
BEC405A_Microcontrollers solution- June July 2025

VTU QP_Solution

1a)

1b)

PSW Register in 8051 Microcontroller | Program Status Word

●​ Flags are single bit register and used to store the result of certain function after executing
instruction. Flags are grouped inside PSW and PCON registers.

●​ PSW register in 8051 microcontroller contains math flags and PCON contains general
user flags.

●​ Math flags are grouped in PSW of microcontroller 8051 and they are Carry(C), Auxiliary
Carry (AC), Over flow (OV), and Parity (P). The general user flags are GF0 and GF1
which are grouped in PCON register.

PSW Register in 8051

●​ The PSW is accessible fully as an 8-bit register, with the address D0H.
●​ The bit pattern of this flag register is

http://ww1.microchip.com/downloads/en/devicedoc/doc4113.pdf

Figure 1: Format of PSW register in 8051 Microcontroller

Parity bit (P)

●​ This parity flag bit is used to show the number of 1s in the accumulator only. If the

accumulator register contains an odd number of 1s, then this flag set to 1.
●​ If accumulator contains even number of 1s, then this flag cleared to 0.

Overflow flag (OV)

●​ This flag is set during ALU operations, to indicate overflow in the result. It is set to 1 if
there is a carry out of either the D7 bit or the D6 bit of the accumulator.

●​ Overflow flag is set when arithmetic operations such as add and subtract result in sign
conflict.

●​
●​ The conditions under which the OV flag is set are as follows:

●​ Positive + Positive = Negative
●​ Negative + Negative = Positive
●​ Positive – Negative = Negative
●​ Negative – Positive = Positive

Register bank select bits (RS1 and RS0)

●​ These two bits are used to select one of four register banks of RAM. By setting and

clearing these bits, registers R0-R7 are stored in one of four banks of RAM as follows.

RS1 RS0 Bank Selected Address of Registers

0 0 Bank 0 00h-07h

0 1 Bank 1 08h-0Fh

1 0 Bank 2 10h-17h

1 1 Bank 3 18h-1Fh

●​
●​ These bits are user-programmable. They can be set by the programmer to point to the

correct register banks.
●​ The register bank selection in the programs can be changed using these two bits.

General-purpose flag (F0)

●​
●​ This is a user-programmable flag; the user can program and store any bit of his/her

choice in this flag, using the bit address.
Auxiliary carry flag (AC)

●​
●​ It is used in association with BCD arithmetic. This flag is set when there is a carry out

of the D3 bit of the accumulator.
Carry flag (CY)

●​
●​ This flag is used to indicate the carry generated after arithmetic operations. It can also

be used as an accumulator, to store one of the data bits for bit-related Boolean
instructions.

●​ The 8051 supports bit manipulation instructions.
●​ This means that in addition to the byte operations, bit operations can also be done using bit

data.
●​ For this purpose, the contents of the PSW are bit-addressable.

The Stack and the Stack Pointer • The stack refers to an area of internal RAM that is used in
conjunction with certain opcodes to store and retrieve data quickly. • The 8-bit stack pointer (SP)
register is used by the 8051 to hold an internal RAM address that is called the "top of the stack."
• The top of the stack is the location in internal RAM where the last byte of data was stored by a
stack operation. • The SP increments before storing data on the stack so that the stack grows up
as data is stored. • As data is retrieved from the stack, the byte is read from the stack, and then

the SP decrements to point to the next available byte of stored data. • The SP is set to 07h when
the 8051 is reset and can be changed to any internal RAM address by the programmer.

1c) Embedded microcontrollers are small, powerful devices that control and interact with the
physical world. They're essentially single-chip computers that contain a processing core,
memory, and input/output peripherals, making them ideal for specific tasks within larger
systems.

Key Features:

- Compact Design: Small size fits into tight spaces

- Low Power Consumption: Perfect for battery-powered devices

- Real-Time Processing: Handles urgent tasks, like in medical devices or car safety features

- Versatile Communication: Works with various protocols like UART, SPI, and I2C

Applications:

- Consumer Electronics: Smartphones, smart TVs, gaming consoles, and home automation
systems

- Automotive Systems: Engine control, safety systems, and infotainment systems

- Industrial Automation: Control machinery, monitor equipment, and provide real-time feedback

- IoT Devices: Connects and regulates smart devices, enabling automation and data exchange

Popular Microcontrollers:

- ATmega328P (Arduino Uno): Great for beginners, hobbyists, and DIY projects

- STM32 (Series of ARM Cortex-M chips): Robust, flexible, and user-friendly for newcomers

- ESP32: Excellent for IoT projects with built-in Wi-Fi and Bluetooth

- RP2040 (Raspberry Pi Pico): Powerful, affordable, and easy to use for real-time control and
DIY electronics

Benefits:

- Increased Efficiency: Automate tasks, process data quickly, and work with sensors and
actuators

- Improved Accuracy: Reduce errors and improve performance in various applications

- Cost-Effective: Available at a range of prices, suitable for mass-produced devices

Future Trends:

- Artificial Intelligence (AI): Integration of AI algorithms for intelligent decision-making and
control

- Edge Computing: Processing data locally, reducing dependence on cloud servers

- Increased Connectivity: Seamless communication with other devices and systems for advanced
data collection and analysis

2.​

2a)

Salient features of 8051 microcontroller are given below.

 Eight bit CPU

 On chip clock oscillator

 4Kbytes of internal program memory (code memory) [ROM]

 128 bytes of internal data memory [RAM]

 64 Kbytes of external program memory address space.

 64 Kbytes of external data memory address space.

 32 bi directional I/O lines (can be used as four 8 bit ports or 32 individually addressable I/O

lines)

 Two 16 Bit Timer/Counter :T0, T1

 Full Duplex serial data receiver/transmitter

 Four Register banks with 8 registers in each bank.

 Sixteen bit Program counter (PC) and a data pointer (DPTR)

 8 Bit Program Status Word (PSW)

 8 Bit Stack Pointer

 Five vector interrupt structure (RESET not considered as an interrupt.)

 8051 CPU consists of 8 bit ALU with associated registers like accumulator ‘A’, B register,
PSW,

SP, 16 bit program counter, stack pointer.

 ALU can perform arithmetic and logic functions on 8 bit variables.

 8051 has 128 bytes of internal RAM which is divided into

o Working registers [00 – 1F]

o Bit addressable memory area [20 – 2F]

o General purpose memory area (Scratch pad memory) [30-7F]

2b)

2c)

3a)

Direct addressing mode:

 MOV A, #55H ; Load accumulator with 55h

 MOV 40H, A ; Copy 55h into RAM location 40h

 MOV 41H, A ; Copy 55h into RAM location 41h

 MOV 42H, A ; Copy 55h into RAM location 42h

 MOV 43H, A ; Copy 55h into RAM location 43h

 MOV 44H, A ; Copy 55h into RAM location 44h

 SJMP $; Stay here (infinite loop)

Register indirect addressing mode without loop

MOV A, #55H ; Load immediate data 55H into Accumulator

 MOV R0, #40H ; Load starting address 40H into R0

 MOV @R0, A ; Store 55H at 40H

 INC R0 ; Point to 41H

 MOV @R0, A ; Store 55H at 41H

 INC R0 ; Point to 42H

 MOV @R0, A ; Store 55H at 42H

 INC R0 ; Point to 43H

 MOV @R0, A ; Store 55H at 43H

 INC R0 ; Point to 44H

 MOV @R0, A ; Store 55H at 44H

 SJMP $; Stay here forever (stop program)

Register indirect addressing mode with loop

MOV A, #55H ; Load accumulator with 55H

 MOV R0, #40H ; Initialize R0 with starting address (40H)

 MOV R1, #05H ; Counter = 5 (since 40H to 44H → 5 locations)

LOOP: MOV @R0, A ; Store 55H into address pointed by R0

 INC R0 ; Point to next memory location

 DJNZ R1, LOOP ; Decrement R1, repeat until 0

 SJMP $; Stop program (infinite loop)

3b)

3b) RRC A

DA A

4

4A

MOV DPTR, #8000H ; Point DPTR to 8000H

 MOVX A, @DPTR ; A = data from external memory [8000H]

 MOV B, A ; Save first number in B

 MOV DPTR, #8050H ; Point DPTR to 8050H

 MOVX A, @DPTR ; A = data from external memory [8050H]

 ; Now: A = second number, B = first number

 MUL AB ; Multiply A * B

 ; Result: 16-bit → A = low byte, B = high byte

 MOV R0, A ; Store lower byte in R0

 MOV R1, B ; Store higher byte in R1

 SJMP $; Stop program (infinite loop)

4C)

 MOV DPTR, #0100H ; Start address of search

 MOV R2, #01H ; High-byte of end address (0200H → 0x02)

 MOV R3, #00H ; Low-byte of end address (0200H → 0x00)

 MOV R4, #0 ; Found flag = 0

SEARCH: MOVX A, @DPTR ; Read external RAM[DPTR]

 CJNE A, #0A6H, NEXT ; Compare with A6H

 ; If equal, store DPTR into R6:R7

 MOV R7, DPH ; High byte of address

 MOV R6, DPL ; Low byte of address

 MOV R4, #1 ; Mark as found

 SJMP DONE

NEXT: INC DPTR ; Increment address

 MOV A, DPH

 CJNE A, #02H, SEARCH ; If not reached 0200H high byte

 MOV A, DPL

 CJNE A, #00H, SEARCH ; If not reached 0200H low byte

DONE: SJMP $; Stop program

5a)

The TMOD register is used to select the operating mode and the timer/counter operation of the
timers. • The format of TMOD register is,

The lower four bits of TMOD register is used to control timer-0 and the upper four bits are used
to control timer-1. • The two timers can be independently program to operate in various modes. •
The TMOD register has two separate two bit field M0 and Ml to program the operating mode of
timers. The operating modes of timers are mode-0, mode-1, mode-2 and mode-3. In all these
operating modes the oscillator clock is divided by 12 and applied as input clock to timer.

 MODE-0 In mode-0 the timer register is configured as 13-bit register. o For timer-1 the 8 bits of
TH1 and lower 5 bits of TL1 are used to form 13-bit register. o For timer-0 the 8-bit of TH0 and

lower 5 bits of TL0 are used to form 13-bit register. o The upper three bits of TL registers are
ignored. o For every clock input to timer the 13-bit timer register is incremented by one When
the timer count rolls over from all 1’s to all 0’s, (i.e., 1 1111 1111 1111 to 0 0000 0000 0000) the
timer interrupt flag in TCON register is set to one.

Mode-1

 The mode-1 is same as mode-0 except the size of the timer register. In mode-1 the TH and TL
registers are cascaded to form 16-bit timer register.

MODE-2 In mode-2, the timers function as 8-bit timer with automatic reload feature. The TL
register will function as 8-bit timer count register and the TH register will hold an initial count
value. o When the timer is started, the initial value in TH is loaded to TL and for each clock
input to timer the 8-bit timer count register is incremented by one. o When the timer count rolls
over from all 1’s to all 0’s (i.e., 1111 1111 to 0000 0000), the timer interrupt flag in TCON
register is set to one and the content of TH register is reloaded in TL register and the count
process starts again from from this initial value.

Mode-3 In mode-3, the timer-0 is configured as two separate 8-bit timers and the timer-1 is
stopped. o In mode-3 the TL0 will function as 8-bit timer controlled by standard timer-0 control
bits and the TH0 will function as 8-bit timer controlled by timer-1 control bits. o While timer-0 is
programmed in mode-3, the timer-0 can be programmed in mode-0, 1 or 2 and can be used for an
application that does not require an interrupt. o The C/T(Low) bit of TMOD register is used to
program the counter or timer operation of the timer. When C/T bit is set to one, the timer will
function as event counter. The C/T(Low) bit is programmed to zero for timer operation. o The
timer will run only if clock input is allowed. o When GATE = 1, the clock input to timer is
allowed only if the signal at pin is high and when GATE =0 the signal at INT (low) pin is
ignored.

5b

5c)

1. Setting up the serial port

●​ Select Serial Mode 1: This is the preferred mode for communication with PCs, as it

supports variable baud rates and 8-bit data with 1 start and 1 stop bit. This is achieved by

setting the SM0 and SM1 bits of the SCON register (Serial Control Register) to 0 and 1,

respectively, resulting in a value of 0x50 for SCON.

●​ Baud Rate Generation (using Timer 1):

○​ Configure Timer 1: To generate a 4800 baud rate, Timer 1 should be set in Mode

2 (8-bit auto-reload mode). This can be achieved by loading the TMOD register

(Timer Mode Register) with the value 0x20.

○​ Load TH1: For a 4800 baud rate with an 11.0592 MHz crystal, the TH1 (Timer 1

High Byte Register) should be loaded with a specific value, which is 0xFA (-6 in

decimal).

○​ Start Timer 1: The TR1 bit (Timer 1 Run Control Bit) in the TCON register

(Timer Control Register) should be set to 1 to initiate Timer 1's operation.

2. Transmitting data

●​ Load SBUF: The character to be transmitted (in this case, 'E', 'C', or 'E') needs to be

placed into the SBUF register (Serial Data Buffer Register).

●​ Wait for Transmission Complete: Monitor the TI flag bit (Transmit Interrupt Flag) in the

SCON register. This bit will be set when the transmission of the current byte is finished.

●​ Clear TI Flag: Once transmission is complete, the TI flag needs to be cleared by the

programmer to allow for the transmission of the next character.

3. Example code (for 8051)

c

#include <reg51.h>

void main(void){

 TMOD=0x20; // Use Timer 1, Mode 2 (8-bit auto-reload)

 TH1=0xFA; // Set baud rate to 4800 for 11.0592 MHz crystal

 SCON=0x50; // Configure Serial Port Mode 1 (8-bit data, 1 start, 1 stop bit)

 TR1=1; // Start Timer 1

 // Transmit "ECE"

 SBUF='E'; // Place 'E' in the buffer

 while (TI==0); // Wait for transmission to complete

 TI=0; // Clear the TI flag

 SBUF='C'; // Place 'C' in the buffer

 while (TI==0); // Wait for transmission to complete

 TI=0; // Clear the TI flag

 SBUF='E'; // Place 'E' in the buffer

 while (TI==0); // Wait for transmission to complete

 TI=0; // Clear the TI flag

 while(1); // Infinite loop to prevent the program from ending

}

Use code with caution.

6. a. Explain the importance of TI flag and RI flag.TI – Transmit Interrupt Flag Meaning: TI
indicates that t

he 8051 has finished transmitting (sending) one byte of data from the SBUF (Serial Buffer
Register). Set automatically by hardware when the last bit (stop bit) of a frame is transmitted.
Must be cleared by software after being serviced.

Importance: Tells the programmer that the UART is ready to send the next byte. Prevents
overwriting of data in SBUF before the previous transmission is completed. Used in polling or
interrupt-driven serial communication.

Example: After sending a byte to SBUF, you wait until TI = 1 before writing the next byte. 2. RI
– Receive Interrupt Flag Meaning: RI indicates that the 8051 has received one complete byte of
data into SBUF from the Rx line. Set automatically by hardware when a full frame (start, data,
stop bits) is received. Must be cleared by software after reading the data.

Importance: Tells the programmer that new data is available in SBUF for reading. Ensures that
the program does not attempt to read SBUF before data is valid. Used in polling or
interrupt-driven reception. 👉 Example: When RI = 1, you know a new character has arrived, so
you read it from SBUF. Summary (Side-by-Side): Flag Set by Meaning Importance TI Hardware
Transmission complete Ready for next byte to send RI Hardware One byte received Data
available to read Without TI, you wouldn’t know when it’s safe to send the next byte. Without
RI, you wouldn’t know when a byte has arrived and is ready to be read.

b. Write the steps required for programming 8051 to transmit and receive the data serially.

●​ Programming the 8051 to receive character bytes serially
​ 1. TMOD register is loaded with the value 20H, indicating the use of timer 1 in mode 2

(8-bit auto-reload) to set baud rate
 2. TH1 is loaded to set baud rate
​ 3. The SCON register is loaded with the value 50H, indicating serial mode 1, where an 8-

bit data is framed with start and stop bits
​ 4. TR1 is set to 1 to start timer 1
​ 5. RI is cleared by CLR RI instruction
​ 6. The RI flag bit is monitored with the use of instruction JNB RI,xx to see if an entire

character has been received yet
​ 7. When RI is raised, SBUF has the byte, its contents are moved into a safe place
​ 8. To receive the next character, go to step 5

C. Explain how timers are used as counters and also explain the counters operation using code
snippet.

Timer as Counter

Bit C / T = 1 for counter mode.
Counter also as all modes as in Timer

Module – 4

7.a. Explian the following

(i) Interrupt

Interrupts and Returns

(ii) Interrupt Service Routine

Assembly language program examples on subroutine

(iii) Interrupt Vector Table

 In the 8051 microcontroller, whenever an interrupt occurs, the CPU pauses the main program
and jumps to a fixed memory location. That fixed memory address is called the Interrupt Vector
Address. At each vector location, you usually place either: The Interrupt Service Routine (ISR)
directly, or A LJMP instruction that points to the ISR stored elsewhere in memory. So, the
Interrupt Vector Table is basically a table of fixed memory locations reserved for each interrupt.

Interrupt Vectors

Each interrupt has a specific place in code memory
 where program execution (interrupt service routine) begins.
There are only eight memory locations available for each interrupt. If ISR is bigger use LJMP
instruction)

 Interrupt Vector
address

Type Priority

Reset 0000H External /
Hardware

1
(Highest)

External
Interrupt 0

0003H External /
Hardware

2

Timer Interrupt 0 000BH Internal /
Software

3

External
Interrupt 01

0013H External /
Hardware

4

Timer Interrupt 1 001BH Internal /
Software

5

Serial Interrupt 0023H Internal /
software

6

Depaent of Electronics and Communication CMRIT

b. Write the Instructions to

(i) Enable the serial interrupt, timer 0 interrupt and external hardware interrupt

(ii) Disable Timer 0 interrupt

(iii) Disable all interrupts with single instruction

Use bit manipulation instruction for all these cases.

C. Explain the bit contents of IE register.

8.a. List the steps involved in executing interrupts in 8051 microcontroller.

●​ Upon activation of an interrupt, the microcontroller goes through the following steps

1.​ It finishes the instruction it is executing and saves the address of the next instruction (PC)
on the stack

2.​ It also saves the current status of all the interrupts internally (i.e: not on the stack)

3.​ It jumps to a fixed location in memory, called the interrupt vector table, that holds the
address of the ISR

4.​ The microcontroller gets the address of the ISR from the interrupt

 vector table and jumps to it

 It starts to execute the interrupt service subroutine until it reaches the last instruction of the
subroutine which is RETI (return from interrupt)

0.​ Upon executing the RETI instruction, the microcontroller returns to the place where it
was interrupted

 First, it gets the program counter (PC) address from the stack by popping the top two bytes of
the stack into the PC Then it starts to execute from that address

b. Assume XTAL = 11.0592 MHz. Use timer0 to create square wave. Write a assembly program
that continuously gets a 8 bit data from P(0) and sends it to P(1). While simultaneously creating
square wave of 200microsec period on p2.5.

C. Write the interrupt priority upon reset in 8051. Also explain how how the priority of interrupts
can be set using IP register.

1. Interrupt Priority upon Reset (Default) in 8051 When the 8051 is reset: By default, all
interrupts have equal priority (lowest priority). If two interrupts occur at the same time, the 8051
services them according to a fixed polling sequence (hardware priority). Default Hardware
Priority Order (Highest → Lowest): 1. External Interrupt 0 (INT0) 2. Timer 0 Interrupt 3.
External Interrupt 1 (INT1) 4. Timer 1 Interrupt 5. Serial Interrupt (RI or TI)

Module-5

9.a. With a neat diagram, write an assembly language program to interface stepper motor to 8051
microcontroller.

b. Explain DAC interface with a diagram and write program to generate triangular waveform.

10.a. With neat diagram, write an assembly language program to interface LCD to 8051
microcontroller.

10.b. A door sensor is connected to the P1.1 pin and a buzzer is connected to P1.7. Write 8051 C
program to monitor the door sensor and when it opens, sound the buzzer. The buzzer can be
sound by sending a square wave of a few hundred hertz.

	PSW Register in 8051 Microcontroller | Program Status Word
	PSW Register in 8051
	Parity bit (P)
	Overflow flag (OV)
	Register bank select bits (RS1 and RS0)
	General-purpose flag (F0)
	Auxiliary carry flag (AC)
	Carry flag (CY)

