USN					

Internal Assessment Test 1-March 2025

			michiai	Assessment 1e	St 1-1	viaicii 2023					
Sub:	Analysis and	l Design of A	lgorithms			Sub Code:	BCS401	Brai	nch: C	ESE	
Date:	26-03-202 5	Duration:	90 mins	Max Marks:	50	Sem / Sec:	IV (A,I	3 & C	E)	ОВ	E
		Ans	swer any FIV	VE FULL Ques	tions				MA RKS	СО	RB T
	Apply quickson contents at each			[21, 12, 45, 23	3, 12,	15, 28, 26].	Show the arr	ay	5	CO2	L3
` ′	Solve the Brofits=(30,42,			problem when 4,5,2,3).	re sa	ack capacity	y m=20, n=	= 5,	5	CO1	L3
2 (a) I	Explain the Dec	crease and C	onquer with	its variations.					3	CO2	L2
2(b) I	Illustrate the to	pological sor	ting algorith	m(DFS method	d) by	taking the ex	ample.		7	CO2	L2
3(a) V	What are the va	arious Asymp	ototic efficie	ncy classes.Exp	olain 1	them in detai	1.		6	CO1	L1
3(b)	What is an Alg	orithm.Expla	in the criteri	ia to be satisfied	1.				4	CO1	L1
4	there were 5 second smaller the second is second apple with the se	apples. First est. Again she the smalles with one more know the second process for the size. Purc	she picked as started control when control again she cond apple in the rest of thased all 5 at the can be uprithm?	an apple compoundation in the second is the smallest the apples to apples and happused and why?	ared for a hird. was for a get	npple with the Next time semall. After a she kept in the apples arran	d one. She felte second. She she compared all the compared first place.	t the felt the rison She	2+4+4	CO1	L3
	What is the need following graph		l's algorithr	m.Explain with	an ex	kample.Apply	y the same for	r the	10	CO4	L3

6(a)	Consider the following algorithm and derive the time complexity of the following	6	CO1	L3
S(a)	algorithm using analytical framework: ALGORITHM MatrixMultiplication($A[0n-1, 0n-1]$, $B[0n-1, 0n-1]$) //Multiplies two square matrices of order n by the definition-based algorithm //Input: Two $n \times n$ matrices A and B //Output: Matrix $C = AB$ for $i \leftarrow 0$ to $n-1$ do for $j \leftarrow 0$ to $n-1$ do $C[i, j] \leftarrow 0.0$ for $k \leftarrow 0$ to $n-1$ do $C[i, j] \leftarrow C[i, j] + A[i, k] * B[k, j]$ return C			
6(b)	ALGORITHM Enigma (A [0 n-1, 0 n-1]) for i → 0 to n - 2 do for j → i + 1 to n - 1 do if A [i, j] ≠ A [j, i] return false end for end for return true Consider the above algorithm and answer the below questions. i. What does this algorithm compute? ii. Identify the basic operation. iii. Calculate how many times the basic operation is executed. iv. Derive the efficiency class of this algorithm.	4	CO1	L3

USN					

Internal Assessment Test 1-March 2025

			Internai	Assessment Te	St 1-P	viarch 2025				
Sub:	•	d Design of A	Algorithms			Sub Code:	BCS401	Branch:	CSE	
Date:	26-03-202 5	Duration:	90 mins	Max Marks:	50	Sem / Sec:	IV (A,I	3 & C)	0	BE
				Solution				MA RK	S	RB T
	Index Contents at each	ch level of rec		5 6 7 15 28 6 6 7 15 28 6 6 7 15 28 6 6 7 15 28 6 6 7 15 28 6 6 7 15 28 6 6 7 15 28 6 6 7 15 28 6 6 7 15 28 6 6 7 15 28 6 6 7 15 28 6 6 7 15 28 6 6 7 15 28 6 6 7 15 28 6 6 7 15 28 6 6 7 15 28 6 6 7 15 28 6	26 36 36 36 36	Swap (45, 15 Swap (23, 12) Cross over Swap pivot Cross over Swap pivot		ay 5	CO2	2 L3

1 (b)	Solve the	Brute	force knapsack problem where sack capacity m=20, n=5,	5	CO1	L3
1 (0)			,15), Weights=(6,14,5,2,3).	3	COI	
	Items Weigh		it Valid?			
	None 0	0				
	(5) 3	15				
	{4} 2	18	V .			
	{4,5} 5 {3} 5	33 25				
	{3} 5 {3,5} 8	40				
	{3,4} 7	43				
	{3,4,5} 10	58				
	{2} 14	42				
	{2,5} 17	57				
	{2,4} 16	60				
	{2,4,5} 19	75 67	V .			
	{2,3} 19	67 82	(exceeds 20)			
	{2,3,5} 22 {2,3,4} 21	82 85	(exceeds 20) (exceeds 20)			
	{2,3,4,5}	24	100 × (exceeds 20)			
	{1} 6	30	(Checcus 25)			
	{1,5} 9	45				
	{1,4} 8	48				
	{1,4,5} 11	63				
	{1,3} 11	55 5 0	V			
	{1,3,5} 14	70 72	V			
	{1,3,4} 13 {1,3,4,5}	73 16	88			
	{1,2} 20	72				
	{1,2,5} 23	87	(exceeds 20)			
	{1,2,4} 22	90	(exceeds 20)			
	{1,2,4,5}	25	105 (exceeds 20)			
	{1,2,3} 25	97	(exceeds 20)			
	{1,2,3,5}	28	112 (exceeds 20)			
	{1,2,3,4}	27	115 (exceeds 20)			
	{1,2,3,4,5}	30	130 (exceeds 20)			
	***	• • • • •				
	• Wei	ight = 16				
	• Pro	fit = 88				
	Thus, the op	otimal so	lution is choosing items {1,3,4,5} with a total profit of 88 .			
2 (a)	Explain the	Decrease	e and Conquer with its variations.	3	CO2	L2

•In the decrease-by-a-constant variation, the size of an instance is reduced by the same constant on each iteration of the algorithm. Typically, this constant is equal to one, although other constant size reductions do happen occasionally.

Decrease -by -one and Conquer

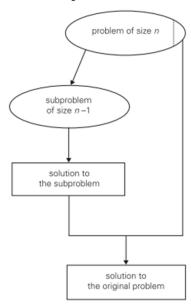
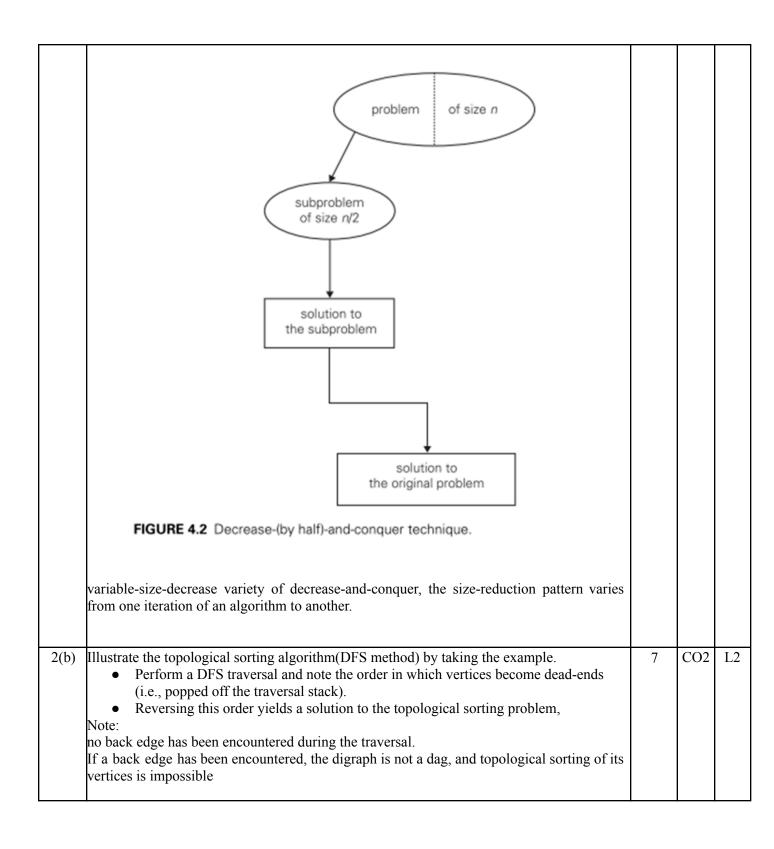
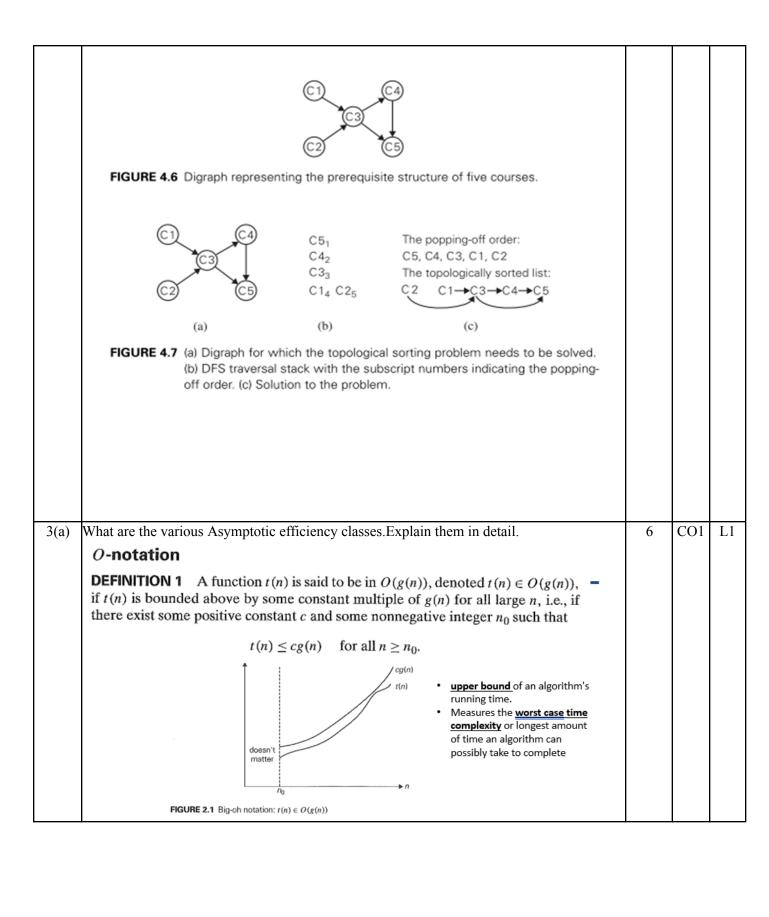
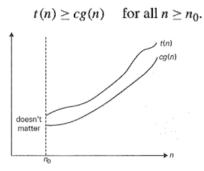




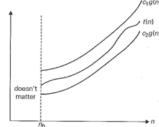
FIGURE 4.1 Decrease-(by one)-and-conquer technique.

In the decrease-by-a-constant variation, the size of an instance is reduced by the same constant on each iteration of the algorithm. Typically, this constant is equal to one, although other constant size reductions do happen occasionally.


Decrease-(by half) and conquer

Ω -notation

DEFINITION 2 A function t(n) is said to be in $\Omega(g(n))$, denoted $t(n) \in \Omega(g(n))$, if t(n) is bounded below by some positive constant multiple of g(n) for all large n, i.e., if there exist some positive constant c and some nonnegative integer n_0 such that


FIGURE 2.2 Big-omega notation: $t(n) \in \Omega(g(n))$

- <u>lower bound</u> of an algorithm's running time.
- It measures the <u>best case time</u> <u>complexity</u> or best amount of time an algorithm can possibly take to complete

Θ-notation

DEFINITION 3 A function t(n) is said to be in $\Theta(g(n))$, denoted $t(n) \in \Theta(g(n))$, if t(n) is bounded both above and below by some positive constant multiples of g(n) for all large n, i.e., if there exist some positive constant c_1 and c_2 and some nonnegative integer n_0 such that

$$c_2g(n) \le t(n) \le c_1g(n)$$
 for all $n \ge n_0$.

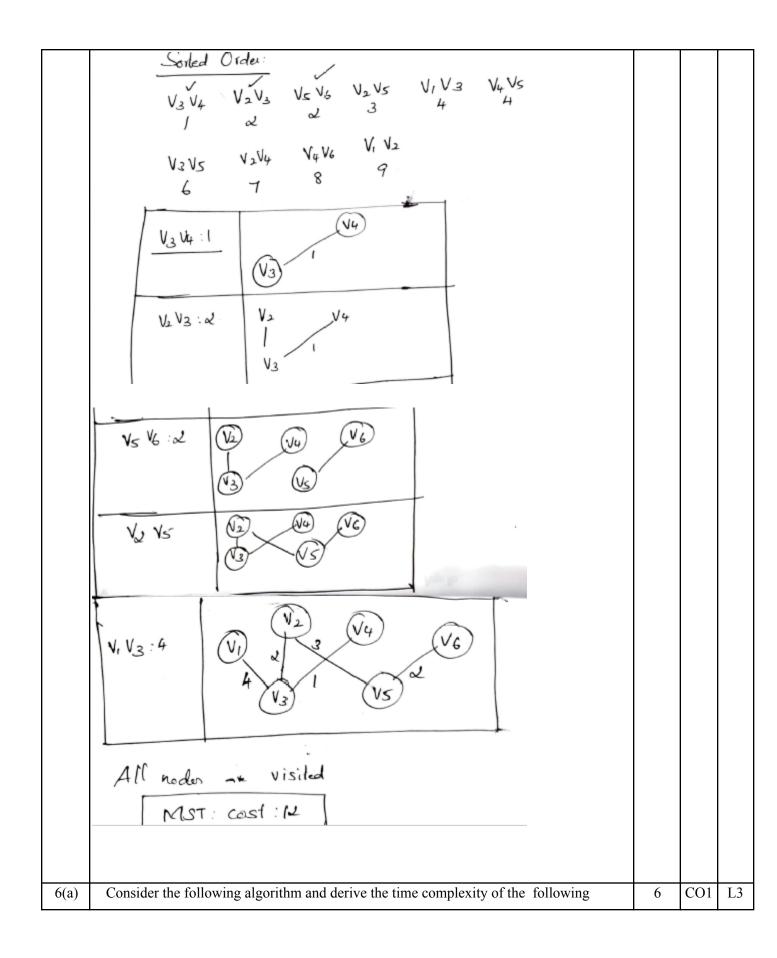


FIGURE 2.3 Big-theta notation: $t(n) \in \Theta(g(n))$

- express both the lower bound and upper bound of an algorithm's running time.
- Average Case

	Class	Name	Comments		
	1	constant	Short of best-case efficiencies, very few reasonable examples can be given since an algorithm's running time typically goes to infinity when its input size grows		
	log n	logarithmic	infinitely large. Typically, a result of cutting a problem's size by a constant factor on each iteration of the algorithm (see Section 4.4). Note that a logarithmic algorithm cannot take into account all its input or even a fixed fraction of it: any algorithm that does so will have at least linear		
	n	linear	running time. Algorithms that scan a list of size n (e.g., sequential search) belong to this class.		
	n log n	linearithmic	Many divide-and-conquer algorithms (see Chapter 5), including mergesort and quicksort in the average case, fall into this category.		
	n ²	quadratic	Typically, characterizes efficiency of algorithms with two embedded loops (see the next section). Elementary sorting algorithms and certain operations on $n \times n$ matrices are standard examples.		
	n ³	cubic	Typically, characterizes efficiency of algorithms with three embedded loops (see the next section). Several nontrivial algorithms from linear algebra fall into this		
	2 ⁿ	exponential	class. Typical for algorithms that generate all subsets of an n-element set. Often, the term "exponential" is used in a broader sense to include this and larger orders of erconth or well.		
	n!	factorial	growth as well. Typical for algorithms that generate all permutations of an n-element set.		
(1) (2) (3)	Output		e zero or more quantities that are externally supplied.		
(4) algo (5) by a	Finite prithm to Effection person	teness Ea ness If erminates a iveness	t one quantity is produced. ach instruction is clear and unambiguous. we trace out the instructions of an algorithm, then for all cases, the after finite number of steps. Every instruction must be basic enough to be carried out, in principle ly pencil and paper. It is not enough that each operation be definite as feasible.	,	
(4) algo (5) by a in(3)	Finite prithm to Effection person (); it also	teness Ea ness If erminates a iveness using onl o must be to	ach instruction is clear and unambiguous. We trace out the instructions of an algorithm, then for all cases, the after finite number of steps. Every instruction must be basic enough to be carried out, in principle ly pencil and paper. It is not enough that each operation be definite as feasible.	5	COI
An the sec she rep	Finite prithm to Effection person it also with wenter were cond small escond appearance of the cond appearance of	teness Earness If terminates a tiveness using only or must be for to a fruit	ach instruction is clear and unambiguous. We trace out the instructions of an algorithm, then for all cases, the after finite number of steps. Every instruction must be basic enough to be carried out, in principle ly pencil and paper. It is not enough that each operation be definite as	2+4+4	CO1

```
c.Compute the time complexity?
     Solution:
          a. Selection Sort
                          Algorithm SelectionSort(a, n)
// Sort the array a[1:n] into nondecreasing order.
                    1
                    \frac{1}{2}
                    4
                                 for i := 1 to n do
                    5
                                        j := i;
                                        for k := i + 1 to n do
                                        \begin{array}{l} \textbf{if } (a[k] < a[j]) \textbf{ then } j := k; \\ t := a[i]; \ a[i] := a[j]; \ a[j] := t; \end{array}
                    9
                    10
                    11
          b.
                Time Complexity (All Cases): O(n^2)
     What is the need of Kruskal's algorithm. Explain with an example. Apply the same for the
                                                                                                                       10
                                                                                                                              CO4
     following graph.
5
                                          2
```


algorithm using analytical framework:

ALGORITHM Matrix Multiplication(A[0..n-1, 0..n-1], B[0..n-1, 0..n-1])

//Multiplies two square matrices of order n by the definition-based algorithm

//Input: Two $n \times n$ matrices A and B

//Output: Matrix C = AB

for $i \leftarrow 0$ to n-1 do

for $j \leftarrow 0$ to n-1 do

 $C[i, j] \leftarrow 0.0$

for $k \leftarrow 0$ to n-1 do

 $C[i, j] \leftarrow C[i, j] + A[i, k] * B[k, j]$

return C

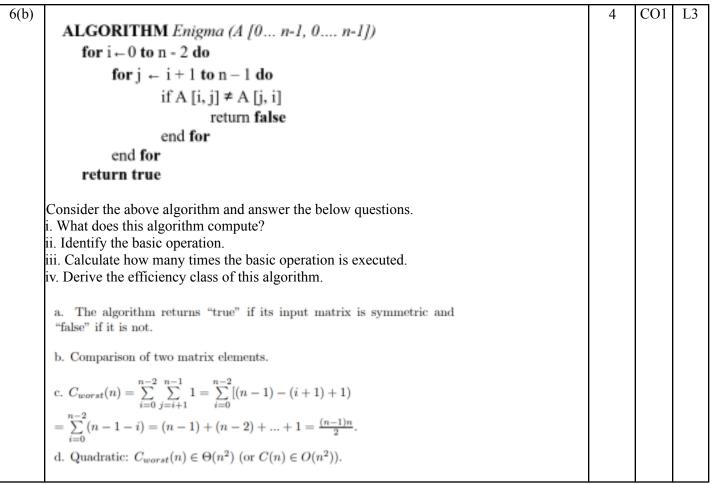
Solution:

$$\sum_{k=0}^{n-1} 1$$
,

and the total number of multiplications M(n) is expressed by the following riple sum:

$$M(n) = \sum_{l=0}^{n-1} \sum_{j=0}^{n-1} \sum_{k=0}^{n-1} 1.$$

Now, we can compute this sum by using formula (S1) and rule (R1) given above. Starting with the innermost sum $\sum_{k=0}^{n-1} 1$, which is equal to n (why?), we get


$$M(n) = \sum_{l=0}^{n-1} \sum_{j=0}^{n-1} \sum_{k=0}^{n-1} 1 = \sum_{l=0}^{n-1} \sum_{j=0}^{n-1} n = \sum_{l=0}^{n-1} n^2 = n^3.$$

If we now want to estimate the running time of the algorithm on a particular machine, we can do it by the product

$$T(n) \approx c_m M(n) = c_m n^3$$
,

where c_m is the time of one multiplication on the machine in question. We would get a more accurate estimate if we took into account the time spent on the additions too:

$$T(n) \approx c_m M(n) + c_a A(n) = c_m n^3 + c_a n^3 = (c_m + c_a) n^3$$
,

