 2 1 0 G
RRC A Carry Flag
asm
MOV A, #96H ; A = 1881 8118b
SETE C ; Set carry =1
RRC A ; Rotate right through carry
SIMP %
inal result:
. A = @CBh
* Y=28

DA A

pa A = Decimal Adjust Accumulator

* It is used after adding two BCD (Binary-Coded Decimal) numbers.

* Adjusts the result in A so that it becomes a valid BCD number (two decimal digits,
00-99).

* Works based on Auxiliary Carry (AC) a' |, “arry (CY) flags.

The 8051 rules for pa a are:
1. If the lower nibble (A0-A3) > 9 OR AC =1, then 186 is added to the low nibble.
2. If the upper nibble (A4-A7) > 9 OR CY =1, then s6en is added to the accumulator.

This ensures each nibble of a holds a valid BCD digit (0-9).

MOV A,
ADD A,
DA A ;3 Adjust to wvalid BCD

o After ADD: A = 5Ch = 01081 118@b
(upper nibble = 5, lower nibble = 12 — not valid BCD)

e DA A fixesit A = 62n (which is valid BCD = decimal 62).

MOV A,
ADD A,
DA A

» After app: A = BDh, CY =0
* DA A adds60h— A =11 3h,CY=1(since >99 BCD)

So final result: BCD = 123, with CY carrying the hundred's digit.

¢. | Briefly explain the arithmetics instructions of 8051 microcontroller.

Arithmetic Instruction

Mnemonic Operation

INC destination Increment destination by |

DEC destination Decrement destination by |

ADD/ADDC destination,source Add source to destination without/with carry (C)

flag

SUBB destination,source Subtract, with carry, source from destination

MUL AB Multiply the contents of registers A and B

DIV AB Divide the contents of register A by the contents of
register B

DA A Decimal Adjust the A register

Incrementing and Decrementing

Mnemonic Operation

INC A Add a one to the A register

INC Rr Add a one to register Rr

INC add Add a one to the direct address

INC @ Rp Add a one to the contents of the address in Rp

INC DPTR Add a one to the 16-bit DPTR

DEC A Subtract a one from register A

DEC Rr Subtract a one from register Rr

DEC add Subtract a one from the contents of the direct address

DEC @ Rp Subtract a one from the contents of the address in register Rp

Mnemonic
ADD A _#n
ADD A Rr
ADD A add
ADD A.@Rp

Mnemonic
ADDC A #n

ADDC A add

ADDC A.Rr
ADDC A.@Rp

Mnemonic
SUBB A.#n

SUBB A add
SUBB A.Rr
SUBB A,@Rp

Addition

Operation

Add A and the immediate number n; put the sum in A

Add A and register Rr; put the sum in A

Add A and the address contents; put the sum in A

Add A and the contents of the address in Rp; put the sum in A

Operation

Add the contents of A, the immediate number n, and the C flag; put
the sum in A

Add the contents of A, the direct address contents, and the C flag:
put the sum in A

Add the contents of A, register Rr, and the C flag; put the sum in A

Add the contents of A, the contents of the indirect address in Rp,
and the C flag; put the sum in A

Subtraction

Operation

Subtract immediate number n and the C flag from A; put the result
in A

Subtract the contents of add and the C flag from A; put the result in A

Subtract Rr and the C flag from A put the result in A

Subtract the contents of the address in Rp and the C flag from A;
put the result in A

Multiplication and Division

Mnemonic Operation

MUL AB Multiply A by B: put the low-order byte of the product in A, put the
high-order byte in B

Mnemonic Operation

DIV AB Divide A by B; put the integer part of quotient in register A and the
integer part of the remainder in B

Decimal Arithmetic

Vinemonic Operation

JA A Adjust the sum of two packed BCD numbers found in A register; leave
the adjusted number in A.

4
Q4 ' a. Write an assembly language program to multiply the number present in | 8 | L3 CO2 |
! external memory location 800 AH and 8050 H. Store the lower byte 01' ; '
| result obtained in RO and higher byte inR1. o R
3 b. Explain the role of CALL and subroutines in 8051 nm.rur.t:rntr-::u]h,rl 4 | L2 | coz |
__programming. Give an example.
ok ¢ iu:, If the number AGH is placed in external RAM between locations 0100H | 8 | L3 | CO2 |
and 0200H. Write an assembly language program to lind the address of that |
location and place that address in R6 and R7 registers,
a. Wrile an assembly language program to multply the number present in
external memory location 800 AH and 8030 H. Store the lower byte of
4A | rieenlt nhiainad in RO and higher bvie in R1

MOV DPTR, #8000H ; Point DPTR to 8000H
MOVX A, @DPTR ; A = data from external memory [SO00H]

MOV B, A ; Save first number in B

MOV DPTR, #8050H ; Point DPTR to 8050H

MOVX A, @DPTR ; A = data from external memory [8050H]

; Now: A = second number, B = first number

; Multiply A * B
; Result: 16-bit — A = low byte, B = high byte

MOV RO, A ; Store lower byte in RO
MOV RI, B ; Store higher byte in R1

; Stop program (infinite loop)

"Explain the role of CALL and subroutines in 8051 microcontroller |
programming. Give an example.

Calls and Subroutines

The life of a microcontroller would be very tramguil if all programs could mun with no
thought as 1o what is going on in the real world outside. However, a microcontroller is
specifically intended to interact with the real world and to react, very quickly, 1o events
that require program attention to correct or control.

A program that docs not have to deal unexpectedly with the world outside of the
microcontroller could be written using jumps to alter program flow as external conditions
require. This sort of program can determine external conditions by moving data from the
part pins to a location and jumping on the conditions of the port pin data, This technique is
called “polling™ and requires that the program does not have to respond to external condi-
tions guickly. (Quickly means in microseconds; slowly means in milliseconds.)

Another method of changing program execufion is using “interrupt” signals on cer-
tain external pins or internal registers to automatically cause a branch to a smaller program
that deals with the specific situation. When the event that caused the interruption has been
dealt with, the program resumes at the point in the program where the interruption 1ook
place. Interrupt action can also be generated using software instructions named calls,

Call instructions may be included explicitly in the program as mnemonics or im-
plicitly included using hardware interrupts. In both cases, the call is used 1o execute a
smaller, stand-alone program, which is termed a rowtine or, more often, a subroufine,

Subroutines

A subroutine is a program that may be used many times in the execution of a larger pro-
gram. The subroutine could be written into the body of the main program everywhere it 1s
needed, resulting in the fasiest possible code execution. Using a subroutine in this manner
has several serious drawhacks.

Common practice when writing a large program is to divide the total task among
many programmers in order to speed completion. The entire program can be broken into
smaller parts and each programmer given a part to write and debug. The main program

can then call each of the parts, or subroutines. thar have been developed and tested by each
individual of the team.

Even if the program is written by one individual, it is more efficient to write an oft-used
routine once and then call it many times as needed, Also, when writing a program, the
programmer does the main part first. Calls to subroutines, which will be wrinen later,
enahle the larger task to be defined before the programmer becomes bogged down in the
details of the application.

Finally, it is quite commaon to buy “libraries” of common subroutines that can be
called by a main program. Again, buying libraries leads 1o faster program development.

Calls and the Stack

A call, whether hardware or software initiated, causes a jump o the address where the
called subroutine is located. At the end of the subrouting the program resumes operation at
the opeode address immediately following the call. As calls can be located anywhere in
the program address space and used many times, there must be an automatic means of
storing the address of the instruction following the call so that program exccution can
continue after the subroutine has executed.

The stack area of internal RAM is used to automatically store the address, called the
return address, of the instruction found immediately afier the call. The stack pointer regis-
ter holds the address of the fast space used on the stack. It stores the return address above
this space, adjusting itself upward as the retwrn address is stored. The terms “stack”™ and
“stack pointer™ are often used interchangeably to designate the rop of the stack area in
RAM that is pointed to by the stack pointer,

Figure 6.2 diagrams the following sequence of events:

1. A call opcode occurs in the program software, or an interrupt is generated in the
hardware circuitry.

2. The return address of the next instruction after the call instruction or interrupt is
found in the program counter,

3. The return address bytes are pushed on the stack, low byte firs:,

4. The stack pointer is incremented for each push on the stack.

5. The subroutine address is placed in the program counter.

fi. The subroutine is executed.

7. A RET (return) opcode is encountered at the end of the subroutine.

Storing and Retrieving the Return Address

Program Counter
[ron | per |
. ! I
ru——-——.-gp+2 PCH GP 4 P ——] _l
| oo — 5Py] FCL SP 4 | ——h— - ——
gl
Program Counter
ACALL LCALL
Interrupt

Internal RAM

R. Two pop operations restore the return address to the PC from the stack area in
internal RAM.

9. The stack pointer is decremented for each address byte pop.

All of these steps are antomatically handled by the B051 hardware. [t is the responsi-
hiliry of the programmer to ensure that the subrouting ends in a RET instruction and that
the stack does not grow up into data arcas that are used by the program.

Calls and Returns

Calls use shori- or long-range addressing; returns have no addressing mode specified bu
are always long range. The following table shows examples of call opeodes:

Mnemonic Operation

ACALL sadd Call the subroutine located on the same page as the address of the
opcode immediately following the ACALL instruction; push the
address of the instruction immediately after the call on the stack

LCALL ladd Call the subroutine located anywhere in program memory space. push
the address of the instruction immediately following the call on
the stack

RET Pop two bytes from the stack into the program counter

Note that no flags are affected unless the stack pointer has been allowed to erroneously
reach the address of the PSW special-function register,

4C)

c. | If the number A6H is placed in external RAM between locations 0100H
and 0200H. Write an assembly language program to lind the address of that
location and place that address in R and R7 registers,

MOV DPTR, #0100H ; Start address of search
MOV R2, #01H ; High-byte of end address (0200H — 0x02)
MOV R3, #00H ; Low-byte of end address (0200H — 0x00)

MOV R4, #0 ; Found flag =0

SEARCH: MOVX A, @DPTR ; Read external RAM[DPTR]
CINE A, #0A6H, NEXT ; Compare with A6H

; If equal, store DPTR into R6:R7

MOV R7, DPH ; High byte of address
MOV R6, DPL ; Low byte of address
MOV R4, #1 ; Mark as found

SJIMP DONE

NEXT: INC DPTR ; Increment address
MOV A, DPH
CINE A, #02H, SEARCH ; If not reached 0200H high byte
MOV A, DPL
CINE A, #00H, SEARCH ; If not reached 0200H low byte

DONE: SIMP § ; Stop program
Module - 3
Q.5 | a. Explain the functions of each bit in the TMOD register. 162 |CO3
b. ' Explain MODE-1 programming of timers in 8051. |6]L2]|CO3
¢. Write a 8051 C program to transmit the message ‘ECE’ using serial | 8 | L2 | CO3
communication port of 8031, Use baud rate 4500
S5a)

The TMOD register is used to select the operating mode and the timer/counter operation of the
timers. * The format of TMOD register is,

B'I B‘ BS B4 BS BZ Bl BO
SMO | SM1 [SM2|REN|TB8|RB8| TI | RI

_ ——) Receive Interrupt Flag
l L > Transmit Interrupt Flag
0 0 -Mode-0 : » Received 9" bit(i.e., bit B, of received data)
0 1 -Mode-1 > Transmitted 9* bit(i.e. bit B, of transmitted data)
1 0 - Mode-2 .
1 1 -Mode-3 — —> Receive Enable

3 Serial mode bit-2

The lower four bits of TMOD register is used to control timer-0 and the upper four bits are used
to control timer-1. « The two timers can be independently program to operate in various modes. ®
The TMOD register has two separate two bit field MO and M1 to program the operating mode of
timers. The operating modes of timers are mode-0, mode-1, mode-2 and mode-3. In all these
operating modes the oscillator clock is divided by 12 and applied as input clock to timer.

MODE-0 In mode-0 the timer register is configured as 13-bit register. o For timer-1 the 8 bits of
THI1 and lower 5 bits of TL1 are used to form 13-bit register. o For timer-0 the 8-bit of THO and

lower 5 bits of TLO are used to form 13-bit register. o The upper three bits of TL registers are
ignored. o For every clock input to timer the 13-bit timer register is incremented by one When
the timer count rolls over from all 1’s to all 0’s, (i.e., 1 1111 1111 1111 to 0 0000 0000 0000) the
timer interrupt flag in TCON register is set to one.

Mode-1

The mode-1 is same as mode-0 except the size of the timer register. In mode-1 the TH and TL
registers are cascaded to form 16-bit timer register.

MODE-2 In mode-2, the timers function as 8-bit timer with automatic reload feature. The TL
register will function as 8-bit timer count register and the TH register will hold an initial count
value. o When the timer is started, the initial value in TH is loaded to TL and for each clock
input to timer the 8-bit timer count register is incremented by one. o When the timer count rolls
over from all 1’s to all 0’s (i.e., 1111 1111 to 0000 0000), the timer interrupt flag in TCON
register is set to one and the content of TH register is reloaded in TL register and the count
process starts again from from this initial value.

Mode-3 In mode-3, the timer-0 is configured as two separate 8-bit timers and the timer-1 is
stopped. o In mode-3 the TLO will function as 8-bit timer controlled by standard timer-0 control
bits and the THO will function as 8-bit timer controlled by timer-1 control bits. o While timer-0 is
programmed in mode-3, the timer-0 can be programmed in mode-0, 1 or 2 and can be used for an
application that does not require an interrupt. o The C/T(Low) bit of TMOD register is used to
program the counter or timer operation of the timer. When C/T bit is set to one, the timer will
function as event counter. The C/T(Low) bit is programmed to zero for timer operation. o The
timer will run only if clock input is allowed. 0 When GATE = 1, the clock input to timer is
allowed only if the signal at pin is high and when GATE =0 the signal at INT (low) pin is
ignored.

5b

The 8051 has two timers; tmer 0, timer 1. They can be used either as Gmers or os event
commiers. Both timer 0 and timer 1 are 16 bits wide. Simce the 3051 has an B-bit archiiecture , each
16 bit timer is d as two separate registers of low byte and high byte.

TIMER i) registers

The L bit regisber of timer O is accessed as bow byte and high byte. The low byie register s
called TLA {tineer O bow byte) and the high byte register is referred to a5 THO timer @ high byte).
These registers can be socessed kike sy other register, suchi as A, B, RO, 1. B2 oo, For examgple,
the instraction * MOV TLOFZSH™ koads the value 25H into TLO.

2 THO e TLO

-

|D‘I'E|D14|D'IH|D‘12|D‘I'I|D1'J|I:B|DE|l'.'ﬂ'| DE|DG|DI| D3 | oz | I:I'I|DO |

Figi 1} Timer 0 Ragisters
TIMER 1 registers.

Timer 1 is alse 16 bits, and its 16 bit register is splin into two bytes, referred to &=
TL1itimer | kow byte) and THI (timer | high byte). These registers are acressible in the same way
i the regisicrs of timer (.

p TH1 . TLA "

[D1'E|D14|D13|D'13|D11PD10|W|D9|E‘T|DE|DE|DI| W|DE|D'I|D0|

F igl2y Timer 1 Registars

TAOD {Timer Mode) Begister

Baoth timers O ond | mee the same regisber, called TWOD, to set the various tmer opemation
modes. TMOD is an B<bit register in which the lower 4 bits are set aside for tiner 0 and the
upperd bits are et aside for tmer 1. In esch case, the bewer 2 hits ane usad to et the timer mods
ard the upper 2 hits to specify the operation. TMOD register is shown i g3

AIEE) {L5B)
GM—:l B I M1 I M1 | GATE I T || M I M
TWER 1 TWERD

Fig(3} TMi0 Register

GATE: The T MO register of Fig(3) that both timers O and | have the GATE bit. Every timer
has mesns of starting and stopping. Some timers do this by softeare, some by bardware, and some
both software and hardware controls. The timsers in the 8051 have both. The start and stop of the
timer are comrolled by way of software by the TR (timer smn) bits TRO and TR1. This i
ahieved by the instroctions "SETHE TR1™ and = CLE T R1” for timer | and * SETE TRD™ and
= CLR TRO¥ for time . The SETH instroction sinnis it, and it is stopped by the CLE mstruction.
These imstructions stan md stop the timers as long as GATE=0 in the TMOD regisier.

M1, 50z MO and M1 select the tmer mode. As show in the bebow Table, there are three modes: 0
A, mmd 2. Mode 0 is o 15 bit timer, msode | is a 16 bit timer and mode 2 is an 8-bit timer.

LT M2 MODE
L] o [1]
[1]] 1
[[1] 2
1] 3

C /T (Clock ! Timer): This bit in the TMOD regisier is wed o decide whether the timer is ssed
s & delay generator or an evend counter. IE CT =0, 5t is vsed &5 & timer for ime dely generation.
The chock source for the time delay is the crysial frequency of the BOS1.

Timer mimin

Maode | Frogramming
The followimg are the charscieristics and operations of mode 1:

L. his & Di-bit timer, therefore it allows values of 0000 to FEFFH 1o b laded o the
timer's regisiers TL and TH.

1 aAfier TH and TL are looded with a Lé-bit initinl vahee, the timer must be stoned. This i
dome by “SETB TR fior Timer O and “SETH TR1" for Timer 1.

3. After the timer is sinnied, it stors io cownd up. 1 counts up uniil # resches iis lmt of
FFFFH. When it rolls over foom FFFFH 1o (000, it sets high flag bt called TF (timer flag).
This timer flag can be monitered. When this timer flag is mised, one option would be io
stop the timer with the mstructions “CLE TR for Timer and “CLE TR1" for Timer 1.
Modice that ench timer has its own timer Aag: TFO for Temer 0 and TF 1 for Timer 1.

4. Afier the timer reaches its limit and rolls over, in crder to repeat the process the registers
TH and TL must be reloaded with the onginal valwe, and TF must be reset o 0"

Steps tn Program im Mode 1

I. Load the TMOD value regisier mdicating which timer {Timer @ or Timser 1) is to be used
and which: timer mosde { 0 or 1) is selecied.

2 Load registers TL and TH with initial count values
1. Sion the timer.
4. Kecp menitoring the timer flag (TF). Get out of the loop when TF becomes high
3. Siop the timer.
. Clear the TF flag for the next round.
7. e back to Step 2 to load TH and TL again.
Eaample
MOV TMOD, #01 Tinee), mode 1 (16-bit mode)
HERE: MOV TLO, sFXH TLO = FIH. the Low byie
MION THO, FFH TH{ = FFH. the High bvie
CPLFLS
ACALL DELAY
SIMP HERE
Dellay using Temer O
DELAY:
SETH TRD Start Timer 0
AGAIN: | JMB TFD, AGAIN Monitor Timer) flag until ir rolls over
CLR TR Stop Timer 0
CLE TFD Clear Timer 0 flag
RET

The B0S1 has two timers; Smer 0, tmer 1. They can be used either as Gimers or os event
couniers. Both timer 0 snd timer | are 16 bits wide. Simce the 80031 has an 8-bit architecture |, ench
16 bit timer is accossed as two separaie regisiers of low byte and high byte.

TIMER 0 registers

The L bit register of timer 0 is socessed s bow byie snd high byie. The low byte register s
called TLO {timer 0 bow byie) and the high byte regisier is refermed 1o s THO (timer O high byie).
Thise registers can be socessad like sy other regiser, auch as A, B, RO, 1, B2 oo, For example,
the instrection * MOY TLO#2EH™ boads the value 25H indo TLO.

o THO s TLO "

|D"IE|D‘II|D'|3|D‘I2|D11 D"Ii.‘.l| =) | =] | BT| =]

DE|DI|DE|DE|D1|D¢I|

Fig{ 1k Timer 0 Registers
TIMER i registers

Timer 1 is alse 16 bits, and iis 16 bit register = split into two bytes, referred o &=
TL litimer | bow byte) and THI (timer | high byie). These registers are accessible in the same way
i the regisiers of timer 0.

TH1 TLA

'd T N,

|D‘Iﬁ|D‘II|D13|D12|D‘11 D10|W|DH|W|W|DE|DI| ua|m| D'||DCI|

Figl2y Timer 1 Regisbars

TMOD (Timer Mode) Register

Bath timers 0 ond | oee the same register, called TVOD, 1o set the: various Smer aperatian
modes. TMOD is an 8<bit regisier in which the lower 4 bils are set aside for timer and the
upperd bits are set aside for tmer 1. In each case, the bower 2 hits ane used to set the timer mode
aned the upper 2 bits io specify the operation. TMOD register i shown im fgi 3

[¢, | Write a 8051 C program to iransmit the message 'ECE' using serial |

[commumication port o 8051 Use baud rate 4808

5¢)

1. Setting up the serial port

e Select Serial Mode 1: This is the preferred mode for communication with PCs, as it
supports variable baud rates and 8-bit data with 1 start and 1 stop bit. This is achieved by
setting the SMO and SM1 bits of the SCON register (Serial Control Register) to 0 and 1,
respectively, resulting in a value of 0x50 for SCON.

e Baud Rate Generation (using Timer 1):

o Configure Timer 1: To generate a 4800 baud rate, Timer 1 should be set in Mode
2 (8-bit auto-reload mode). This can be achieved by loading the TMOD register
(Timer Mode Register) with the value 0x20.

o Load TH1: For a 4800 baud rate with an 11.0592 MHz crystal, the TH1 (Timer 1
High Byte Register) should be loaded with a specific value, which is 0xFA (-6 in
decimal).

o Start Timer 1: The TR1 bit (Timer 1 Run Control Bit) in the TCON register

(Timer Control Register) should be set to 1 to initiate Timer 1's operation.

2. Transmitting data

e Load SBUF: The character to be transmitted (in this case, 'E', 'C', or 'E') needs to be
placed into the SBUF register (Serial Data Buffer Register).

e Wait for Transmission Complete: Monitor the TI flag bit (Transmit Interrupt Flag) in the
SCON register. This bit will be set when the transmission of the current byte is finished.

e C(lear TI Flag: Once transmission is complete, the TI flag needs to be cleared by the

programmer to allow for the transmission of the next character.

3. Example code (for 8051)

#include <reg51.h>

void main(void){
TMOD=0x20; // Use Timer 1, Mode 2 (8-bit auto-reload)
TH1=0xFA; // Set baud rate to 4800 for 11.0592 MHz crystal
SCON=0x50; // Configure Serial Port Mode 1 (8-bit data, 1 start, I stop bit)
TR1=1; // Start Timer 1

// Transmit "ECE"
SBUF='E'; // Place 'E'" in the buffer
while (TI==0); // Wait for transmission to complete

TI=0; // Clear the TI flag

SBUF='C"; // Place 'C' in the buffer
while (TI==0); // Wait for transmission to complete

TI=0; // Clear the TI flag

SBUF='E'; // Place 'E" in the buffer
while (TI==0); // Wait for transmission to complete

TI=0; // Clear the TI flag

while(1); // Infinite loop to prevent the program from ending

Use code with caution.

6. a. Explain the importance of TI flag and RI flag. TI — Transmit Interrupt Flag Meaning: TI
indicates that t

he 8051 has finished transmitting (sending) one byte of data from the SBUF (Serial Buffer
Register). Set automatically by hardware when the last bit (stop bit) of a frame is transmitted.
Must be cleared by software after being serviced.

Importance: Tells the programmer that the UART is ready to send the next byte. Prevents
overwriting of data in SBUF before the previous transmission is completed. Used in polling or
interrupt-driven serial communication.

Example: After sending a byte to SBUF, you wait until TI = 1 before writing the next byte. 2. RI
— Receive Interrupt Flag Meaning: RI indicates that the 8051 has received one complete byte of
data into SBUF from the Rx line. Set automatically by hardware when a full frame (start, data,
stop bits) is received. Must be cleared by software after reading the data.

Importance: Tells the programmer that new data is available in SBUF for reading. Ensures that
the program does not attempt to read SBUF before data is valid. Used in polling or
interrupt-driven reception. <~ Example: When RI = 1, you know a new character has arrived, so
you read it from SBUF. Summary (Side-by-Side): Flag Set by Meaning Importance TI Hardware
Transmission complete Ready for next byte to send RI Hardware One byte received Data
available to read Without TI, you wouldn’t know when it’s safe to send the next byte. Without
RI, you wouldn’t know when a byte has arrived and is ready to be read.

b. Write the steps required for programming 8051 to transmit and receive the data serially.

a In programming the 8051 to transfer
character bytes serially
1. TMOD register is loaded with the value

20H, indicating the use of timer 1 in mode
2 (8-bit auto-reload) to set baud rate

2. The TH1 is loaded with one of the values
to set baud rate for serial data transfer

3. The SCON register is loaded with the value
50H, indicating serial mode 1, where an 8-
bit data is framed with start and stop bits

4. TR1 is set to 1 to start timer 1
5. TIis cleared by CLR TI instruction

6. The character byte to be transferred
serially is written into SBUF register

7. The TI flag bit is monitored with the use of
instruction JNB TTI, xx to see if the

character has been transferred completely
8. To transfer the next byte, go to step 5

e Programming the 8051 to receive character bytes serially

1. TMOD register is loaded with the value 20H, indicating the use of timer 1 in mode 2
(8-bit auto-reload) to set baud rate

2. TH1 is loaded to set baud rate

3. The SCON register is loaded with the value S0H, indicating serial mode 1, where an 8-
bit data is framed with start and stop bits

4. TR1 is set to 1 to start timer 1
5. Rl is cleared by CLR RI instruction

6. The RI flag bit is monitored with the use of instruction JNB RIL,xx to see if an entire
character has been received yet

7. When Rl is raised, SBUF has the byte, its contents are moved into a safe place

8. To receive the next character, go to step 5

C. Explain how timers are used as counters and also explain the counters operation using code
snippet.

Timer as Counter

Bit C/ T =1 for counter mode.
Counter also as all modes as in Timer

Timer with external input (Mode 1)

Timer Overflow
external | | | | flag
54 or'3. | TL g TF

3.4o0r35
CT=1 TR TF goes high
when FFFF —» 0

Timer with external input (Mode 2)

Timer Overflow
external I] | | flag
input pin -
340135 gy TF
CT=1 .
TR Reload TF goes high

when FF — 0

Assume that a 1-Hz external clock 1s being fed into pin T1 (P3.5).
Write a C program for counter 1 in mode 2 (8-bit auto reload) to count
up and display the state of the TL1 count on P1. Start the count at OH.

Solution:

finclude <reg5l.h>
sbit T1=P3"5;

volid main (void) {

T1l=1;
TMOD=0x60;
TH1=0;
while (1) {
do |
TR1=1;
P1=TL1;
}
while (TF1==0);
TR1=0;
TF1=0;

Module — 4
7.a. Explian the following
(1) Interrupt

Interrupts and Returns

INTERRUPT ADDRESS (HEX) CALLED

IED 0003
TFO 0008
IET 0013
TF1 001B
SERIAL 0023

Mnemonic Operation

RETI Pop two bytes from the stack into the program counter and reset the
interrupt enable flip-flops

(ii) Interrupt Service Routine

Assembly language program examples on subroutine

;MAIN program calling subroutines
ORE O
CALL MAIN: LCALL SUBR 1 It 1s common to have one
IN STRUCT[DNS LCALL SUBR 2 main program and many
LCALL SUBR 3 subroutines that are called
from the main program
. HERE SIMP HERE
Calllng o o end of MATN
Subroutines
SUBR 1 :
R T'his allows you to make
RET each subroutine 1into a
e ————— end of subroutinel separate module
- Each module can be
SUBER 2 H_. k.)
tested :wl,'[".:[.ll-;‘|'|. and then
RET brought together with
e ——— end of subroutine2 i
SUEBE 3
ﬁé% 1Hh[Ln punl:ll
o end of subroutinel
END jend of the asm file

(ii1) Interrupt Vector Table

In the 8051 microcontroller, whenever an interrupt occurs, the CPU pauses the main program
and jumps to a fixed memory location. That fixed memory address is called the Interrupt Vector
Address. At each vector location, you usually place either: The Interrupt Service Routine (ISR)
directly, or A LIMP instruction that points to the ISR stored elsewhere in memory. So, the
Interrupt Vector Table is basically a table of fixed memory locations reserved for each interrupt.

Interrupt Vectors

Each interrupt has a specific place in code memory

where program execution (interrupt service routine) begins.

There are only eight memory locations available for each interrupt. If ISR is bigger use LIMP
instruction)

Reset 0000H External /
Hardware (nghest)

External 0003H External / 2

Interrupt 0 Hardware

Timer Interrupt 0 000BH Internal / 3
Software

External 0013H External / 4

Interrupt 01 Hardware

Timer Interrupt 1 001BH Internal / 5
Software

Serial Interrupt 0023H Internal / 6
software

b. Write the Instructions to

(1) Enable the serial interrupt, timer 0 interrupt and external hardware interrupt

1. I[E (Interrupt Enable) Register Format

arduino

bt
fa]
(Y]
=
L
[

3 2 1 @ (bit positions)

e EA - Global interrupt enable (must be set = 1 to allow any interrupt).
e ES - Enable Serial interrupt.

e ET1- Enable Timer1 interrupt.

e EX1- Enable External interrupt 1.

e ETO - Enable Timer0Q interrupt.

e EXO - Enable External interrupt 0.

e (ET2 is for 8052 only, ignore for 8051).

2. Instructions

(i) Enable the Serial interrupt, Timer 0 interrupt, and External hardware interrupt (say External
0)

We must set EA, ES, ETO, EX0 bits.
assembly

SETB EA ; Enable global interrupts
SETB ES ; Enable Serial interrupt
SETB ET® ; Enable Timer@ interrupt
SETE EX8 ; Enable External interrupt @

(i1) Disable Timer 0 interrupt
(ii1) Disable all interrupts with single instruction

Use bit manipulation instruction for all these cases.

(ii) Disable Timer 0 interrupt

We must clear ETO hit.

assembly

CLR ET® ; Disable Timer@ interrupt

(iii) Disable all interrupts with a single instruction

We clear EA (global enable).

assembly

CLR EA ; Disable all interrupts

C. Explain the bit contents of IE register.

IE (Interrupt Enable) Register

ES ET1 EX1 ETO

EA (enable all) must be set to 1 in order
for rest of the register to take effect

EA IE.7 Disables all interrupts
-- IE.6 Not implemented, reserved for future use

ET2 IE.5 Enables or disables timer 2 overflow or capture
interrupt (8952)

ES IE.4 Enables or disables the serial port interrupt
ET1 IE.3 Enables or disables timer 1 overflow interrupt
EX1 1IE.2 Enables or disables external interrupt 1

ETO IE.1 Enables or disables timer 0 overflow interrupt
EXO IE.0 Enables or disables external interrupt 0

8.a. List the steps involved in executing interrupts in 8051 microcontroller.

e Upon activation of an interrupt, the microcontroller goes through the following steps

1. Tt finishes the instruction it is executing and saves the address of the next instruction (PC)
on the stack

2. Tt also saves the current status of all the interrupts internally (i.e: not on the stack)

3. It jumps to a fixed location in memory, called the interrupt vector table, that holds the
address of the ISR

4. The microcontroller gets the address of the ISR from the interrupt
vector table and jumps to it

It starts to execute the interrupt service subroutine until it reaches the last instruction of the
subroutine which is RETTI (return from interrupt)

0. Upon executing the RETI instruction, the microcontroller returns to the place where it
was interrupted

First, it gets the program counter (PC) address from the stack by popping the top two bytes of
the stack into the PC Then it starts to execute from that address

b. Assume XTAL = 11.0592 MHz. Use timer0 to create square wave. Write a assembly program
that continuously gets a 8 bit data from P(0) and sends it to P(1). While simultaneously creating
square wave of 200microsec period on p2.5.

1. Problem Breakdown
e XTAL = 11.0592 MHz
— Machine cycle frequency = XTAL / 12 = 11.8592 MHz / 12 = 921.6 kHz
— Machine cycle period = 1 / 921.6k = 1.885 ps.
e Square wave requirement:
* Period = 200 ps
e Half period = 100 ps (time to keep P2.5 HIGH or LOW).
e Timer0 role: Generate delay of 100 ps.
¢ Data transfer role:
e (Continuously read 8-bit data from Port 0
e Qutput the same data to Port 1
* Square wave role:

e Toggle P2.5 after every 100 ps delay.

So, the program will:

1. Read input from Port 0 — Write to Port 1.
2. Toggle P2.5 after 100 ps using TimerO delay.

2. Timer0 Delay Calculation (Mode 1, 16-bit)

e Timer increments every machine cycle = 1.085 ps.
e For 100 ps delay — Number of counts = 1ee / 1.885 = 92 .
e 16-bit timer max = 65536 counts.

e |nitial value = 65536 - 92 = 65444 = BxFFA4 .

So, load THO = OxFF and TLO = OxA4 for 100 ps delay.

ORG 9888H

MATIN: MOV TMOD, #81H ; Timer®, Model (16-bit timer)
SETE P2.5 : Initialize P2.5 =1

LOOP: MOV A, P8 : Read data from Porté
MOW P1, A : Send data to Portl

ACALL DELAY 1@aUs ; Call delay of 188 us
CPL P2.5 ; Toggle P2.5 (square wave)

SIMP LOOP ; Repeat forever

DELAY 188Uus:
MOV THB, #eFFH
MOV TLB, #e4AdH
SETEB TRe

WATT: JNE TFG, WAIT
CLR TRB
CLR TF8
RET

END

FFH
A4H

Load TH&
Load TL&

; Start Timeré
; Wait until TFB = 1 (overflow)
» Stop Timeré

; Clear overflow flag

C. Write the interrupt priority upon reset in 8051. Also explain how how the priority of interrupts

can be set using IP register.

1. Interrupt Priority upon Reset (Default) in 8051 When the 8051 is reset: By default, all
interrupts have equal priority (lowest priority). If two interrupts occur at the same time, the 8051
services them according to a fixed polling sequence (hardware priority). Default Hardware
Priority Order (Highest — Lowest): 1. External Interrupt O (INTO) 2. Timer O Interrupt 3.
External Interrupt 1 (INT1) 4. Timer 1 Interrupt 5. Serial Interrupt (RI or TT)

2. Setting Interrupt Priority using IP Register
The Interrupt Priority (IP) register is byte-addressable (at address B8H) and used to assign high or low

priority to interrupts.
IP Register Format

markdown

= = PT2 PS5 PT1 PX1 PTe Pxe

s PXO0 (IP0) — Priority for External Interrupt O
¢ PTO (IP1) — Priority for Timer 0

s PX1 (IP.2) — Priority for External Interrupt 1
e PT1(IP3) — Priority for Timer 1

e PS (IP4) — Priority for Serial port

s (PT2 used only in 8052 for Timer2)

Module-5

9.a. With a neat diagram, write an assembly language program to interface stepper motor to 8051

microcontroller.
8051 I Diriver Stepper Motor
p- = I:'J \II
- | =\ /
p- T,
L

Figure 2: 8051 interfaces to stepper motor

Example 1: Write an ALP to rotate the stepper motor clockwise / anticlockwise
continuously with full step sequence.

Program:

MOV A #66H
BACK: MOV PLA

RR A

ACALL DELAY

SIMP BACK

DELAY: MOV R1.#100
UPl: MOV R2.#50
UP: DINZ R2,UP
DINZ R1,UP1
RET
Mote: motor to rotate in anticlockwise use instruction RL A instead of RR A

b. Explain DAC interface with a diagram and write program to generate triangular waveform.

+8W 5

s M.LWE‘H} I -~

Vrefi-) 1.5k SK
P10 oo 2.5k -l]
1 oac L: | [| 1K
o8 4F A Y,
E Comp. r a oLt
. | - L yoo0ee O.1uF J_

Figure 6: 8051 connections to DACO0808

The following examples 9, 10 and 11 will show the generation of waveforms using DACOR0S.

Example 9: Write an ALP to generate a triangular waveform.

Program:

MOV A, #00H
INCR: MOV PL A

INCA

CINE A, #255, INCR
DECR: MOV PL A

DEC A

CINE A, #00, DECR

SIMP INCR

END

10.a. With neat diagram, write an assembly language program to interface LCD to 8051
microcontroller.

Example 11: Write an ALP to initialize the LCD and display message “YES™. Say the command to be
given 18 :38H (2 lines ,5x7 matrix), 0EH (LCD on, cursor on), 01H (clear LCD), 06H (shift cursor right),

86H (cursor: line 1, pos. 6)
Program:

;calls a ime delay before sending next data/command ;P1.0-P1.7 are connected to LCD data pins D0-D7
:P2.0 1s connected to RS pin of LCD ;P2.1 is connected to R/W pin of LCD ;P2.2 is connected to E pin

of LCD
ORG OH
MOV A #38H JANIT. LCD 2 LINES, 5X7 MATRIX
ACALL COMNWRT :call command subroutine
ACALL DELAY ;give LCD some time
MOV A #0EH ;display on, cursor on
ACALL COMNWERT :call command subroutine
ACALL DELAY :give LCD some time
MOV A #01 :clear LCD
ACALL COMNWRT :call command subroutine
ACALL DELAY :give LCD some time
MOV A #06H ;shift cursor right
ACALL COMNWRT :call command subroutine
ACALL DELAY ;give LCD some time
MOV A #86H ;eursor at line 1, pos. 6
ACALL COMNWRT :call command subroutine
ACALL DELAY ;give LCD some time
MOV A#Y" ;display letter Y
ACALL DATAWRT :call display subroutine
ACALL DELAY ;give LCD some time
MOV A #E° :display letter E
ACALL DATAWRT ;call display subroutine
ACALL DELAY ;give LCD some time
MOV A#'8” :display letter S
ACALL DATAWRT ;call display subroutine
AGAIN: SIMP AGAIN :stay here
COMNWRT: :send command to LCD
MOV P1LA :copy reg A to port 1
CLR P2.0 :RS=0 for command
CLR P2.1 :R/W=0 for write
SETBP2.2 ;E=1 for high pulse
ACALL DELAY ;give LCD some time
CLR P22 :E=0 for H-to-L pulse
RET
DATAWRT: :write data to LCD
MOV P1A :copy reg A to port |
SETB P2.0 :RS=1 for data
CLR P2.1 :R/W=0 for write
SETBP2.2 :E=1 for high pulse
ACALL DELAY :give LCD some time
CLR P22 :E=0 for H-to-L pulse

RET

DELAY:

MOV R3 #50 ;50 or higher for fast CPUs
HEREZ2: MOV R4 #255 R4 = 255
HERE: DINZ R4 HERE :stay until B4 becomes 0
DINZ R3,HERE2
RET
END

B051

P1.0— DD

Figure 8051 Connectionto LCD

10.b. A door sensor is connected to the P1.1 pin and a buzzer is connected to P1.7. Write 8051 C
program to monitor the door sensor and when it opens, sound the buzzer. The buzzer can be
sound by sending a square wave of a few hundred hertz.

Frequency Calculation

Let's assume buzzer frequency = 500 Hz.
e Period= 1/ 580 = 2 ms
e Half-pericd (for toggle) = 1 ms .
So, we need a 1 ms delay to toggle the buzzer pin.
With XTAL = 11.0592 MHz,

e Machine cycle = 1.885 ps.
e Toget1ms — about 921 counts.

We can use Timer0 (Mode 1, 16-bit) for ~1 ms delay.

#include <REG51.H» // 8851 register definitions

sbit DOOR

Pi~1; // Door sensor at PI1.1

sbit BUZIER p1~7; S Buzzer at P1.7

A/ Function: 1 ms delay using Timeré®

void delay ims({void) {

TMOD = 8x81; S/ Timer® Model (16-bit)

THE = BxFC; S/ Load for Ims delay (921 counts, BxFC67 approx)
TLe = Bx67;

TRE = 1; S Start Timere

while(TF@ == 8); S/ Wait for overflow

TRE = 8; S/ Stop Timere®

TF8 = 8; /7 Clear flag

// Function: Generate square wave when door is open
void buzzer on(void) {
BUZZER = ~BUZZER; /7 Toggle buzzer pin
delay ims(); /7 Half-period delay

void main(void) {
BUZZER = 8; /4 Initially buzzer OFF

while(1) {
if(DOOR == 1) { // Door open

buzzer on(); // Generate square wave

}
else

BUZZER = &; // Door closed - buzzer OFF
}

	PSW Register in 8051 Microcontroller | Program Status Word
	PSW Register in 8051
	Parity bit (P)
	Overflow flag (OV)
	Register bank select bits (RS1 and RS0)
	General-purpose flag (F0)
	Auxiliary carry flag (AC)
	Carry flag (CY)

