Embedded System Design (BEC601)

June/July 2025

VTU Question Paper Scheme & Solution

1. a) What is embedded system? List the applications of embedded system. (6M)

Answer: An embedded system is an electronic/electro-mechanical system designed to
perform a specific function and is a combination of both hardware and firmware

(software).

trackers etc.). The application areas and the products in the embedded domain are countless. A few of the

important domains and products are listed below:
i1
(2)
(3)
circuit television cameras, fire alarms, etc.

i4)
navigation systems, etc.

(3]
i6)
(7
(8)
(9)
(1
(11)
(12)
(13)

Consumer electronics: Camcorders, cameras, etc.
Household appliances: Television, DVD players, washing machine, fridge, microwave oven, etc.
Home automation and security systems: Air conditioners, sprinklers, intruder detection alarms, closed

Automotive industry: Anti-lock breaking systems (ABS), engine control, ignition systems, automatic

Telecom: Cellular telephones, telephone switches, handset multimedia applications, etc.
Computer peripherals: Printers, scanners, fax machines, etc.

Computer networking svstems: Network routers, switches, hubs, firewalls, etc.
Healtheare: Different kinds of scanners, EEG, ECG machines etc.

Measurement & nstrumentation: Digital multimeters, digital CROs, logic analysers PLC systems, etc.
Banking & Rerail: Automatic teller machines (ATM) and currency counters, point of sales (POS)
Card Readers: Barcode, smart card readers, hand held devices, etc.

Wearable Devices: Health and Fitness Trackers, Smartphone Screen extension for notifications, etc.
Cloud Computing and Internet of Things (10T)

b) Give the difference between microcontroller and Microprocessor. (6M)

Answer:

Microprocessor
It is a dependent umit. It requires the combination of other
chips like timers, program and data memory chips, intemapt
controllers, ete. for functioning
Most of the time general purpose in design and operation
Doesn’t contain o builtn 1O port. The O port functionality
needs w be implemented with the help of extemal program-
mable peripheral interface chips like 8255
Targeted for high end market where performance is im-
portant
Limited power saving options compared to microcon-
trollers

Microcontroller

It 15 a self-contained unit and it doesn’t require extemal
interrupt controller, timer, UART, ete. for its functioning

Mosty application-oriented or domain-specific

Most of the processors contain multiple built-in IO ports
which can be operated as a single 8 or 16 or 32 hit port or
as individual port pins

Targeted for embedded market where perfformance is not so
critical (At present this demarcation 15 invalid)

Includes lot of power saving features

c) Explain about opto coupler and push button switch with neat diagram. (8M)

2.3.3.3 Optocoupler Optocoupler is a solid state device to isolate two parts of a circuit. Optocoupler
combines an LED and a photo-transistor in a single housing (package). Figure 2. 16 illustrates the functioning
ot an optocoupler device.

In electronic circuits, an optocoupler is used for suppressing —_—] LED
interference in data communication, circuitisolation, high voltage /0 intedace

separation, simultaneous separation and signal intensification,
etc. Optocouplers can be used in either input circuits or in output
circuits. Figure 2.17 illustrates the usage of optocoupler in
input circuit and output circuit of an embedded svstem with a
microcontroller as the system core.

/O interface

Photo-transistor

Fig. 216 Anoptocoupler device

_ T Vee _

o LED Sl LED
I'p mterface : Port pin Cﬁ
t /pinterface

Port pin
Photo-transistor| ! Photo-transistor !
Optocoupler Microcontroller Optocoupler
1C MOT2ZM 1C MCT2ZM

Fig. 217 Optocoupler in Input and Output circuit

2.3.3.7 Push Button Switch It is an input device. Push button switch comes in two configurations,
namely ‘Push to Make™ and ‘Push to Break™. In the ‘Push to Make’ configuration, the switch 1s normally in
the open state and it makes a circuit contact when it is pushed or pressed. In the ‘Push to Break™ configuration,
the switch is normally in the closed state and it breaks the circuit contact when it 1s pushed or pressed. The
push button stays in the “closed’ { For Push to Make type) or ‘open’ (For Push to Break tvpe) state as long as
it is kept in the pushed state and it breaks/makes the circuit connection when it is released. Push button is used
tor generating a momentary pulse. In embedded application push button is generally used as reset and start
switch and pulse generator. The Push button is normally connected to the port pin of the host processor/

controller. Depending on the way In which the push
button intertaced to the controller, it can generate either
a "HIGH pulse or a "LOW pulse. Figure 2.23 illustrates
how the push button can be used for generating "LOW’
and “HIGH™ pulses.

Vee Ve

Port pin

Port pin

|_

‘LOW? Pulse gencrator *HIGH" Pulse generator

Fig. 223 Push button switch configurations

2 a) Give the classification of Embedded System with examples.

1.4 CLASSIFICATION OF EMBEDDED SYSTEMS

LO 4 Classify It is possible to have a multitude of classifications tfor embedded systems,
based on different criteria. Some of the criteria used in the classification of
embedded systems are as tollows:

embedded systems
based on performance,
complexity and the era (1) Based on generation
in which they evolved (2) Complexity and performance requirements
(3) Based on deterministic behaviour
(<) Based on triggering.

The classification based on deterministic system behaviour is applicable for ‘Real Time’ systems. The
application/task execution behaviour tor an embedded system can be either deterministic or non- deterministic.
Based on the execution behaviour, Real Time embedded systems are classified into Hard and Sofr. We will
discuss about hard and soft real ume systems in a later chapter. Embedded Systems which are ‘Reactive’ in
nature {Like process control systems in industrial control applications) can be classified based on the trigger.
Reactive systems can be either eveni friggered or time triggered.

1.4.1 Classification Based on Generation

This classification 1s based on the order in which the embedded processing systems evolved trom the
first version to where they are today. As per this criterion, embedded systems can be classified into the
tollowing:

1.4.1.1 First Generation The early embedded systems were built around 8bit microprocessors like
8085 and Z80, and 4bit microcontrollers. Simple in hardware circuits with firmware developed in Assembly
code. Digital telephone kevpads, stepper motor control units etc. are examples of this.

1.4.1.2 Second Generation These are embedded svstems built around 16bit microprocessors and 8 or
16 bit microcontrollers, tollowing the first generation embedded systems. The instruction set tor the second
generation processors/controllers were much more complex and powertul than the first generation processors/
controllers. Some of the second generation embedded systems contained embedded operating systems
tor their operation. Data Acquisition Systems, SCADA systems, etc. are examples of second generation
embedded systems.

1.4.1.3 Third Generation With advances in processor technology, embedded system developers started
making use of powerful 32bit processors and 16bit microcontrollers tor their design. A new concept of

application and domain specific processors/controllers like Digital Signal Processors (DSP) and Application
Specific Integrated Circuits (ASICs) came into the picture. The instruction set of processors became more
complex and powerful and the concept ot instruction pipelining also evolved. The processor market was
flooded with difterent types of processors trom different vendors. Processors like Intel Pentium, Motorola
68K, etc. gained attention in high performance embedded requirements. Dedicated embedded real time and
general purpose operating systems entered into the embedded market. Embedded systems spread its ground
to areas like robotics, media, industrial process control, networking, etc.

1.4.1.4 Fourth Generation The advent of System on Chips (SoC), reconfigurable processors and
multicore processors are bringing high performance, tight integration and mimaturisation into the embedded
device market. The SoC technique implements a total system on a chip by integrating ditferent functionaliies
with a processor core on an Integrated circuit. We will discuss about SoCs in a later chapter. The tourth
generation embedded systems are making use of high performance real time embedded operating svstems
for their functioning. Smart phone devices, mobile internet devices (MIDs), etc. are examples of fourth
generation embedded systems.

1.4.15 WhatNext? The processor and embedded market 1s highly dynamic and demanding. So “what
will be the pext smart move in the next embedded generation?” Let’s wait and see.

1.4.2 Classification Based on Complexity and Performance

This classification is based on the complexity and system pertormance requirements. According to this
classification, embedded systems can be grouped into the following:

1.4.2.1 Small-5cale Embedded Systems Embedded systems which are simple in application needs
and where the performance requirements are not time critical fall under this category. An electronic toy is a
typical example of a small-scale embedded system. Small-scale embedded systems are usually built around
low performance and low cost 8 or 16 bit microprocessors/microcontrollers. A small-scale embedded system
may or may not contaln an operating system tor 1ts functioning.

1.4.2.2 Medium-5cale Embedded Systems Embedded systems which are slightly complex in
hardware and firmware (sottware) requirements tall under this category. Medium-scale embedded systems
are usually built around medium performance, low cost 16 or 32 bit microprocessors/imicrocontrollers or
digital signal processors. They usually contain an embedded operating system (either general purpose or real
time operating system) for functioning.

1.4.2.3 Large-Scale Embedded Systems/Complex Systems Embedded systems which involve
highly complex hardware and firmware requirements fall under this category. They are employed in mission
critical applications demanding high performance. Such systems are commonly built around high pertormance
32 or 64 bit RISC processors/controllers or Recontigurable System on Chip (RSoC) or multi-core processors
and programmable logic devices. They may contain multiple processors/controllers and co-units/hardware
accelerators for offloading the processing requirements from the main processor of the system. Decoding/
encoding of media, cryptographic function implementation, etc. are examples for processing requirements
which can be implemented using a co-processor/hardware accelerator. Complex embedded systems usually
contain a high performance Real Time Operating System (RTOS) for task scheduling, prioritisation, and
management.

2b) Give the difference between Von-Neumann and Harvard Architecture. (6M)

The following table highlights the ditterences between Harvard and Von-Neumann architecture.

Harvard Architecture Von-Neumann Architecture
Separate buses for instruction and data fetching Single shared bus for instruction and data fetching
Easier to pipeline, so high perfformance can be achieved Low performance compared to Harvard architecture
Comparatively high cost Cheaper
No memory alignment problems Allows self modifying codes”
Since data memory and program memory are stored Since data memory and program memory are stored
physically in different locations, nochances foraccidental physically in the same chip, chances for acaidental
cormuption of program memory corruption of program memory

2c) Explain Piezo buzzer, sensor and actuators in embedded system with neat diagram. (8M)

2.3 SENSORS AND ACTUATORS

~ At the very beginning of this chapter it is already mentioned that an embedded
system 15 In constant interaction with the Real world and the controlling/
monitoring functions executed by the embedded system is achieved in
accordance with the changes happening to the Real world. The changes in
system environment or variables are detected by the sensors connected to the
input port of the embedded system. It the embedded system is designed for any
controlling purpose, the system will produce some changes in the controlling
variable to bring the controlled variable to the desired value. It is achieved
through an actuator connected to the output port of the embedded system. If the embedded system is designed
tor monitoring purpose only, then there is no need tor including an actuator in the system. For example, take
the case of an ECG machine. It is designed to monitor the heart beat status of a patient and it cannot impose
a control over the patient’s heart beat and its order. The sensors used here are the difterent electrode sets
connected to the body of the patient. The variations are captured and presented to the user (may be a doctor)
through a visual display or some printed chart.

"LO 3 Analyse the
role of sensors,
actuators, and their
interfacing with the
I/0 subsystems of
an embedded system

S y

2.3.1 Sensors

A sensor is a transducer device that converts energy from one form to another for any measurement or control
purpose. This is what 1 “by-hearted” during my engineering degree tfrom the transducers paper.

Locking back to the “Wearable devices” example given at the end of Chapter 1, we can identity that the
sensor which counts steps tor pedometer tunctionality is an Accelerometer sensor and the sensor used in
some of the smartwatch devices to measure the light intensity is an Ambient Light Sensor (ALS)

2.3.2 Actuators

Actuator 15 a form of transducer device (mechanical or electrical) which converts signals to corresponding
physical action (motion). Actuator acts as an output device.

Looking back to the *“Wearable devices” example given at the end of Chapter 1, we can see that certain
smartwatches use Ambient Light Sensor to detect the surrounding light intensity and uses an electrical/
electronic actuator circuit to adjust the screen brightness for better readability.

2.3.3.6 Piezo Buzzer Piezo buzzerisa piezoelectric device for generating audio indications in embedded
application. A piezoelectric buzzer contains a piezoelectric diaphragm which produces audible sound in
response to the voltage applied to it. Piezoelectric buzzers are available in two tvpes. ‘Selt-driving’ and
‘External driving’. The *Selt-driving’ circuit contains all the necessary components to generate sound at a
predefined tone. It will generate a tone on applying the voltage. External driving piezo buzzers supports the
generation of different tones. The tone can be varied by applying a variable pulse train to the piezoelectric
buzzer. A piezo buzzer can be directly intertaced to the port pin of the processor/control. Depending on the
driving current requirements, the piezo buzzer can also be interfaced using a transistor based driver circuit as
in the case of a ‘Relay’.

3a) Explain the characteristics and quality attributes of Embedded System. (6M)
3.1 CHARACTERISTICS OF AN EMBEDDED SYSTEM

Unlike general purpose computing systems, embedded systems possess certain
specific characteristics and these characteristics are unique to each embedded
system. Some of the important characteristics of an embedded system are as
follows:

(1) Application and domain specific

LO 1 Understand
the characteristics
describing an
embedded system

(2} Reactive and Real Time
(3) Operates in harsh environments

74 Introduction to Embedded Systems

(4) Distributed
(5) Small size and weight
(6) Power concerns

3.1.1 Application and Domain Specific

It yvou closely observe any embedded system, you will find that each embedded system is designed to perform
a set of defined funcuons and they are developed in such a manner to do the intended tunctions only. They
cannot be used for any other purpose. It is the major criterion which distinguishes an embedded system tfrom
a general purpose computing system. For example, vou cannot replace the embedded control unit of your
microwave oven with your air conditioner’s embedded control unit, because the embedded control units of
microwave oven and airrconditioner are specifically designed to perform certain specific tasks. Also, you
cannot replace an embedded control unit developed ftor a particular domain say telecom with another control
unit designed to serve another domain like consumer electronics.

3.1.2 Reactive and Real Time

As mentioned earlier, embedded systems are in constant interaction with the Real world through sensors and
user-defined input devices which are connected to the input port of the system. Any changes happening in
the Real world (which is called an Event) are captured by the sensors or input devices in Real Time and the
control algorithm running inside the unit reacts in a designed manner to bring the controlled output variables
to the desired level. The event may be a periodic one or an unpredicted one. It the event is an unpredicted one
then such systems should be designed in such a way that it should be scheduled to capture the events without
missing them. Embedded systems produce changes in output in response to the changes in the input. So they
are generally reterred as Reactive Systems.

Real Time System operation means the timing behaviour of the system should be deterministic; meaning
the system should respond to requests or tasks in a known amount of time. A Real Time system should not
miss any deadlines for tasks or operations. It 1s not necessary that all embedded systems should be Real
Time in operations. Embedded applications or systems which are mission critical, like flight control systems,
Antilock Brake Systems (ABS), etc. are examples of Real Time systems. The design of an embedded Real
time system should take the worst case scenario into consideration.

3.1.3 Operates in Harsh Environment

It is notnecessary that all embedded systems should be deployed in controlled environments. The environment
in which the embedded system deploved may be a dusty one or a high temperature zone or an area subject
to vibrations and shock. Systems placed in such areas should be capable to withstand all these adverse
operating conditions. The design should take care of the operating conditions of the area where the system is
golng to implement. For example, it the system needs to be deployed in a high temperature zone, then all the
components used in the svstem should be of hish temperature orade. Here we cannot oo for a compromise

3.1.4 Distributed

The term distributed means that embedded systems may be a part of larger systems. Many numbers of such
distributed embedded systems form a single large embedded control unit. An automatic vending machine

Characteristics and Quality Attributes of Embedded Systems 75

is a typical example for this. The vending machine contains a card reader (for pre-paid vending systems), a
vending unit, etc. Each of them are independent embedded units but they work together to perform the overall
vending tunction. Another example 1s the Automatic Teller Machine (ATM). An ATM contains a card reader
embedded unit, responsible for reading and validating the user’s ATM card, transaction unit tor performing
transactions, a currency counter for dispatching/vending currency to the authorised person and a printer unit
for printing the transaction details. We can visualise these as independent embedded systems. But they work
together to achieve a common goal.

Another typical example ot a distributed embedded system 1s the Supervisory Control And Data Acquisition
(SCADA) system used in Control & Instrumentation applications, which contains physically distnibuted
individual embedded control units connected to a supervisory module.

3.1.5 Small Size and Weight

Product aesthetics is an important factor in choosing a product. For example, when you plan to buy a new
mobile phone, you may make a comparative study on the pros and cons of the products available in the
market. Defimtely the product aesthetics (size, weight, shape. style. etc.) will be one of the deciding factors
to choose a product. People believe in the phrase “Small 15 beautitul”. Moreover it 1s convenient to handle a
compact device than a bulky product. In embedded domain also compactness is a significant deciding factor.
Most of the application demands small sized and low weight products.

maobile phone, you may make a comparative study on the pros and cons of the products available in the
market. Definitely the product aesthetics (size, weilght, shape, style, etc.) will be one of the deciding factors
to choose a product. People believe in the phrase “Small 15 beautiful”. Moreover it 1s convenient to handle a
compact device than a bulky product. In embedded domain also compactness 15 a significant deciding factor.
Most of the application demands small sized and low weight products.

3.1.6 Power Concerns

Power management 1s another important factor that needs to be considered in designing embedded systems.
Embedded systems should be designed in such a way as to minimise the heat dissipation by the system. The
production of high amount of heat demands cooling requirements like cooling fans which In turn occupies
additional space and make the system bulky. Nowadays ultra low power components are available in the
market. Select the design according to the low power components like low dropout regulators, and controllers/
processaors with power saving modes. Also power management is a critical constraint in battery operated
application. The more the power consumption the less is the battery life.

3.2 QUALITY ATTRIBUTES OF EMBEDDED SYSTEMS

Quality attributes are the non-functional requirements that need to be
documented properly in any system design. It the quality attributes are
more concrete and measurable it will give a positive impact on the system
development process and the end product. The various quality attributes
that needs to be addressed in any Embedded System development are
broadly classified into two, namely “Operational Quality Attributes” and
‘Non-Operational Quality Attributes™.

LO 2 Explain the non-
functional requirements
that needs to be
addressed in the design
of an embedded system

3.2.1 Operational Quality Attributes

The operational quality attributes represent the relevant quality attributes related to the Embedded Svystem
when it is in the operational mode or ‘online’ mode. The important quality attributes coming under this
category are listed below:

(1) Response

(2) Throughput

(3) Reliability

(4) Maintainability

(5) Security
() Safety

3.2.1.1 Response Response isa measure of quickness of the system. [t gives you an idea about how fast
your system is tracking the changes in input variables. Most of the embedded systems demand fast response
which should be almost Real Time. For example, an embedded system deployed in flight control application
should respond in a Real Time manner. Any response delay in the system will create potential impact to the
satety of the flight as well as the passengers. It is not necessary that all embedded systems should be Real
Time in response. For example, the response time requirement for an electronic toy is not at all time-critical.
There 1s no specific deadline that this system should respond within this particular timeline.

3.2.1.2 Throughput Throughput deals with the etficiency of a system. In general it can be defined as the
rate of production or operation of a defined process over a stated period of time. The rates can be expressed
in terms of units of products, batches produced, or any other meaningful measurements. In the case of a Card
Reader, throughput means how many transactions the Reader can perform in a minute or in an hour or in
a day. Throughput is generally measured in terms of “Benchmark’. A ‘Benchmark’ is a reference point by
which something can be measured. Benchmark can be a set of performance criteria that a product 1s expected
to meet or a standard product that can be used for comparing other products of the same product line.

3.2.1.3 Reliability Reliability is a measure of how much % you can rely upon the proper tunctioning of
the system or what is the % susceptibility of the system to failures.

Mean Time Between Failures (MTBF) and Mean Time To Repair (MTTR) are the terms used in defining
system reliability. MTBF gives the frequency of tailures in hours/weeks/months. MTTR specifies how long
the system is allowed to be out of order tollowing a tailure. For an embedded system with critical application
need, it should be of the order of minutes.

3.2.1.4 Maintainability Maintainability deals with support and maintenance to the end user or client
in case of technical issues and product tailures or on the basis of a routine system checkup. Reliability and
maintainability are considered as two complementary disciplines. A more reliable system means a system
with less corrective maintainability requirements and vice versa. As the reliability of the system increases,
the chances of fallure and non-functioning also reduces, thereby the need for maintainability is also reduced.
Maintainability 1s closely related to the system availability. Maintainability can be broadly classified into
two categories, namely, ‘Scheduled or Periodic Maintenance (preventive maintenance)” and ‘Maintenance to
unexpected failures (corrective maintenance)’ . Some embedded products may use consumable components

PPeriodic maintenance’. It the paper feeding part of the printer tails the printer tails to print and it requires
immediate repairs to rectify this problem. This is an example of “Maintenance to unexpected tailure’.
In both of the maintenances (scheduled and repair), the printer needs to be brought offline and during this
time it will not be available for the user. Hence it is obvious that maintainability is simply an indication of
the availability of the product for use. In any embedded system design, the ideal value tor availability is
expressed as

A= MTBF(MTBF + MTTR)

Cha racteristics and Quality Attributes of Embedded Systems 77

where A, = Availability in the ideal condition, MTBF = Mean Time Between Failures, and MTTR =
Mean Time To Repair

3.2.1.5 Security ‘Confidentiality’. “Integrity’, and ‘Awvailability” (The term ‘Awailability’ mentioned
here is not related to the term ‘Availability’ mentioned under the “Maintainability” section) are the three
major measures of information security. Confidentiality deals with the protection ot data and application
trom unauthorised disclosure. Integrity deals with the protection of data and application from unauthorised
modification. Availability deals with protection of data and application trom unauthorised users. A very good
example of the “Security” aspect In an embedded product 15 a Personal Digital Assistant (PDA). The PDA
can be either a shared resource (e.g. PDAs used in LAB setups) or an individual one. If it is a shared one

R 1 1a T 1 *

3.2.1.6 Safety ‘Safety’ and “Security’ are two contusing terms. Sometimes vou may teel both of them as
a single attribute. But they represent two unique aspects in quality attributes. Satety deals with the possible
damages that can happen to the operators, public and the environment due to the breakdown of an embedded
system or due to the emission of radicactive or hazardous materials trom the embedded products. The
breakdown of an embedded system may occur due to a hardware tailure or a irmware tailure. Safety analysis
15 a must in product engineering to evaluate the anticipated damages and determine the best course of action
to bring down the consequences of the damages to an acceptable level. As stated betore, some of the safety
threats are sudden (like product breakdown) and some ot them are gradual (like hazardous emissions from

the product).

3b) Explain the working of washing machine with a neat functional diagram. (6M)

4.1 WASHING MACHINE—APPLICATION-SPECIFIC EMBEDDED SYSTEM
People experience the power of embedded systems and enjov the features
and comfort provided by them, but they are totally unaware or ignorant of the

LO 1 [Hustrate

th ti

“’gﬁﬂ’ o intelligent embedded players working behind the products providing enhanced
unl hedd ils_fstu:l:ls features and comfort. Washing machine 15 a tvpical example of an embedded
with examples systemn providing extensive suppaort in home antomation applications (Fig. 4.1).

Ernbe gkl System s—A pplizatisn and Damain S pedfi a5

As mentioned i an earher chapier, an embedded svstem
contains sensors, actuators, control unit and application-s pecific
user interfaces like keyboards, display units, ete. You can see
all these components in a washing machine if yvou have a closer
look at it. Some of them are visible and some of them may be
invisible to you.

The actuator part of the washing machine consists of a
motorised agitator, tumble tub, water dmwing pump and mlet
valve o control the fow of water into the unit. The sensor
part consists of the water temperature sensor, level sensor
etc. The control pat containg a microprocessorcontroller
based board with interfaces o the sensors and actuators. The
sensor data is fed back o the contml unit and the control it
generates the necessary actuator outputs. The control unit also
provides commectivity to user interfaces like kevpad for setting
the washing time, selecting the type of material to be washed
Fig.41 Washing Machine - Typicalexample f [ike Light, medium, heavy duty, ete. User feedback is reflected

EWF 1493

m emhedded system through the display unit and LEDs connected 1o the contmsl
Pmﬁ;ﬁﬁ;ﬂmlmﬁ board. The functional block diagram of a washing machine is
fluae il shown in Fig. 42.
Inteprated control User interface
Pn.'u.cl with user
terface =——— LED display
r '
e
e Tew
(" i
L &
Keypad
Iner tubs Temp Sensor
FPicture not to scale

Fig 42 Weshing machine - Functional Wock diagram

Washing machine comes in different designs, like top loading and front loading machines, In top loading
models the agitator of the machine twists hack and forth and pulls the cloth down to the bottom of the b

On reaching the bottom of the tub the clothes work their way back up to the top of the tub where the agitator
grabs them again and repeats the mechamsm. In the front loading machines, the clothes are wmbled and
plunged into the: water over and over again. This is the first phase of washing.

In the second phase of washing, water is pumped ot from the tub and the inmer b uses centr fugal force
to wring out more water from the clothes by spioming at several hundred Rotations Per Minute (RPM). This is
called a “Spin Phase". I you look into the kevboard panel of vour washing machine you can see thres buttons
numely” Wash, Spin and Rinse. You can wse these buttons 1o configure the washing stages, As you can see
from the picture, the inmer b of the machine contains a number of holes and during the spin cycle the inner
tub spins, and forces the water out through these holes o the stationary outer b from which it 15 dmined of T
through the outlet pipe.

It is o be noted that the design of washing machines may vary fmom manufacturer o manufacturer, but
the generl principle unded ving in the working of the washing machine remains the same. The basic controls
consist of a timer, cycle selector mechanism, water temperature selector, load size selector and start button,
The mechanism includes the motor, transmission, clutch, pump, agitator, inner wh, outer wh and water inlet
valve, Water inlet valve connects to the water supply line using at home and megulates the flow of water into
the tb.

The integrated control panel consists of a microprocessorfcontroller based board with FO interfaces and
a control algorithm running in it Input interface includes the kevboard which consists of wash type selector
numx:l}'. Wash, Spin and Rinse, cloth tvpe selecior num.el}'-L:'ghr. Mediun, Heavy duty, and washing time
setting, etc . The output interface consists of LEDVLCD displavs, status indication LEDs, ete, connected to the
1A0 bus of the controller. It is 1o be noted that this interface may vary from manufacturer © manufucturer and
model to model. The other types of IO intedfaces which are invisible to the end user are different kinds of
sensor interfaces, nomely, water lemperature sensor, water level sensor, ete. and actuator interface including
murtor control for agitator and tub movement control, inlet water flow control, ete.

3c) Design an automatic tea/coffee vending machine based on FSM model. (8M)

Design an automatic tea’coffes vending machine based on FSM model for the following requirement .

The teafcolfes vending 15 mitiated by user inserting a 5 rupee coin. After inserting the coin, the user can
either select “Coffes” or “Tea” or press “Cancel” to cancel the onder and take back the coin

The FSM mpresentation for the above rquirement is given in Fig. 7.5.

Inits simple st representation, it contains fourstes nomely; “Wait foreoin® “Wait for User Input’, ‘Dispense
Tea" and *Dispense Coffee’. The event *Insert Coin® (5 rupee coin insertion), transitions the state to “Wail for
User Input”. The system stays in this state until a user input is received from the buttons “Cancel”, “Tea” or
‘Coffee’ (Teaand Coffes are the drink select button), If the event triggerad in “Wait State” is “Cancel” button
press, the coin is pushed out and the state transitions o “Wait for Com®, If the event received in the "Wt
State” 15 either “Tea” button press, or “Coffes” button press, the state changes to "Dispense Tea” and “Dispense
Coffee” respectively. Once the coffeeften vending is over, the mspective states transitions back to the “Wait
for Coin® state, A few modifications like adding a timeowt for the “Wait State” (Curently the “Wait State” is
infimte; it can be re-designed 1o a tmeout based “Wait State”. I no user input is received within the timeout
period, the coin is returned back and the state antomatically transitions to “Wait for Coin” on the timeout
event) and capturing another events like, “Water not available’, *TeafCoffes Mix not available” and changing
the state to an “Error State” can be added to enhance this design. It is left to the readers as exercise.

Event! Insert Caoin State A: Wait for coin
State A l .Ac?tion: ok Be State B: Wait for user input
Event: Cancel Butto &y State C: Dispense tea
Action: Coin Out £y e State D: Dispense coffee

Fip 75 FEM Modd for Automatic Tea\Coffee Vending Machine

4a) Explain operational and non-operational attributes of embedded systems. (6M)

3.2 QUALITY ATTRIBUTES OF EMBEDDED SYSTEMS
Quality attributes are the non-Munctional requirements that need 1o be
doc ed Iv in any sys design. If the quality atributes

urmet mr 1.11 .1..113' I.}'I.Le'm . '111.:1'] 4u .11:',' attri Lﬂ..t:lu.dn: tional +rements
more comcre e and measurable it will give a positive impact on the system 1
development process and the end product. The various quality attributes that Iﬂdl-‘tﬂ be .
that needs 1o be addressed in any Embedded System development are :‘}M.ﬁ: dlesign
broadly classified into two, namely “Opemtional Quality Atributes” and an fystem
“Mon-Crperational Quality Attributes”,

3.2.1 Operational Quality Attributes
The operational quality attributes represent the relevant quality attributes related to the Embedded System
when it is in the operational mode or “online” mode. The important guality attributes coming under this
catepory ane listed below :

(1} Respinse

2} Thmughput

(3} Reliability

4) Muintm nability

L 2 Explain the non-

(5) Security
() Safety

3.2.1.1 Response Response isa measure of quickness of the system. [t gives you an idea about how fast
vour system is tracking the changes in input variables. Most of the embedded systems demand fast response
which should be almost Real Time. For example, an embedded system deployed in flight control application
should respond in a Real Time manner. Any response delay in the system will create potential impact to the
satety of the flight as well as the passengers. It is not necessary that all embedded systems should be Real
Time in response. For example, the response time requirement for an electronic toy is not at all time-critical.
There 1s no specific deadline that this system should respond within this particular timeline.

3.2.1.2 Throughput Throughput deals with the etficiency of a system. In general it can be defined as the
rate of production or operation of a defined process over a stated period of time. The rates can be expressed
in terms of units of products, batches produced, or any other meaningful measurements. In the case of a Card
Reader, throughput means how many transactions the Reader can perform in a minute or in an hour or in
a day. Throughput is generally measured in terms of “Benchmark’. A ‘Benchmark’ is a reference point by
which something can be measured. Benchmark can be a set of performance criteria that a product 1s expected
to meet or a standard product that can be used for comparing other products of the same product line.

3.2.1.3 Reliability Reliability is a measure of how much % you can rely upon the proper tunctioning of
the system or what is the % susceptibility of the system to failures.

Mean Time Between Failures (MTBF) and Mean Time To Repair (MTTR) are the terms used in defining
system reliability. MTBF gives the frequency of tailures in hours/weeks/months. MTTR specifies how long
the system is allowed to be out of order tollowing a tailure. For an embedded system with critical application
need, it should be of the order of minutes.

3.2.1.4 Maintainability Maintainability deals with support and maintenance to the end user or client
in case of technical issues and product tailures or on the basis of a routine system checkup. Reliability and
maintainability are considered as two complementary disciplines. A more reliable system means a system
with less corrective maintainability requirements and vice versa. As the reliability of the system increases,
the chances of faillure and non-functioning also reduces, thereby the need for maintainability is also reduced.
Maintainability 1s closely related to the system availability. Maintainability can be broadly classified into
two categories, namely, ‘Scheduled or Periodic Maintenance (preventive maintenance)” and ‘Maintenance to
unexpected taillures {corrective maintenance)’ . Some embedded products may use consumable components

PPeriodic maintenance’. It the paper feeding part of the printer tails the printer tails to print and it requires
immediate repairs to rectify this problem. This is an example of “Maintenance to unexpected tailure’.
In both of the maintenances (scheduled and repair), the printer needs to be brought offline and during this
time it will not be available for the user. Hence it is obvious that maintainability is simply an indication of
the availability of the product for use. In any embedded system design, the ideal value tor availability is
expressed as

A= MTBF(MTBF + MTTR)

Cha racteristics and Quality Attributes of Embedded Systems 77

where A, = Availability in the ideal condition, MTBF = Mean Time Between Failures, and MTTR =
Mean Time To Repair

3.2.1.5 Security ‘Confidentiality’. “Integrity’, and ‘Awvailability” (The term ‘Awailability’ mentioned
here is not related to the term ‘Availability’ mentioned under the “Maintainability” section) are the three
major measures of information security. Confidentiality deals with the protection ot data and application
trom unauthorised disclosure. Integrity deals with the protection of data and application from unauthorised
modification. Availability deals with protection of data and application trom unauthorised users. A very good
example of the “Security” aspect In an embedded product 15 a Personal Digital Assistant (PDA). The PDA
can be either a shared resource (e.g. PDAs used in LAB setups) or an individual one. If it is a shared one

R 1 1a T 1 *

3.2.1.6 Safety ‘Safety’ and “Security’ are two contusing terms. Sometimes vou may teel both of them as
a single attribute. But they represent two unique aspects in quality attributes. Satety deals with the possible
damages that can happen to the operators, public and the environment due to the breakdown of an embedded
system or due to the emission of radicactive or hazardous materials trom the embedded products. The
breakdown of an embedded system may occur due to a hardware tailure or a irmware tailure. Safety analysis
15 a must in product engineering to evaluate the anticipated damages and determine the best course of action
to bring down the consequences of the damages to an acceptable level. As stated betore, some of the safety
threats are sudden (like product breakdown) and some ot them are gradual (like hazardous emissions from
the product).

3.2.2 Non-Operational Quality Attributes
The guality attributes that needs to be addressed for the product *not” on the basis of operational aspects are
grouped under this category. The important quality attributes coming under this category are listed below,
(1} Testability & Debug-ability
2) Evolvability
(3) Portability
#) Time to prototype and market
(5) Per unit and todal cost.

3.2.2.1 Testability & Debug-ability Testability deals with how easily one can lest the design,
application and by which means hef/she can test it. For an embedded product, testability is applicable 1o both
the embedded hardware and firnw are . Embedded hardware testing ensures that the peripherals and the total
hardware functions in the desired manner, whereas firmware (esting ensumes that the firmware is functioning
in the expected way. Debug-ability is a means of debugging the product as such for figuring out the probable
sources that create inexpected behaviour in the total svstem. Debug-ability has two aspects in the embedded
systermn development context, namely, hardware level debugging and firmwane level debugping. Hamdware
debugging is used for iguring out the issues created by hardware problems whereas firmware debugging is
emploved to figure out the probable errors that appear as a result of faws in the frmware,

3.2.2.2 Evolvability Evolvability is 2 term which is closely melated 1o Biology, Evolvability is referred
a5 the non-heritable variation. For an embedded system, the quality attribute “Evolvability” refers to the ease
with which the embedded product (including fimmware and hardware) can be modified to take advantage of
new firmware or hardware technol ogies.

3.2.2.3 Portability Porwability is a measure of *system independence’. An embedded product is said 1o
be portable if the product is capable of functioning “as such” in various environments, target proces sors
controllers and embedded operating svstems. The ease with which an embedded product can be ported on
toa new platform is a direct measure of the re-work required. A standard embedded prodoct should always
be flexible and portable. In embedded products, the term *porting” represents the mi gration of the embedded
firrow are written for one targel processor (e.g. Intel xB6) to a different target processor (say an ARM Cortex
M3 processor from Freescale). I the firmwane is written in a high level language like “C" with little tampet
processor-specific Nmctions (operating system extensions or compiler specific utiliies), it is very casy to
port the firmware for the new processor by replacing those “target processor-specific functions” with the ones
for the new target processor and recompiling the program for the new larget pmeessor-specific settings,
Re-compiling the progmm for the new target processor generates the new target processor-specific machine
codes, If the firmware is written in Assembly Language for a particular family of processor (say x86 family),
it will be very difficult o translate the assembly language instructions (o the new tagel processor specific
language and so the portability is poor.

If you look into various pmgramming languages for application development for desktop applications,
wvou will see that certain applications developed on certwn linguages ron only on specific operating svstems
and some of them run independent of the desktop operating systems. For example, applications developed
using Micmosofl technologies (e.g. Microsoft Visual Ce++ using Visual studio) is capable of nmning only on
Microsoft platforms and may not function on other operating systems; whereas applications developed wsing
“Java" from Sun Micmsystems works on any operating system that supports Java standards.

3.2.2.4 Time-to-Prototype and Market Time-to-market is the time elapsed between the
conceptualisation of a prodoct and the time at which the product is ready for selling (for commercial
product) or use (for non-commercial products). The commercial embedded product market is highly
competitive and time to market the product is a eritical factor in the success of a commercial embedded
product. There may be multiple plavers in the embedded industry who develop products of the same
category (like mobile phone, portable media plavers, etc.). If vou come up with a new design and
if it takes long time to develop and market it, the competitor product may take advantage of it with
their product. Also, embedded technology is one where rapid technology change is happening. If vou
start your design by making wse of a new technology and if it takes long time to develop and market
the product, by the time vou market the product, the technology might have superseded with a new
technology. Product prototvping helps a lot in reducing time-to-market. Whenever vou have a product
idea, you may not be certain about the feasibility of the idea. Prototyping is an informal Knd of rapid
product development in which the important features of the product under consideration are developed.
The time to prototype is also another critical factor, I the prototype s developed faster, the actual
estimated development time can be brought down significantly. In order to shorten the ime o prototype,
make use of all pissible options like the use of off-the-shell components, re-usable assets, etc.

3.2.2.5 Per Unit Cost and Revenue Cuostis a factor which is closely monitored by both end user (those
who buy the product) and product manufacturer (those who build the product). Costis a highly sensitive
factor for commerncial products. Any failure o position the cost of 2 commercial product at a nominal rate,

Charactenis ies and Quality Attributes of Embedded Systems 78

may lead to the failure of the product in the market. Proper market study and cost benefit analysis should be
camied out before taking a decision on the per-unit cost of the embedded product. From a designer/product
development company perspective the ultimate aim of a pmoduct is w0 generate marginal profit. So the budget
and total system cost should be properly balanced 1o provide a marginal profit.

The Product Life Cycle (PLC) Every embedded prodoct has o product life cycle which starts with the design
and development phase. The productidea generation, prototyping, Roadmap definition, actual product design
and development are the activities carried out during this phase. Dunng the design and development phase
there is only investment and no returns. Onee the product is ready to sell, it is introdoced to the market. This
stage 15 known as the Product Intmduction stage, During the initial period the sales and revenue will be low.
There won"t be much competition and the produoct sales and revenve increases with tme. In the growth phase,
the product grabs high matket share. During the maturity phase, the growth and sales will be steady and
the mvenue reaches at its peak. The Product Retimment/Decline phase starts with the drop in sales volume,
market share and revenue. The decline ha ppens due to varoos reasons like competition from simi lar product
with enhanced features or technology changes, ete. At some poinl of the decline stage, the manufacturer
annmmees discontinuing of the prodoct. The different stages of the embedded products life cvele—revenue,
unit cost and profit in each stage—are represented in the following Product Life-cvele graph (Fig. 3.1).

4b) Explain the hardware and software co-design in embedded system. (6M)
7.1 FUMDAMEMTAL ISSUES IN HARDWARE SOFTWARE CO-DESIGN

The hardware softwame co-design is a pmoblem statement and when we try 1o LO 1K the co
solve this problem staternent in real life we may come across muoltiple issues in desi roach for
the design. The following section illustmtes some of the fundamental issues in £ AP
. embedded hardware
hardware software co-design.
and firmware

Selecting the model In hardware software co-design, models am used for | development

capturing and describing the svstem characteristics. A model is a formal system
consisting of objects amd composition rules. It is hard to make a decision on which model should be followed
in a particular system design. Most often designers switch between a vanety of models from the myguirements
specification to the implementation aspect of the systemn design. The reason being, the objective varies with
each phase: for example at the specification stage, only the functionality of the svstemis in focus and not the
implementation information. When the design moves to the implementation aspect, the informati on about the
system components is revealed and the designer has to switch o0 a model capable of capturing the system’s
structure, We will discuss about the different models in a later section of this chapler,

Selecting the Architecture A model only caplures the system charactenstics and does nol provide
information on “how the system can be manufactured? . The architecture specifies how a system is going
to implement in terms of the number and types of different components and the interconnection among
them. Controller Architecture, Datapath Architecture, Complex Instruction Set Computing (CISC), Reduced
Instmction Set Computing (RISC), Very Long Instruction Word Computing (VLIW), Single Instruction
M ultiple Data (SIMD), Multiple Instruction Multiple Data (MIMED), ete. are the commonl v used architectures
insystem design. Some of them fall into Application Speci fic Architectune Class (hke Controller A hitecture),
while others fall into either peneral purpase amchitecture class (CISC, RISC, ete.) or Paralle] processing class
(hike VLIW, SIMD, MIMD, etc.).

The Controller Architecture implements the finite state machine model (which we will discuss ina later
section) using astate regster and two combinational circoits (we will discuss about combinational circuits in
o later chapter). The state register holds the present state and the combinational circoits implement the logic
for next state and cutput.

The Datapath Architecture is best suited for implementing the data flow graph model where the output
15 penerated as a result of a set of predefimed computations on the mmput data. A datapath represents a charmel
between the input and output and in datapath architecture the datapath may containregisters, counlers, register
files, memaries and ports along with hi gh speed arithmetic units. Ports comect the datapath (o multiple buses,
Muost of the tme the arithmetic units are connected in parallel with pipelining support for bringing high
perfommanice.

The Finite State Machine Datapath (FSMD) archileciure combines the controller architecture with
datapath architecture. It implements a controller with datapath. The controller generates the control input
whereas the datapath processes the data. The datapath contains two types of 00 ports, out of which one
acts as the control port for receiving/sending the control signals from/to the controller unit and the second
L0y port interfaces the datapath with external world for data input and data output. Normally the datapath is
implemented i a chip and the VO pins of the chip acts as the data input output ports for the chip resident
data path.

The Complex Instroction Set Computing (CISC) architecture nses an instruction sel representing
complex operations. It s possible for a CISC mnstruction set to perform a large complex operation (e.g.
Reading a register value and comparing it with a given value and then transfer the prgram execution (0 a new
address location (The CINE instruction for 8051 [54)) with asingle instruction. The use of a single complex
instruction in place of multiple simple instructons greatly reduces the progmm memory access and progmm
memory sie requirement. However il reguires additional sihcon for implementing microcode decoder for
decoding the CISC instruction. The datapath for the CISC processor is complex. On the other hand, Redoced
Instruction Set Computing (RISC) architecture uses instruction set representing simple operations and it
requires the execution of multiple RISC instructions o perform a complex operation. The data path of RISC
architecture contains a large register file for storing the operands and output. RISC instruction setis designed
to opemte on registers. RISC architecture supports extensive pipelining.

The ¥Very Long Instruction Word (VLIW) architecture implements multiple functional units (ALUSs,
multipliers, etc.) in the datapath. The VLIW instroction packages one standand mstruction per functional unit
of the datapath.

Parallel processing architecture implements moltiple concument Processing Elements (PEs) and each
processing element may associate a datapath contwining register and local memory, Single Instruction
Multiple Data (STMD) and Multiple Instruction Multiple Data (MIMD) architectune s are examples for parallel
processing architecture. In SIMD architecture, a single instruction is executed in pamllel with the help of the
Processing Elements. The scheduling of the instruction execution and controlling of each PE is performed
through a single controller. The SIMD architecture forms the basis of re-configurable processor (We will
discuss about re-configurable processors ina later chapter). On the other hand, the processing elements of the
MIMD architecture execute different instructions at a given point of time. The MIMD architecture forms the
basis of mult processor systems, The PEs in a multiprocessor system communicates through mechanisms ke
shared memory and message passing.

Selecting the language A programming language caplures o “Computational Model” and maps it inlo
architecture. There is no hard and fast rule o specify this language should be wsed for capturing this model.
A model can be captured wsing multiple progmmming languages like C, Ce4, CH#, Java, ete. for software
implementations and languages like VHDL, System C, Verlog, ete. for hardware implementations. On the
other hand, a single language can be used for capturing a variety of models. Certain languages are good
in capluring certain computational model. For example, C4+ is a good candidate for capturing an object
oriented model. The only pre-requisite in selecting a progromming language for capturing a model 15 that the
language should capture the model easily.

Partitioning System Reguirements into hardware and software So far we discussed about the
models for capturing the syvstem requinements and the architecture for implementing the system. From an
implementation perspective, it may be possible to implement the system reguirements in either hamdware
or software (firmware). It is a tough decision making task to figure out which one o opt. Varoos handware
software trade-offs ame used for making a decision on the handware-softwane partiioning. We will discuss
them in detal in a later section of this chapter,

4c) With the help of FSM model, explain the system design and operation of automatic seat
belt warning. (8M)

A Finite State Machine (FSM) model 1s one in which the number ot states are finite. In other words the
system 15 described using a finite number ot possible states. As an example let us consider the design of an
embedded system tfor driver/passenger ‘Seat Belt Warning™ in an automotive using the FSM model. The
system requirements are captured as.

I. When the vehicle ignition is turned on and the seat belt is not fastened within 1) seconds of ignition

(N, the system generates an alarm signal for 5 seconds.

2. The Alarm is turned oft when the alarm time (5 seconds) expires or if the driver/passenger fastens the

belt or it the ignition switch 1s turned off, whichever happens first.

Here the states are “Alarm Off", “Waiting” and *Alarm On’ and the events are ‘Ignition Key ON’,
‘lIgnition Key OFF’, “Timer Expire’, "Alarm Time Expire” and ‘Seat Belt ON". Using the FSM, the system
requirements can be modeled as given in Fig. 7.3.

Igmuon Key ON

lgnition Key OFF

Seat Belt ON

Fig. 7.3 FSM Model for Automatic seat belt warning system

5a) Explain monolithic and microkernel with suitable example for each. (6M)

10.1.1.2 Monolithic Kernel and Microkernel

As we know, the kernel forms the heart of an operating system. Ditferent approaches are adopted for building
an Operating System kernel. Based on the kernel design, kernels can be classified into “Monolithic® and
‘Micro™.

Monolithic Kernel In monolithic kernel architecture, all
kernel services run In the kernel space. Here all kernel
modules run within the same memory space under a
single kernel thread. The tight internal integration of
kernel modules in monolithic kernel architecture allows
the effective utilisation of the low-level features of the
underlying system. The major drawback of monolithic
kernel is that any error or failure in any one of the
kernel modules leads to the crashing of the entire kernel
application. LINUX, SOLARIS, MS-DOS kernels
are examples of monolithic kernel. The architecture
representation of a monolithic kernel 1s given in Fig. 10.2. Fig. 102 The Monolithic Kernel Model

Monohthic kernel withall
OPerLing system services
nmnm g in kemel space

Microkernel The microkernel design incorporates
only the essential set of Operating System services
into the kernel. The rest of the Operating System
services are implemented in programs known as
‘Servers” which runs in user space. This provides a
highly modular design and O5-neutral abstraction to
the kernel. Memory management, process
management, timer systems and interrupt handlers
are the essential services, which forms the part of
the microkernel. Mach, QNX, Minix 3 kernels are
examples for microkernel. The architecture
representation of a microkernel is shown in
Fig. 0.3,
Microkernel based design approach offers the
following benefits)) Fig. 10.3 The Microkernel model
* Robustness: If a problem 1s encountered inany
of the services, which runs as “Server” application, the same can be reconfigured and re-started without
the need for re-starting the entire O5. Thus, this approach is highly usetul for systems, which demands
high “availability’. Refer Chapter 3 to get an understanding of “availabiliry’. Since the services which
run as ‘Servers’ are running on a different memory space, the chances of corruption ot kernel services
are ideally zero.
+ Configurability: Any services, which run as “Server” application can be changed without the need to
restart the whole system. This makes the system dynamically configurable.

Servers (kernel
SCTVICES TUNMNgE
1N USCT Space)

Microkemel with essential
services hke memory
management, process

management, imer system, ele...

5b) Explain different conditions that favour deadlock. (6M)
10.8.1.2 Deadlock

A race condition produces incorrect results whereas
a deadlock condition creates a situation where none

of the processes are able to make any progress in "I‘“]
their execution, resulting in a set of deadlocked ——
processes. A situation very similar to our tratfic jam
issues ina junction as illustrated in Fig. 10.24.

In 1ts simplest torm “deadlock” 15 the condition In
which a process is waiting for a resource held by
another process which 1s waiting for a resource held
by the first process (Fig. 10.25). To elaborate:
Process A holds a resource x and it wants a resource
v held by Process B. Process B 1s currently holding
resource v and it wants the resource x which is
currently held by Process A. Both hold the respective
resources and they compete each other to get the
resource held by the respective processes. The result
of the competition is ‘deadlock’. None of the
competing process will be able to access the resources
held by other processes since they are locked by the Fig. 10.24 Deadlock visualisation
respective processes (If a mutual exclusion
policy 15 implemented for shared resource
access, the resource 1s locked by the process

which 1s currently accessing 1t).
tiog
i
s,

Process A Process B

m“‘./
S R

The ditfterent conditions favouring a
deadlock situation are listed below.

Mutual Exclusion: The crlterla_thm only rfnne _ Resource 'y’
process can hold a resource at a time. Meaning
processes should access shared resources with Fig. 1025 Scenarios leading to deadlock

mutual exclusion. Typical example i1s the

Hold and Wait: The condition in which a process holds a shared resource by acquiring the lock controlling
the shared access and waiting for additional resources held by other processes.

No Resource Preemption: The criteria that operating system cannot take back a resource from a process
which is currently holding it and the resource can only be released voluntarily by the process holding it.

Circular Wait: A process is waiting for a resource which is currently held by another process which in turn
1s waiting for a resource held by the first process. In general, there exists a set of waiting process PO, P1 ...
Pn with PO is waiting for a resource held by Pl and P1 is waiting for a resource held by P(), ..., Pn is wailting
tor a resource held by PO and PO is waiting for a resource held by Prn and so on... This forms a circular wait
queue.

5c) Describe pre-entire SIF scheduling and calculate all the performance factors. (8M)

10.5.2.1 Preem ptive SIF Scheduling /Shortest Remaining Time (SRT)
The non-preemptive SIF scheduling algon thm sorts the *Ready” gueoe only after completing the execution of
the curment pmcess or when the process enters “Wait” state, whereas the preemptive SIF scheduling algor thm
sors the “Ready” quene when a new process enters the “Ready” queve and checks whether the execution
time of the new process is shorter than the remaining of the total estimated time for the currently executing
process. I the exscution time of the new process is less, the curmently executing process is preempted and
the new provess is scheduled for execution. Thus preemptive SIF scheduling alwavs compares the execution
completion tme (It 15 same as the remaiming time for the new process) of a new process entered the “Ready”
guens with the remaining time for completion of the currently executing process and schedules the process
with shortest remaining time for execution. Preemptive SIF scheduling is also known as Shontest Remaining
Time (SRT) scheduling.

Mow let us solve Example 2 given under the Non-presmptive SIF scheduling for preemptive SIF
scheduling. The problem statement and solution is explained in the following e xample.

Example 1

Three processes with process IDs PLL P2, P3 withestimated completion time: 10, 5, 7 milliseconds respectivel y
enters the ready quene ogether. A new process P4 with estimated completion time 2 ms enters the “Ready”
quene after 2 ms. Assurne all the processes contain only CPU operation and no IO operations are invol ved.

At the beginning, thems are only three processes (P1, P2 and P3) available in the “Ready” queve and
the SRT scheduler picks up the process with the shortest remaining time for execution completion (In this
example, P2 with remaining time 5 ms) for scheduling. The execution sequence diagram for this 15 same as
that of example 1 under non-presmptive SJF scheduling.

Mow process P4 with estimated execution completion time 2 ms enters the “Ready” queve after 2 ms of

start of execution of P2, Since the SET algon thm is presmpti ve, the remaining time for completion of process
P2 is checked with the remaining time for completion of process P4, The remaining time for completion of
P2 is 3 ms which is greater than that of the remaining time for completion of the newly entered process P4
(2 ms). Hence P2 is presmpted and P4 is scheduled for execution. P4 continues its execution to finish since
there 15 no new process enterad in the “Ready” queoe during its execotion. After 2 ms of scheduling P4
terminates and now the scheduler again sorts the “Beady” gueve based on the remaining time for completion
of the processes present in the “Ready” guene. Since the remaining time for P2 (3 ms), which is presmpted
by P4 is less than that of the remaining time for other processes in the “Ready” queue, P2 is scheduled for
execution. Due to the arrival of the process P4 with execution time 2 ms, the “Ready” quene 15 re-sorted in
the order P2, P4, P2 P3, P1. At the begiming it was P2, F3, P1. The exscution sequence now changes as per
the following di agram

0 2 4 7 14 24
A1l —d—— || ———

The waiting ime for all the processes are given as
Waiting time for P2 =0 ms + (4 —2) ms = 2 ms (P2 starts executing first and is interrupted by P4 and has to
wail till the completion of P4 10 get the next CPU slat)
Waiting time for P4 =0 ms (P4 starts executing by preempting P2 since the execotion tme for completon
of P4 (2 ms) is less than that of the Remaining time for execution completion of P2
(Here it is 3ms])
Waiting time for P53 =7 ms (P3 starts executing after completing P4 and P2)
Waiting time for P1 = 14 ms (P1 starts executing afler completing P4, P2 and P3)
Average waiting ime = (Waiting time for all the processes) / No. of Processes
={Waiting time for (P44+P24P3F1))/ 4
=(0+2+7+ 144 =234
= 5.75 millissconds
Turn Around Time (TAT) for P2=Tms (Time spent in Ready Quene + Execution Time)
Turn Around Time (TAT) for P4= 2ms (Time spentin Ready Quene + Execotion Time = (Execution Start
Time — Arrival Time) + Estimated Execution Time = (2 -2} + 2)
Turn Around Time (TAT) for P3= 14 ms (Time spent in Ready Quene + Execution Time)
Turn Around Time (TAT) for P1 = 24 ms (Time spent in Ready Queue + Execution Time)
Average Turn Around Time = (Turn Around Time for all the processes) f No. of Processes
= (Turn Around Time for (P24P4P34P 1)) [4
= (T4 24 1442404 = 4704

= 11.75 mil isecomds

Mow let's compare the Averuge Waiting time and Average Tum Amund Time with that of the Avemge
waiting time and Average Turn Around Time for non-preemptive SJF scheduling (Refer to Example 2 given
under the section Mon-presmptive SIF scheduling)

Average Waiting Time in non-preemptive S1F scheduling = 6 ms

Average Waiting Time in preemptive SIF scheduling = 5.75 ms

Average Turmn Around Time in non-preempti ve SIF schedoling = 12 ms

Average Turn Around Time in preemptive SIF scheduling = 11.75 ms

6a) Explain Process, task, threads in ARM Processor. (6 Marks)

Solution:

e A process is a self-contained execution environment with its own memory space, code,
data, and system resources.

e It can be considered as a program in execution.

¢ Inan ARM-based embedded system, a process is used to execute different applications or
services independently.

e Each process has:
e Itsown address space
e Stack, heap, code, and data
e Unique Process ID (PID)

e Context switching between processes requires saving and restoring the full state of the
processor (registers, stack, etc.).

e A task is a smaller unit of execution within a system, often used interchangeably with
thread in embedded systems.

¢ In Real-Time Operating Systems (RTOS) like Keil RTX, a task refers to a specific
function or job that is scheduled by the kernel.

e ARM processors running RTOS create multiple tasks for concurrent execution, enhancing
real-time performance.

e Tasks may share memory (unlike processes), reducing context-switch overhead.
e A thread is the smallest unit of execution within a process.
e Multiple threads within the same process share:

o Code

e Global variables

e Heap memory
e But each thread has its own stack and registers.

e Threads are useful in multi-core ARM processors or RTOS to perform concurrent
operations, such as Ul update and background data processing.

e Thread switching is faster than process switching.

6b) with a diagram explain the concept of counting semaphore with an example. (6 Marks)
Solution:

The ‘Counting Semaphore’ limits the access of resources by a fixed number of
processes/threads. ‘Counting Semaphore’ maintains a count between zero and a maximum
value. It limits the usage of the resource to the maximum value of the count supported by it.
The state of the counting semaphore object is set to ‘signalled” when the count of the object is
greater than zero. The count associated with a ‘Semaphore object’ is decremented by one when
a process/thread acquires it and the count is incremented by one when a process/thread releases
the ‘Semaphore object’. The state of the ‘Semaphore object’ is set to non-signalled when the
semaphore is acquired by the maximum number of processes/threads that the semaphore can
support (i.e. when the count associated with the ‘Semaphore object’ becomes zero). A real
world example for the counting semaphore concept is the dormitory system for
accommodation. A dormitory contains a fixed number of beds (say 5) and at any point of time
it can be shared by the maximum number of users supported by the dormitory. If a person wants
to avail the dormitory facility, he/she can contact the dormitory caretaker for checking the
availability. If beds are available in the dorm the caretaker will hand over the keys to the user.
If beds are not available currently, the user can register his/her name to get notifications when
a slot is available. Those who are availing the dormitory shares the dorm facilities like TV,
telephone, toilet, etc. When a dorm user vacates, he/she gives the keys back to the caretaker.
The caretaker informs the users, who booked in advance, about the dorm availability.

Semaphore object unavailable. Sleep till
Process A Semaphore object 15 available

Room(Kev) unavailable.

Woait till it 15 available \

Is Semaphore object
available?

Is Key Available 7 se— |

Shared Memory
(Critical Section)

Vacating the Room. Return the Key. Notify
the availability to other users booked the Room

Leaving critical section . Release the Semaphore object.
Wakeup the Sleeping Processes

The creation and usage of ‘counting semaphore object’ is OS kernel dependent.

6¢) Explain the IDE Environment for embedded system design with a neat diagram. (8
Marks)

Solution:

In embedded system development context, Integrated Development Environment (IDE) stands
for an integrated environment for developing and debugging the target processor specific
embedded firmware. IDE is a software package which bundles a “Text Editor (Source Code
Editor)’, ‘Cross-compiler (for cross platform development and compiler for same platform
development)’, ‘Linker’ and a ‘Debugger’. Some IDEs may provide interface to target board
emulators, Target processor’s/controller’s Flash memory programmer, etc. and incorporate
other software development utilities like “Version Control Tool’, ‘Help File for the
Development Language’, etc. IDEs can be either command line based or GUI based. Command
line based IDEs may include little or less GUI support. The old version of TURBO C IDE for
developing applications in C/C++ for x86 processor on Windows platform is an example for a

generic IDE with command line interface. GUI based IDEs provide a Visual Development
Environment with user interactions through touch/mouse click interface. Such IDEs are
generally known as Visual IDEs. Visual IDEs are very helpful in firmware development. A
typical example for a Visual IDE is Microsoft® Visual Studio for developing Visual C++ and
Visual Basic programs. Other examples are NetBeans and Eclipse.

IDEs used in embedded firmware development are slightly different from the generic IDEs
used for high level language based development for desktop applications. In Embedded
Applications, the IDE is either supplied by the target processor/controller manufacturer or by
third party vendors or as Open Source. MPLAB is an IDE tool supplied by microchip for
developing embedded firmware using their PIC family of microcontrollers. Keil pVision5
(spelt as micro vision five) from ARMK:Geil is an example for a third party IDE, which is used
for developing embedded firmware for 8051/ARM family microcontrollers. CodeWarrior
Development Studio is an IDE for ARM family of processors/MCUs and DSP chips from
Freescale. It should be noted that in embedded firmware development applications each IDE
is designed for a specific family of controllers/processors and it may not be possible to develop
firmware for all family of controllers/processors using a single IDE (as of now there is no
known IDE with support for all family of processors/controllers).

However there is a rapid move happening towards the open source IDE, Eclipse for embedded
development. Most of the processor/control manufacturers and third party IDE providers are
trying to build the IDE around the popular Eclipse open source IDE. This may lead to a single
IDE based on Eclipse for embedded system development in the near future. Since this book is
primarily focusing on 8051 based embedded firmware development, the IDE chosen for
demonstration is Keil pVision5. A demo version of the tool for Microsoft Windows OS based
development is available for free download from

In System Programming (ISP) mierface (Senal USB/Parallel TCP-1P)

Inte grated Development
Environment (IDE) tool

Signal source
EDA waol (Function generator)

‘/" ey - A "3‘

Emulator-Targst Board

mierface (JTAGBDMPin © E_"
‘.' 1hse \

Development PC
(Host)

Target board

J

PCB fsbncston

files 5 %
Multom eter 2
) 1‘,:,:

{Logic Analyser. (.hulkw-,\r’

Hardware debugemyg wols

7a) Explain the functions of various units in ARM Cortex M3 Processor architecture in brief.
(8 Marks)

Solution:

The ARM Cortex-M3 processor is a 32-bit RISC processor designed for low-cost, high-
performance embedded applications. Its architecture is built around the ARMv7-M instruction
set and includes several key units, each with specific roles:

1. Processor Core

o Executes instructions using the Harvard architecture (separate instruction and data
buses).

e Supports Thumb-2 instruction set for higher code density and performance.

e Includes a 3-stage pipeline: Fetch, Decode, Execute.

2. Nested Vectored Interrupt Controller (NVIC)

o Manages interrupts and exceptions with up to 240 external interrupts.
e Supports preemptive priority levels, improving response time.
o Offers low-latency interrupt handling (12 clock cycles or less).

3. Bus Interface Unit

o Interfaces with memory and peripherals via the AMBA AHB-L.ite bus.
o Manages instruction and data transfers efficiently.
e Supports memory-mapped 1/O and bit-banding for atomic operations.

4. Register Bank

e Includes 13 general-purpose registers (R0-R12), SP (R13), LR (R14), PC (R15).
e Also contains Program Status Registers (XPSR):

o APSR, IPSR, EPSR

o Hold flags, current exception number, execution state, etc.

5. System Control Block (SCB)
« Controls system exceptions like Hard Fault, NMI, and SysTick.

e Manages system-level configuration and fault status.
« Contains configuration registers for vector table, exception handling, etc.

6. Memory Protection Unit (MPU)
e Provides basic memory protection and access control.

o Allows definition of memory regions with privilege and access rights.
o Helps prevent accidental corruption of memory by faulty code.

7. SysTick Timer

e A 24-bit count-down timer built for RTOS task switching.
o Generates periodic system tick interrupts.
e Helps implement real-time scheduling.

8. Debug Unit

o Supports Serial Wire Debug (SWD) and JTAG.
« Allows for breakpoints, watchpoints, and step-through debugging.
o Essential for firmware testing and validation.

9. Exception Model

e Supports system exceptions (Reset, NMI, HardFault) and programmable
interrupts.

e Uses vector table to store addresses of exception handlers.

o Facilitates fast and deterministic exception response.

7b) Explain the various interrupts and exception along with vector address. (6 Marks)

Solution:

EXCEPTIONS, INTERRUPTS, AND THE VECTOR
TABLE

When an exception or interrupt occurs, the processor sets the pc to a specific memory
address. The address is within a special address range called the vector table. The entries
in the vector table are instructions that branch to specific routines designed to handle a
particular exception or interrupt.

The memory map address 000000000 is reserved for the vector table, a set of 32-bit
words. On some processors the vector table can be optionally located at a higher address
in memory (starting at the offset 0xffff0000). Operating systems such as Linux and
Microsoft's embedded products can take advantage of this feature.

When an exception or interrupt occurs, the processor suspends normal execution and
starts loading instructions from the exception vector table (see Table 2.6). Each vector table
entry contains a form of branch instruction pointing to the start of a specific routine:

B Reset vector is the location of the first instruction executed by the processor when power
is applied. This instruction branches to the initialization code.

® Undefined instruction vector is used when the processor cannot decode an instruction.

B Software interrupt vector is called when you execute a SWI instruction. The SWI
instruction is frequently used as the mechanism to invoke an operating system routine.

m Prefetch abort vector occurs when the processor attempts to fetch an instruction from an
address without the correct access permissions. The actual abort occurs in the decode
stage.

® Data abort vectoris similar to a prefetch abort but is raised when an instruction attempts
to access data memory without the correct access permissions.

B [Interrupt request vector is used by external hardware to interrupt the normal execution
flow of the processor. It can only be raised if IRQs are not masked in the cpsr.

B Fastinterrupt request vectoris similar to the interrupt request but is reserved for hardware
requiring faster response times. It can only be raised if FIQs are not masked in the cpsr.

The vector table.

Exception/interrupt Shorthand Address High address
Reset RESET 0x00000000 Oxffff0000
Undefined instruction UNDEF 0x00000004 Oxffff0004
Software interrupt SWI 0x00000008 Oxffff0008
Prefetch abort PABT 0x0000000c Oxffff000c
Data abort DABT 0x00000010 Oxffff0010
Reserved — 0x00000014 Oxffff0014
Interrupt request IRQ 0x00000018 Oxffff0018
Fast interrupt request FIQ 0x0000001c Oxffff00lc

7¢) Explain the ARM Core data flow model with a neat diagram. (6 Marks)
Solution:

Data enters the processor core through the Data bus. The data may be an instruction to
execute or a data item. Figure 2.1 shows a Von Neumann implementation of the ARM—
data items and instructions share the same bus. In contrast, Harvard implementations of
the ARM use two different buses.

The instruction decoder translates instructions before they are executed. Each
instruction executed belongs to a particular instruction set.

The ARM processor, like all RISC processors, uses a load-store architecture. This
means it has two instruction types for transferring data in and out of the processor: load
instructions copy data from memory to registers in the core, and conversely the store

instructions copy data from registers to memory. There are no data processing instructions
that directly manipulate data in memory. Thus, data processing is carried out solely in
registers.

Diata items are placed in the register file—a storage bank made up of 32-bit registers.
Since the ARM core is a 32-bit processor, most instructions treat the registers as holding
signed or unsigned 32-bit values. The sign extend hardware converts signed 8-bit and 16-bit
numbers to 32-bit values as they are read from memory and placed in a register.

ARM instructions typically have two source registers, Rnand Rm, and a single result or
destination register, Rd. Source operands are read from the register file using the internal
buses A and B, respectively.

The ALU (arithmetic logic unit) or MAC (multiply-accumulate unit) takes the regis-
ter values Rn and Rm from the A and B buses and computes a result. Data processing
instructions write the result in Rd directly to the register file. Load and store instructions
use the ALU to generate an address to be held in the address register and broadcast on the
Address bus.

Data
]‘ | | Instruction
" | decoder
Sign extend
Write Read
rl5 : Rd
Register file]
pc ri-ri5 Result
Rn|A Rm | B
A |B|Ace
L *‘ r r
Barrel shifter
- MAC
L JH\'
i ALU ;
L 3
L i
[Address mgister]
—— | (e
Address

ARM core dataflow model.

Figure 2.1 ARM core dataflow model.

One important feature of the ARM is that register Rm alternatively can be preprocessed
in the barrel shifter before it enters the ALU. Together the barrel shifter and ALU can
calculate a wide range of expressions and addresses.

After passing through the functional units, the result in Rd is written back to the register
file using the Resultbus. For load and store instructions the incrementer updates the address
register before the core reads or writes the next register value from or to the next sequential
memory location. The processor continues executing instructions until an exception or
interrupt changes the normal execution flow.

8a) Explain the Program Status register in Cortex-M3 along with Vector address. (8 Marks)
Solution:

The ARM core uses the cpsr to monitor and control internal operations. The cpsr is a
dedicated 32-bit register and resides in the register file. Figure 2.3 shows the basic layout
of a generic program status register. Note that the shaded parts are reserved for future
expansion.

The cpsris divided into four fields, each 8 bits wide: flags, status, extension, and control.
In current designs the extension and status fields are reserved for future use. The control
field contains the processor mode, state, and interrupt mask bits. The flags field contains
the condition flags.

Some ARM processor cores have extra bits allocated. For example, the [bit, which can
be found in the flags field, is only available on Jazelle-enabled processors, which execute

8-bit instructions.

. Flags Status Extension Control
Fields | I} I} I I
Bit 31302028 T 63 4 0
N|Z| OV I|\F|IT| Mode
Function “—— AL 0 |
Condition Interrupt | Processor
flags Masks mode
Thumb
state

Figure 2.3 A generic program status register {psr).

ARM and Thumb instruction set features.

ARM (cpsr T=10) Thumb (cpsr T=1)
Instruction size 32-bit 16-bit
Core instructions 58 30
Conditional execution® most only branch instructions
[ata processing access to barrel shifter and separate barrel shifter and
instructions ALU ALU instructions
Program status register read-write in privileged mode no direct access
Register usage 15 general-purpose registers 8 general-purpose registers
+pc +7 high registers +pc

INTERRUPT MASKS

Interrupt masks are used to stop specific interrupt requests from interrupting the processor.
There are two interrupt request levels available on the ARM processor core—interrupt
request (IRQ) and fast interrupt request (FIQ).

The cpsr has two interrupt mask bits, 7 and 6 (or I and F), which control the masking
of IRQ and FIQ, respectively. The I bit masks IRQ when set to binary 1, and similarly the
F bit masks FIQ when set to binary 1.

ComMDITION FLAGS

Condition flags are updated by comparisons and the result of ALU operations that specify
the S instruction suffix. For example, ifa SUBS subtract instruction results in a register value
of zero, then the Z flag in the cpsr is set. This particular subtract instruction specifically

updates the cpsr.

Condition flags.

Flag Flag name Set when

0 Saturation the result causes an overflow and/or saturation

vV oVerflow the result causes a signed overflow

C Carry the result causes an unsigned carry

Z Zero the result is zero, frequently used to indicate equality
N Negative bit 31 of the result is a binary 1

With processor cores that include the DSP extensions, the @ bit indicates if an overflow

or saturation has occurred in an enhanced DSP instruction. The flag is “sticky” in the
sense that the hardware only sets this flag. To clear the flag you need to write to the cpsr
directly.

In Jazelle-enabled processors, the Jbit reflects the state of the core; if it is set, the core is
in Jazelle state. The [bit is not generally usable and is only available on some processor cores.
To take advantage of Jazelle, extra software has to be licensed from both ARM Limited and
Sun Microsystems.

330202827 24 7o 54 [

olofr{efo 0 oyra) 10011
| L - I| L
nzCvg i iF t SVC

Example: cosr = nzCvgjiFt_SVC.
8b) Explain the five applications of Cortex-M3 based on its features. (6 Marks)
Solution:

The application areas and the products in the embedded domain are countless. A few of the

Important domains and products are listed below:

(1) Consumer electronics: Camcorders, cameras, etc.

(2) Household appliances: Television, DVD players, washing machine, fridge, microwave oven, etc.

(3) Home automation and security systems: Air conditioners, sprinklers, intruder detection alarms, closed circuit
television cameras, fi re alarms, etc.

(4) Automotive industry: Anti-lock breaking systems (ABS), engine control, ignition systems, automatic
Navigation systems, etc.

(5) Telecom: Cellular telephones, telephone switches, handset multimedia applications, etc.

(6) Computer peripherals: Printers, scanners, fax machines, etc.

(7) Computer networking systems: Network routers, switches, hubs, firewalls, etc.

(8) Healthcare: Different kinds of scanners, EEG, ECG machines etc.

(9) Measurement & Instrumentation: Digital multimeters, digital CROs, logic analysers PLC systems, etc.
(10) Banking & Retail: Automatic teller machines (ATM) and currency counters, point of sales (POS)
(11) Card Readers: Barcode, smart card readers, hand held devices, etc.

(12) Wearable Devices: Health and Fitness Trackers, Smartphone Screen extension for notifi cations, etc.
(13) Cloud Computing and Internet of Things (10T)

The ARM Cortex-M3 processor is widely used in embedded and real-time systems due to its low power
consumption, high performance, and rich peripheral support. Based on these features, five key applications are:

1. Industrial Automation

Application: Used in motor controllers, PLC systems, and factory sensors for fast and reliable
task execution.

2. Consumer Electronics

Application: Found in smart appliances, digital cameras, remote controls, and set-top boxes
where efficient power management is needed.

3. Automotive Systems
Application: Used in dashboard displays, body electronics, and airbag systems in cars.
4. Medical Devices

Application: Integrated into portable health monitors, digital thermometers, and blood
pressure devices for safe, accurate operation.

5. Internet of Things (1oT) Devices

Application: Used in smart home systems, wearables, wireless sensor networks, and
connected meters.

8c) with a diagram, explain two operation modes and privilege levels in Cortex M3. (6
Marks)

Solution:
1. Operation Modes

Mode Description
Thread Mode Normal program execution mode (main code or after interrupt handling).

Handler Mode Entered automatically to handle exceptions or interrupts.

e Thread Mode is used for application-level code.
e Handler Mode is used during interrupt or exception handling.

2. Privilege Levels

Privilege Level Description
Privileged Can access all instructions and system resources (e.g., NVIC, MPU).

Unprivileged Access to limited instructions and memory (safe for user code).

e Privilege level can change dynamically using the CONTROL register.
e Only privileged code can switch back from unprivileged to privileged.

| Thread Mode |

| (Main code / RTOS Tasks) |
S S —— +
S ——— S +

| Privileged | | Unprivileged |

| Mode | | Mode |
| (full access) | | (limited access) |
S + R +

| Handler Mode |
| (Always Privileged Mode) |

User Mode It is the main execution mode for user applications. This mode is also known as “Unprivileged
Mode’. It enables the protection and isolation of operating system from user applications.

Fast Interrupt Processing (FIQ) Mode The processor enters this mode when a high priority interrupt is
raised.

Normal Interrupt Processing (IRQ) Mode The processor enters this mode when a normal priority
interrupt (Interrupts other than high priority) is raised.

Supervisor/Software Interrupt Mode The processor enters this mode on reset and when a software
interrupt instruction is executed.

Abort Mode Enters this mode when a memory access violation occurs

Undefined Instruction Mode Enters this mode when the processor tries to execute an undefined
instruction.

System Mode This mode is used for running operating system tasks. [t uses the same register as the User
mode.

ProceEssor MoDES

The processor mode determines which registers are active and the access rights to the cpsr
register itself. Each processor mode is either privileged or nonprivileged: A privileged mode
allows full read-write access to the ¢psr. Conversely, a nonprivileged mode only allows read
access to the control field in the cpsr but still allows read-write access to the condition flags.

There are seven processor modes in total: six privileged modes (abort, fast interrupt
request, interrupt request, supervisor, system, and undefined) and one nonprivileged mode
{ user).

The processor enters abort mode when there is a failed attempt to access memory. Fast
interrupt request and interrupt request modes correspond to the two interrupt levels available
on the ARM processor. Supervisor mode is the mode that the processor is in after reset and
is generally the mode that an operating system kernel operates in. System mode is a special
version of user mode that allows full read-write access to the cpsr. Undefined mode is used
when the processor encounters an instruction that is undefined or not supported by the
implementation. User mode is used for programs and applications.

Mads of opstRlipe '
Dttt @ Fods nliept unpeed @ elinft
'c\g_wbrt @ MWW.&S @ Sﬂ‘h"' @ UMW
9, ﬂvauoaﬂl "“’A‘ , Wen ’:fou Medas
TPt T Dt Copiorsd)

9a) Write an ALP to add first 10 Integer number using Cortex M3 Processor.
(6 Marks)

Solution:
AREA ADD_NUMBERS, CODE, READONLY
ENTRY
MOV RO, #1 : RO =counter =1
MOV R1,#0 :R1=sum=0

LOOP ADD RI1,R1, RO ;sum=sum + counter
ADD RO, RO, #1 : counter = counter + 1
CMP RO, #11 : check if counter <= 10

BNE LOOP ; repeat if not equal to 11
STOP B STOP ; infinite loop to end program
END

9b) Explain Shift and Rotate Instructions of CORTEX M3 with examples (6 Marks)

Mnemonic Description Shift Result Shift amount y
LSL logical shift left xLSLy =x<y #0-31 or Rs
LSR logical shift right xLSRy (unsigned)x s y #1-32 or Rs
ASR arithmetic right shift ~ xASRy (signed)x >y #1-32 or Rs
ROR rotate right XRORy ((unsigned)x 3 y) | (x < (32 —y)) #1-3lorRs
RRX rotate right extended xRRX (c flag < 31) | ((unsigned)x 3 1) none
Note: x represents the register being shifted and y represents the shift amount.
— ™,
Bit Bit Bit
31 2 0
a0 oo (D) - oemonns
Condition Bags
31
)} (2JJ(2)(©) - ox00000008
Condition Bags
Condition flags
updated when
5 is present
Logical shift left by one.
N shift operations Syntax
Immediate #immediate
Register Rm
Logical shift left by immediate Rm, LSL #shift_imm
Logical shift left by register Rm, LSL Rs
Logical shift right by immediate Rm, LSR #shift_imm
Logical shift right with register Rm, LSR Rs
Arithmetic shift right by immediate Rm, ASR #shift_imm
Arithmetic shift right by register Rm, ASR Rs
Rotate right by immediate Rm, ROR #shift_imm
Rotate right by register Rm, ROR Rs
Rotate right with extend Em, RRX

This example of a MOVS instruction shifts register rI left by one bit. This multiplies register
rl by a value 2°. As you can see, the C flag is updated in the cpsr because the 5 suffix is
present in the instruction mnemonic.

PRE cpsr = nzcvgiFt USER
r{ = 0x00000000
rl = 0x80000004

MOVS rd, rl, LSL #1

POST cpsr = nzCvgiFt USER
rl = 0x00000008
rl = 0x80000004

9c) Describe CMSIS with Diagram and its functions.(6 Marks)

CMSIS (Cortex Microcontroller Software Interface Standard) is a vendor-independent hardware
abstraction layer for ARM Cortex-M processors, developed by ARM Ltd.

It provides a standardized software interface to access processor features, peripherals, and real-time
operating systems (RTOS), improving portability and code reusability across different microcontroller
platforms.

S — + +

| CMSIS Components (Standard) |

| + -+ + + |
	CMSIS-CORE		CMSIS-DSP	
	CMSIS-RTOS		CMSIS-Driver	
	CMSIS-SVD		CMSIS-NN (Al)	

| + -+ + +

S — + +

10a) Explain 16-bit instructions with example (6 Marks)

a) ADD
b) CMP
c) ASR

a) The ADD instruction performs addition between two registers or between a register
and an immediate value.

ADD (Register)

Adds the values of two registers and stores the result in a register.
Syntax: ADD Rd, Rn, Rm

Example: ADD R2,R1, R0 ;R2=R1+R0

Syntax: ADD Rd, Rn, #imm

Example: ADDR1,R1,#5 ;R1=R1+5
Syntax: ADD Rd, SP, #imm

Example: ADD RO, SP, #16 ; RO =SP + 16
b) CMP stands for Compare.

It subtracts one value from another without storing the result. Flags are updated (Zero,
Negative, Carry, Overflow) based on the result. Used mainly for conditional branching (e.g.,
BEQ, BNE, BGT, etc.)

MOV RO, #5

MOV R1, #5

CMP RO, R1 ; Updates flags (Z=1, since RO == R1)
CMP Rn, #imm8

c) asrstands for Arithmetic Shift Right.
o It shifts the bits of a value to the right, preserving the sign bit (bit 31).
o Used to perform signed division by powers of 2.
o Itis different from logical shift right (LSR), which fills with 0
ASR with Immediate Shift Amount
ASR Rd, Rm, #imm
ASR with Register
ASR Rd, Rm, Rs

Shifts value in Rm by the amount specified in Rs.

10b) Write an assembly language to determine the parity of 32 bit number. (6 Marks)

AREA PARITY_CHECK, CODE, READONLY
ENTRY

MOV RO, #0xA5 ; Example lower 8 bits: 10100101
LSL RO, RO, #24 ; Make it a full 32-bit value

MOV R1, #Ox5A ; Example upper 8 bits: 01011010
ORR RO0,R0O,R1 ;RO =0xA500005A

MOV R1, #0 ; R1 = parity counter =0
MOV R2, #32 ; Loop counter for 32 bits

PARITY_LOOP
TST RO, #1 ; Test LSB
ADDNE R1,R1,#1 ;IfLSB =1, increment counter
LSR RO, RO, #1 ; Logical shift right
SUBS R2,R2,#1 ; Decrement loop counter
BNE PARITY_LOOP

ANDS RI1,R1,#1 ; Check LSB of count — parity

; R1 =0 — even parity, 1 — odd parity

B . 2 In

10c) Explain 32-bit instruction with example (8 Marks)

a) ADC
b) BFC
c) LSL
d) PUSH

a) ADC Rd, Rn, Rm

Adds Rn and Rm along with the carry flag (C) from previous operations. Useful for multi-word
arithmetic.

MOVS RO, #0xFF
MOVS R1, #0x01
ADCS R2,R0,R1 ;R2=RO0+R1+Carry

b) BFC - Bit Field Clear
BFC Rd, #lsh, #width
Clears (0) a range of bits in a destination register from bit position Isb for width bits.
MOV RO, #0xFFFF
BFC RO, #4,#4 ; Clears bits [7:4], RO becomes OxFFOF

c) LSL - Logical Shift Left
LSL Rd, Rm, #n

Shifts bits in register Rm to the left by n positions. Fills zero in the rightmost bits. Used for
multiplication by powers of 2.

MOV R1, #0x01
LSL R2,R1,#3 :R2=R1<<3=0x08

d) PUSH - Stack Push Multiple Registers
PUSH {Rlist}

PUSH {R4-R7, LR} ;Push R4, R5, R6, R7, and Link Register to stack

	1. Processor Core
	2. Nested Vectored Interrupt Controller (NVIC)
	3. Bus Interface Unit
	4. Register Bank
	5. System Control Block (SCB)
	6. Memory Protection Unit (MPU)
	7. SysTick Timer
	8. Debug Unit
	9. Exception Model
	1. Operation Modes
	2. Privilege Levels

