
Embedded System Design (BEC601) June/July 2025

VTU Question Paper Scheme & Solution

1. a) What is embedded system? List the applications of embedded system. (6M)

Answer: An embedded system is an electronic/electro-mechanical system designed to

perform a specific function and is a combination of both hardware and firmware

(software).

b) Give the difference between microcontroller and Microprocessor. (6M)

Answer:

c) Explain about opto coupler and push button switch with neat diagram. (8M)

2 a) Give the classification of Embedded System with examples.

2b) Give the difference between Von-Neumann and Harvard Architecture. (6M)

2c) Explain Piezo buzzer, sensor and actuators in embedded system with neat diagram. (8M)

3a) Explain the characteristics and quality attributes of Embedded System. (6M)

3b) Explain the working of washing machine with a neat functional diagram. (6M)

3c) Design an automatic tea/coffee vending machine based on FSM model. (8M)

4a) Explain operational and non-operational attributes of embedded systems. (6M)

4b) Explain the hardware and software co-design in embedded system. (6M)

4c) With the help of FSM model, explain the system design and operation of automatic seat

belt warning. (8M)

5a) Explain monolithic and microkernel with suitable example for each. (6M)

5b) Explain different conditions that favour deadlock. (6M)

5c) Describe pre-entire SIF scheduling and calculate all the performance factors. (8M)

6a) Explain Process, task, threads in ARM Processor. (6 Marks)

Solution:

 A process is a self-contained execution environment with its own memory space, code,

data, and system resources.

 It can be considered as a program in execution.

 In an ARM-based embedded system, a process is used to execute different applications or

services independently.

 Each process has:

 Its own address space

 Stack, heap, code, and data

 Unique Process ID (PID)

 Context switching between processes requires saving and restoring the full state of the

processor (registers, stack, etc.).

 A task is a smaller unit of execution within a system, often used interchangeably with

thread in embedded systems.

 In Real-Time Operating Systems (RTOS) like Keil RTX, a task refers to a specific

function or job that is scheduled by the kernel.

 ARM processors running RTOS create multiple tasks for concurrent execution, enhancing

real-time performance.

 Tasks may share memory (unlike processes), reducing context-switch overhead.

 A thread is the smallest unit of execution within a process.

 Multiple threads within the same process share:

 Code

 Global variables

 Heap memory

 But each thread has its own stack and registers.

 Threads are useful in multi-core ARM processors or RTOS to perform concurrent

operations, such as UI update and background data processing.

 Thread switching is faster than process switching.

6b) with a diagram explain the concept of counting semaphore with an example. (6 Marks)

Solution:

The ‘Counting Semaphore’ limits the access of resources by a fixed number of

processes/threads. ‘Counting Semaphore’ maintains a count between zero and a maximum

value. It limits the usage of the resource to the maximum value of the count supported by it.

The state of the counting semaphore object is set to ‘signalled’ when the count of the object is

greater than zero. The count associated with a ‘Semaphore object’ is decremented by one when

a process/thread acquires it and the count is incremented by one when a process/thread releases

the ‘Semaphore object’. The state of the ‘Semaphore object’ is set to non-signalled when the

semaphore is acquired by the maximum number of processes/threads that the semaphore can

support (i.e. when the count associated with the ‘Semaphore object’ becomes zero). A real

world example for the counting semaphore concept is the dormitory system for

accommodation. A dormitory contains a fixed number of beds (say 5) and at any point of time

it can be shared by the maximum number of users supported by the dormitory. If a person wants

to avail the dormitory facility, he/she can contact the dormitory caretaker for checking the

availability. If beds are available in the dorm the caretaker will hand over the keys to the user.

If beds are not available currently, the user can register his/her name to get notifications when

a slot is available. Those who are availing the dormitory shares the dorm facilities like TV,

telephone, toilet, etc. When a dorm user vacates, he/she gives the keys back to the caretaker.

The caretaker informs the users, who booked in advance, about the dorm availability.

The creation and usage of ‘counting semaphore object’ is OS kernel dependent.

6c) Explain the IDE Environment for embedded system design with a neat diagram. (8

Marks)

Solution:

In embedded system development context, Integrated Development Environment (IDE) stands

for an integrated environment for developing and debugging the target processor specific

embedded firmware. IDE is a software package which bundles a ‘Text Editor (Source Code

Editor)’, ‘Cross-compiler (for cross platform development and compiler for same platform

development)’, ‘Linker’ and a ‘Debugger’. Some IDEs may provide interface to target board

emulators, Target processor’s/controller’s Flash memory programmer, etc. and incorporate

other software development utilities like ‘Version Control Tool’, ‘Help File for the

Development Language’, etc. IDEs can be either command line based or GUI based. Command

line based IDEs may include little or less GUI support. The old version of TURBO C IDE for

developing applications in C/C++ for x86 processor on Windows platform is an example for a

generic IDE with command line interface. GUI based IDEs provide a Visual Development

Environment with user interactions through touch/mouse click interface. Such IDEs are

generally known as Visual IDEs. Visual IDEs are very helpful in firmware development. A

typical example for a Visual IDE is Microsoft® Visual Studio for developing Visual C++ and

Visual Basic programs. Other examples are NetBeans and Eclipse.

IDEs used in embedded firmware development are slightly different from the generic IDEs

used for high level language based development for desktop applications. In Embedded

Applications, the IDE is either supplied by the target processor/controller manufacturer or by

third party vendors or as Open Source. MPLAB is an IDE tool supplied by microchip for

developing embedded firmware using their PIC family of microcontrollers. Keil μVision5

(spelt as micro vision five) from ARMKeil is an example for a third party IDE, which is used

for developing embedded firmware for 8051/ARM family microcontrollers. CodeWarrior

Development Studio is an IDE for ARM family of processors/MCUs and DSP chips from

Freescale. It should be noted that in embedded firmware development applications each IDE

is designed for a specific family of controllers/processors and it may not be possible to develop

firmware for all family of controllers/processors using a single IDE (as of now there is no

known IDE with support for all family of processors/controllers).

However there is a rapid move happening towards the open source IDE, Eclipse for embedded

development. Most of the processor/control manufacturers and third party IDE providers are

trying to build the IDE around the popular Eclipse open source IDE. This may lead to a single

IDE based on Eclipse for embedded system development in the near future. Since this book is

primarily focusing on 8051 based embedded firmware development, the IDE chosen for

demonstration is Keil μVision5. A demo version of the tool for Microsoft Windows OS based

development is available for free download from

7a) Explain the functions of various units in ARM Cortex M3 Processor architecture in brief.

(8 Marks)

Solution:

The ARM Cortex-M3 processor is a 32-bit RISC processor designed for low-cost, high-

performance embedded applications. Its architecture is built around the ARMv7-M instruction

set and includes several key units, each with specific roles:

1. Processor Core

 Executes instructions using the Harvard architecture (separate instruction and data

buses).

 Supports Thumb-2 instruction set for higher code density and performance.

 Includes a 3-stage pipeline: Fetch, Decode, Execute.

2. Nested Vectored Interrupt Controller (NVIC)

 Manages interrupts and exceptions with up to 240 external interrupts.

 Supports preemptive priority levels, improving response time.

 Offers low-latency interrupt handling (12 clock cycles or less).

3. Bus Interface Unit

 Interfaces with memory and peripherals via the AMBA AHB-Lite bus.

 Manages instruction and data transfers efficiently.

 Supports memory-mapped I/O and bit-banding for atomic operations.

4. Register Bank

 Includes 13 general-purpose registers (R0–R12), SP (R13), LR (R14), PC (R15).

 Also contains Program Status Registers (xPSR):

o APSR, IPSR, EPSR

o Hold flags, current exception number, execution state, etc.

 5. System Control Block (SCB)

 Controls system exceptions like Hard Fault, NMI, and SysTick.

 Manages system-level configuration and fault status.

 Contains configuration registers for vector table, exception handling, etc.

6. Memory Protection Unit (MPU)

 Provides basic memory protection and access control.

 Allows definition of memory regions with privilege and access rights.

 Helps prevent accidental corruption of memory by faulty code.

7. SysTick Timer

 A 24-bit count-down timer built for RTOS task switching.

 Generates periodic system tick interrupts.

 Helps implement real-time scheduling.

 8. Debug Unit

 Supports Serial Wire Debug (SWD) and JTAG.

 Allows for breakpoints, watchpoints, and step-through debugging.

 Essential for firmware testing and validation.

9. Exception Model

 Supports system exceptions (Reset, NMI, HardFault) and programmable

interrupts.

 Uses vector table to store addresses of exception handlers.

 Facilitates fast and deterministic exception response.

7b) Explain the various interrupts and exception along with vector address. (6 Marks)

Solution:

7c) Explain the ARM Core data flow model with a neat diagram. (6 Marks)

Solution:

8a) Explain the Program Status register in Cortex-M3 along with Vector address. (8 Marks)

Solution:

8b) Explain the five applications of Cortex-M3 based on its features. (6 Marks)

Solution:

The application areas and the products in the embedded domain are countless. A few of the

Important domains and products are listed below:

(1) Consumer electronics: Camcorders, cameras, etc.

(2) Household appliances: Television, DVD players, washing machine, fridge, microwave oven, etc.

(3) Home automation and security systems: Air conditioners, sprinklers, intruder detection alarms, closed circuit

television cameras, fi re alarms, etc.

(4) Automotive industry: Anti-lock breaking systems (ABS), engine control, ignition systems, automatic

Navigation systems, etc.

(5) Telecom: Cellular telephones, telephone switches, handset multimedia applications, etc.

(6) Computer peripherals: Printers, scanners, fax machines, etc.
(7) Computer networking systems: Network routers, switches, hubs, firewalls, etc.

(8) Healthcare: Different kinds of scanners, EEG, ECG machines etc.

(9) Measurement & Instrumentation: Digital multimeters, digital CROs, logic analysers PLC systems, etc.

(10) Banking & Retail: Automatic teller machines (ATM) and currency counters, point of sales (POS)

(11) Card Readers: Barcode, smart card readers, hand held devices, etc.

(12) Wearable Devices: Health and Fitness Trackers, Smartphone Screen extension for notifi cations, etc.

(13) Cloud Computing and Internet of Things (IOT)

The ARM Cortex-M3 processor is widely used in embedded and real-time systems due to its low power

consumption, high performance, and rich peripheral support. Based on these features, five key applications are:

1. Industrial Automation

Application: Used in motor controllers, PLC systems, and factory sensors for fast and reliable

task execution.

 2. Consumer Electronics

Application: Found in smart appliances, digital cameras, remote controls, and set-top boxes

where efficient power management is needed.

3. Automotive Systems

Application: Used in dashboard displays, body electronics, and airbag systems in cars.

4. Medical Devices

Application: Integrated into portable health monitors, digital thermometers, and blood

pressure devices for safe, accurate operation.

5. Internet of Things (IoT) Devices

Application: Used in smart home systems, wearables, wireless sensor networks, and

connected meters.

8c) with a diagram, explain two operation modes and privilege levels in Cortex M3. (6

Marks)

Solution:

1. Operation Modes

Mode Description

Thread Mode Normal program execution mode (main code or after interrupt handling).

Handler Mode Entered automatically to handle exceptions or interrupts.

 Thread Mode is used for application-level code.

 Handler Mode is used during interrupt or exception handling.

2. Privilege Levels

Privilege Level Description

Privileged Can access all instructions and system resources (e.g., NVIC, MPU).

Unprivileged Access to limited instructions and memory (safe for user code).

 Privilege level can change dynamically using the CONTROL register.

 Only privileged code can switch back from unprivileged to privileged.

+----------------------------+

| Thread Mode |

| (Main code / RTOS Tasks) |

+-------------+--------------+

|

+---------------+----------------+

| |

+---------------+ +-----------------+

| Privileged | | Unprivileged |

| Mode | | Mode |

| (full access) | | (limited access) |

+---------------+ +-----------------+

|

| On Exception or Interrupt

↓

+----------------------------+

| Handler Mode |

| (Always Privileged Mode) |

+----------------------------+

9a) Write an ALP to add first 10 Integer number using Cortex M3 Processor.

(6 Marks)

Solution:

 AREA ADD_NUMBERS, CODE, READONLY

 ENTRY

 MOV R0, #1 ; R0 = counter = 1

 MOV R1, #0 ; R1 = sum = 0

LOOP ADD R1, R1, R0 ; sum = sum + counter

 ADD R0, R0, #1 ; counter = counter + 1

 CMP R0, #11 ; check if counter <= 10

 BNE LOOP ; repeat if not equal to 11

STOP B STOP ; infinite loop to end program

 END

9b) Explain Shift and Rotate Instructions of CORTEX M3 with examples (6 Marks)

9c) Describe CMSIS with Diagram and its functions.(6 Marks)

CMSIS (Cortex Microcontroller Software Interface Standard) is a vendor-independent hardware

abstraction layer for ARM Cortex-M processors, developed by ARM Ltd.

It provides a standardized software interface to access processor features, peripherals, and real-time

operating systems (RTOS), improving portability and code reusability across different microcontroller

platforms.

+--+

| Application Code |

+------------------------+-------------------------+

| Device HAL (Vendor) | Middleware / RTOS APIs |

+------------------------+-------------------------+

| CMSIS Components (Standard) |

| +----------------+ +------------------------+ |

| | CMSIS-CORE | | CMSIS-DSP | |

| | CMSIS-RTOS | | CMSIS-Driver | |

| | CMSIS-SVD | | CMSIS-NN (AI) | |

| +----------------+ +------------------------+ |

+-------------------------+------------------------+

| Hardware (Cortex-M CPU & Peripherals) |

+--+

10a) Explain 16-bit instructions with example (6 Marks)

a) ADD

b) CMP

c) ASR

a) The ADD instruction performs addition between two registers or between a register

and an immediate value.

ADD (Register)

Adds the values of two registers and stores the result in a register.

Syntax: ADD Rd, Rn, Rm

Example: ADD R2, R1, R0 ; R2 = R1 + R0

Syntax: ADD Rd, Rn, #imm

Example: ADD R1, R1, #5 ; R1 = R1 + 5

Syntax: ADD Rd, SP, #imm

Example: ADD R0, SP, #16 ; R0 = SP + 16

b) CMP stands for Compare.

It subtracts one value from another without storing the result. Flags are updated (Zero,

Negative, Carry, Overflow) based on the result. Used mainly for conditional branching (e.g.,

BEQ, BNE, BGT, etc.)

MOV R0, #5

MOV R1, #5

CMP R0, R1 ; Updates flags (Z=1, since R0 == R1)

CMP Rn, #imm8

c) ASR stands for Arithmetic Shift Right.

 It shifts the bits of a value to the right, preserving the sign bit (bit 31).

 Used to perform signed division by powers of 2.

 It is different from logical shift right (LSR), which fills with 0

ASR with Immediate Shift Amount

ASR Rd, Rm, #imm

ASR with Register

ASR Rd, Rm, Rs

Shifts value in Rm by the amount specified in Rs.

10b) Write an assembly language to determine the parity of 32 bit number. (6 Marks)

 AREA PARITY_CHECK, CODE, READONLY

 ENTRY

 MOV R0, #0xA5 ; Example lower 8 bits: 10100101

 LSL R0, R0, #24 ; Make it a full 32-bit value

 MOV R1, #0x5A ; Example upper 8 bits: 01011010

 ORR R0, R0, R1 ; R0 = 0xA500005A

 MOV R1, #0 ; R1 = parity counter = 0

 MOV R2, #32 ; Loop counter for 32 bits

PARITY_LOOP

 TST R0, #1 ; Test LSB

 ADDNE R1, R1, #1 ; If LSB = 1, increment counter

 LSR R0, R0, #1 ; Logical shift right

 SUBS R2, R2, #1 ; Decrement loop counter

 BNE PARITY_LOOP

 ANDS R1, R1, #1 ; Check LSB of count → parity

 ; R1 = 0 → even parity, 1 → odd parity

 B . ; In

10c) Explain 32-bit instruction with example (8 Marks)

a) ADC

b) BFC

c) LSL

d) PUSH

a) ADC Rd, Rn, Rm

Adds Rn and Rm along with the carry flag (C) from previous operations. Useful for multi-word

arithmetic.

MOVS R0, #0xFF

MOVS R1, #0x01

ADCS R2, R0, R1 ; R2 = R0 + R1 + Carry

b) BFC - Bit Field Clear

BFC Rd, #lsb, #width

Clears (0) a range of bits in a destination register from bit position lsb for width bits.

MOV R0, #0xFFFF

BFC R0, #4, #4 ; Clears bits [7:4], R0 becomes 0xFF0F

c) LSL - Logical Shift Left

LSL Rd, Rm, #n

Shifts bits in register Rm to the left by n positions. Fills zero in the rightmost bits. Used for

multiplication by powers of 2.

MOV R1, #0x01

LSL R2, R1, #3 ; R2 = R1 << 3 = 0x08

d) PUSH - Stack Push Multiple Registers

PUSH {Rlist}

PUSH {R4-R7, LR} ; Push R4, R5, R6, R7, and Link Register to stack

	1. Processor Core
	2. Nested Vectored Interrupt Controller (NVIC)
	3. Bus Interface Unit
	4. Register Bank
	5. System Control Block (SCB)
	6. Memory Protection Unit (MPU)
	7. SysTick Timer
	8. Debug Unit
	9. Exception Model
	1. Operation Modes
	2. Privilege Levels

