USN

Internal Assessment Test 1 — March 2025

Sub: | Compiler Design Sub Code: | BCS613C Branch: | CSE
Date: 26.03.2025 | Duration: | 90 mins | Max Marks: | 50 | Sem/ Sec: VI/A,B,C OBE
Answer any FIVE FULL Questions N%ASR co RBT

a)Describe the science of building a compiler.

* Modeling in Compiler Design and Implementation
*The Science of Code Optimization
* design objectives

Modeling in Compiler Design and Implementation

The study of compilers is mamnly a study of how we design the right
mathematical models and choose the right algorithms for the compilers,
while balancing the need of generality and power against simplicity and
efficiency.

Some of most fundamental models are

> Fnite-state machines and regular expressions: These models are

useful for describing the lexical units of programs (keywords,
identifiers etc) and for describing the algorithms used by the
compiler to recognize those units.

> Context-free grammars: used to describe the syntactic structure of

1 programming languages such as the nesting of parentheses or

control constructs. [6] |COl [L2

> Trees are an important model for representing the structure of

programs and their translation into object code

The Science of Code Optimization

The term "optimization" in compiler design refers to the attempts that a
compiler makes to produce code that is more efficient than the normal code.
But there is no way that the code produced by a compiler can be
guaranteed to be as fast or faster than any other code that performs the
same task.

In modern times, the optimization of code that a compiler performs has
become both more important and more complex. It is more complex
because processor architectures have become more complex. It is more
important because massively parallel computers require substantial
optimization, or their performance suffers largely.

The use of mathematical foundation allows us to show that an optimization is
correct and that it produces the desirable effect for all possible inputs. On

the other hand, pure theory alone is insufficient. Like many real-world
problems, there are no perfect answers.

Compiler optimizations must meet the following design objectives:

> The optimization must be correct: that is, the compiler should

preserve the meaning of the compiled program: No optimizing
compiler is completely error-free. Thus, the most important
objective in writing a compiler is that it is correct.

> The optimization must improve the performance of many

programs: The compiler must be effective in improving the
performance of many mput programs. Normally, performance
means the speed of the program execution. Especially in embedded
applications, we may also wish to minimize the size of the generated
code. And in the case of mobile devices, it is also desirable that the
code minimizes power consumption. Typically the same
optimizations that speed up execution time also conserve power.
Besides performance, usability aspects such as error reporting and
debugging are also important.

> The compilation time must be kept reasonable: we need to

keep the compilation time short to support a rapid development and
debugging cycle. This requirement has become easier to meet as
machines get faster. Often, a program is first developed and
debugged without program optimizations. This reduces compilation
time.

> The engineering effort required must be manageable: Finally,

a compiler is a complex system; we must keep the system simple so
that the engneering and maintenance costs of the compiler are
manageable. There is an infinite number of program optimizations
that we could implement, and it takes huge amount of effort to
create a correct and effective optimization. We must prioritize the
optimizations and implement only those that lead to the greatest
benefits on source programs.

b)Illustrate the concept of passes in compiler design
*Single pass
*Multi pass
The phases are the logical organization of a compiler. In an implementation,
activities from several phases may be grouped together into a pass that

reads an nput file and writes an output file.

For example, the front-end phases of lexical analysis, syntax analysis,
semantic analysis, and intermediate code generation might be grouped
together into one pass. Code optimization might be an optional pass. Then

[4]

COl1

L3

there could be a back-end pass consisting of code generation for a
particular target machine.

Compilers for different source language which are based on well designed
mtermediate representations can be produced for the same target machine
by allowing the frontend of a particular language to interact with the
backend of the target machines. Similarly, we can produce compilers for
different target machines, by combining a front end of the compiler with the
back ends of different target machines.

Multi Pass Complier

2 pd 7

arce Code 1" IR Machine cf
— —_— — e—
Erroes

a)Describe the applications of compiler technology.

*Implementation of High-Level Programming Languages -
*Object orientation

*Optimizations for Computer Architectures

*Parallelism

*Memory Hierarchies

*Design of New Computer Architectures

Implementation of High-Level Programming Languages

A high-level programming language defines a programming abstraction: the
programmer expresses an algorithm using the language, and the compiler
must translate that program to the target language.

Generally, higher-level programming languages are easier to program, but
are less efficient, that is, the target programs run more slowly.

Programmers using a low-level language have more control over a
computation and can, produce more eflicient code. Unfortunately,
lower-level programs are harder to write, less portable, more prone to
errors, and harder to maintain.

Example : The register keyword in the C programming language is an
early example of the interaction between compiler technology and language
evolution.

When the C language was created in the mid 1970s, it was considered

[5]

COl1

L2

necessary to let a programmer control which program variables reside in
registers, for which the register keyword was used This control became
unnecessary as effective register-allocation techniques were developed, and
most modern programs no longer use this language feature. In fact,
programs that use the register keyword may lose efficiency, because
programmers cannot make the best decision on low-level matters like
register allocation. The optimal choice of register allocation depends greatly
on the specific machine architecture. Hardwiring low- level
resource-management decisions

The many shifts in the popular choice of programming languages have been
i the direction of increased levels of abstraction.

C was the predominant systems programming language of the 80's; many of
the new projects started in the 90's chose C++; Java, mtroduced in 1995,
gained popularity quickly in the late 90's. The new programming-language
features introduced in each round spurred new research in compiler
optimization.

e They support user-defined aggregate data types, such as arrays and
structures
e high-level control flow, such as loops and procedure invocations.

If we take each high-level construct or data-access operation and translate

it directly to machine code, the result would be very mnefficient. A body of
compiler optimizations, known as data-flow optimizations, has been
developed to analyze the flow of data through the program and removes
redundancies across these constructs. They are effective in generating code
that resembles code written by a skilled programmer at a lower level.

Object orientation was first introduced in Simula in 1967, and has been
incorporated in languages such as Smalltalk, C++, C#, and Java. The key
ideas behind object orientation are

1. Data abstraction and
2. Inheritance of properties,

Both these features make programs more modular and easier to maintain.
Object-oriented programs are different from those written in many other
languages, in that they consist of many more, but smaller, procedures (called
methods in object-oriented terms). Thus, compiler optimizations must be
able to perform well across the procedural boundaries of the source
program. Procedure inlining, which is the replacement of'a procedure call by
the body of the procedure, is particularly useful here. Optimizations to
speed up virtual method dispatches have also been developed.

Java has many features that make programming easier, many of which have
been introduced previously in other languages.

> The Java language is type-safe; that is, an object cannot be used as an
object of an unrelated type.

> Allarray accesses are checked to ensure that they lie within the

bounds of the array.

> Java has no pomters and does not allow pointer arithmetic.

> It has a built-in garbage-collection facility that automatically frees

the memory of variables that are no longer in use.
While all these features make programming easier, they

include a run-time overhead. Compiler optimizations
have been developed to reduce the overhead, for

example,

> Elimmating unnecessary range checks

> Allocating objects that are not accessible beyond a procedure on the

stack instead of the heap.
> Effective algorithms also have been developed to minimize the

overhead of garbage collection.

Optimizations for Computer Architectures

The rapid evolution of computer architectures has also led to demand for
new compiler technology. Almost all high-performance systems take
advantage of the same two basic techniques:

> parallelism : Parallelism can be found at several levels: at the

mstruction level, where multiple operations are executed
simultaneously and at the processor level, where different threads of
the same application are run on different processors.

> Memory hierarchies: Memory hierarchies are a response to the

basic limitation that we can build very fast storage or very large
storage, but not storage that is both fast and large.

Parallelism

All modern microprocessors exploit instruction-level parallelism. However,
this parallelism can be hidden from the programmer. Programs are written as
if all instructions were executed in sequence. In some cases, the machine
mncludes a hardware scheduler that can change the order of the nstruction
so that parallelism can be increased. In the program the hardware
dynamically checks for dependencies in the sequential instruction stream and
issues them in parallel when possible.. Whether the hardware reorders the
mstructions or not compilers can rearrange the instructions to make
struction-level parallelism more effective. Instruction-level parallelism can

also appear explicitly in the instruction set. VLIW (Very Long Instruction
Word) machines have mstructions that can issue multiple operations in
parallel. Intel IA64 is a well-known example of such an architecture.

All high-performance, general-purpose microprocessors also include
mstructions that can operate on a vector of data at the same time. Compiler
techniques have been developed to generate code automatically for such
machines from sequential programs.

Memory Hierarchies

A memory hierarchy consists of several levels of storage with different
speeds and sizes, with the level closest to the processor being the fastest
but smallest. The average memory-access time of a program is reduced if
most of its accesses are satisfied by the faster levels of the hierarchy. Both
parallelism and the existence of a memory hierarchy improve the potential
performance of'a machine, but they must be used effectively by the compiler
to deliver real performance on an application.

Memory hierarchies are found i all machines. A processor usually has a small
number of registers consisting of hundreds of bytes smallest in size, several
levels of caches containing kilobytes to megabytes,

physical memory containing megabytes to gigabytes, and finally secondary
storage that contains gigabytes and beyond have the maximum size.

It is possible to improve the effectiveness of the memory hierarchy by

> Changing the layout of the data
» Changing the order of instructions accessing the data.

> Changing the layout of code to make instruction caching more effective

Design of New Computer Architectures

In the early days of computer architecture design, compilers were
developed after the machines were built. This has changed. Since
programming in highlevel languages is the norm, the performance of a
computer system is determined not by its raw speed but also by how well
compilers can exploit its features. Thus, m modern computer architecture
development, compilers are developed in the processor-design stage, and
compiled code, running on simulators, is used to evaluate the proposed
architectural features.

RISC

One of the best known examples of how compilers influenced the design of
computer architecture was the invention of the RISC (Reduced
Instruction-Set Computer) architecture. Prior to this invention, the trend
was to develop progressively complex instruction sets mtended to make
assembly programming easier. These architectures were known as CISC

(Complex Instruction-Set Computer).

Specialized Architectures

Over the last three decades, many architectural concepts have been proposed.
They include

> Data flow machines: (flow is based on the availability of data
the instruction that all the data available is executed

> Vector machines(Single mstruction operates on multiple data
simultaneously)

> VLIW (Very Long Instruction Word) :machines: makes use of
nstruction parallelism

> SIMD (Single Instruction, Multiple Data) arrays of processors,

> Systolic arrays (processing units arranged like a matrix and are

called cells. each cell shares its information with its cell, operations
are triggered when the data arrives

> Multiprocessors with shared memory, and

> Multiprocessors with distributed memory.

The development of each of these architectural concepts was accompanied
by the research and development of corresponding compiler technology.
Since entire systems can fit on a single chip, the focus is now on application
specific processors. Application-specific processors exhibit a diversity of
computer architectures. Compiler technology is needed not only to support
programming for these architectures, but also to evaluate proposed
architectural designs.

b) Discuss about language processors with block diagrams.

Interpreter
Hybrid compiler

A compiler is a program that can read a program in one language - the source
language - and translate it into an equivalent program in another language - the
target language; see An important role of the compiler is to report any errors
in the source program that it detects during the translation process.

source program

target program

Figure 1.1: A compiler

[5]

COl1

L2

Ifthe target program is an executable machine-language program, it can then be
called by the user to process inputs and produce outputs; see Fig. 1.2.

input —= Target Program output

Figure 1.2: Running the target program

The machine-language target program produced by a compiler is usually much
faster than an interpreter at mapping mputs to outputs.

Interpreter

An mterpreter executes the source program statement by statement. It give
better error diagnostics than a compiler.

source program —
Interpreter - output
input

Figure 1.3: An interpreter

Example : Java language processors combine compilation and
mterpretation, as shown in Fig. 1.4. A Java source program may first be
compiled nto an intermediate form called bytecodes. The bytecodes are
then interpreted by a virtual machine. A benefit of this arrangement is that
bytecodes compiled on one machine can be interpreted on another
machine, perhaps across a network. In order to achieve faster processing of

inputs to outputs, some Java compilers, called just-in-time compilers, translate
the bytecodes into machine language immediately before they run the
mtermediate program to process the input.

1.1. LANGUAGE PROCESSORS

source program

B S

Translator

——

intermediate program -

input

Virtual . oitnut
Machine 154

Figure 1.4: A hybrid compiler

[Mustrate the importance of each phase of a compiler with pi= bp-fp* 60.

A compiler maps a source program into a semantically equivalent target
program. There are two parts to this mapping: analysis and synthesis.

Analysis part: It breaks up the source program into components and imposes
a grammatical structure on them. It then uses this structure to create an
mtermediate representation of the source program.

Ifthe analysis part detects that the source program is either syntactically
or semantically not correct, then it must provide mformative messages, so
the user can take corrective action.

The analysis part also collects mformation about the source program and
stores it in a data structure called a symbol table, which is passed along
with the intermediate representation to the synthesis part.

The synthesis part: It constructs the desired target program from the
ntermediate representation and the information in the symbol table. The
analysis part is often called the front end of the compiler and the synthesis
part is called the back end.

The compilation process operates as a sequence of phases, each of which
transforms one representation of the source program to another. A typical
decomposition of a compiler into phases is shown in Fig. 1.6. The symbol
table, which stores nformation about the entire source program, is used by
all phases of the compiler. Some compilers have a machine-independent
optimization phase between the front end and the back end. The purpose of
this optimization phase is to perform transformations on the intermediate
representation, so that the back end can produce a better target program
Since optimization is optional, one or the other of the two optimization
phases shown in Fig. 1.6 may be missing.

character stream

Lexical Analyzer

T
token stream

Syntax Analyzer

T
syntax tree

Semantic Analyze:

T
syntax tree

Symbol Table Intermediate Code Gen

T
intermediate represent

Machine-Independe
Code Optimizer

T
intermediate represent

Code Generator

T

[10]

COl1

L3

The first phase of a compiler is called lexical analysis or scanning. The
lexical analyzer reads the stream of characters making up the source
program and groups the characters into meaningful sequences called
lexemes. For each lexeme, the lexical analyzer produces as output a token
of the form (token-name, attribute-value) that it passes on to the subsequent
phase, syntax analysis. In the token, the first component token-name is an
abstract symbol that is used during syntax analysis, and the second
component attribute- value points to an entry in the symbol table for this
token. Information from the symbol-table entry is needed for semantic
analysis and code generation.

Syntax Analysis

The second phase of the compiler is syntax analysis or parsing. The parser
uses the first components of the tokens produced by the lexical analyzer to
create a tree-like intermediate representation that depicts the grammatical
structure of the token stream. A typical representation is a syntax tree in
which each mterior node represents an operation and the children of the
node represent the arguments of the operation.

Semantic Analysis

The semantic analyzer uses the syntax tree and the information in the symbol
table to check if the source program is semantically correct. It also gathers
type information and saves it in either the syntax tree or the symbol table, to
be used during intermediate-code generation.

An mmportant part of semantic analysis is type checking, where the compiler
checks that each operator has matching operands. For example, many
programming language definitions require an array index to be an integer;
the compiler must report an error if a floating-point number is used to index
an array.

Intermediate Code Generation

In the process of translating a source program into target code, a compiler may|
construct one or more intermediate representations, which can have a variety
of forms. Syntax trees are a form of intermediate

representation; they are commonly used during syntax and semantic
analysis. After syntax and semantic analysis of the source program, many
compilers generate an explicit low-level or machine-like ntermediate
representation, which we can think of as a program for an abstract machine.
This mtermediate representation should have two important properties: it
should be easy to produce and it should be easy to translate into the target
machine.

Code Optimization

The machine-independent code-optimization phase attempts to improve the
mtermediate code so that better target code will result. It could be mproved
in terms of faster code, or other objectives like shorter code, or target code
that consumes less power.

Code Generation

The code generator takes as mput an intermediate representation of the
source program and maps it into the target language. If the target language is
machine code, registers or memory locations are selected for each of the
variables used by the program. Then, the intermediate instructions are
translated into sequences of machine nstructions that perform the same
task. A crucial aspect of code generation is the judicious assignment of
registers to hold variables.

Symbol-Table Management

An essential function of a compiler is to record the variable names used in
the source program and collect imformation about various attributes of each
name. The symbol table is a data structure containing a record for each
variable name. It contains fields that stores the attributes of the name. The
data structure should be designed to allow the compiler to find the record
for each name quickly and to store or retrieve data from that record quickly.

The attributes in the symbol table may provide information about
e The storage allocated for a name

e The type associated with a variable name
e The scope ofa name (where in the program its value may be used)
°

In the case of procedure names, it stores the number and types of
its arguments, the method of passing each argument (for example,
by value or by reference), and the type returned.

a) Explain the concept of mput buffering in lexical analyzer..

In the process of reading the character the lexical analyzer has to look one
or more characters beyond the next lexeme before we can be sure of the
right lexeme.

For mstance, we cannot be sure we've seen the end of an identifier until we
see a character that is not a letter or digit, and therefore is not part of the
lexeme for id. In C, single-character operators like -, =, or < could also be
the beginning of a two-character operator lke ->, ==, or <=. Thus, a
two-buffer scheme is used, that handles large lookaheads safely.

Buffer Pairs

Because of the time taken to process a character and as large amount of
characters must be processed during compilation,specialized buffering
techniques have been developed to reduce the amount of overhead required
to process a single iput character. An important scheme involves two
buffers that are alternately reloaded

[5]

CO2

L2

T

lexemeBegin

Forward

Figure 3.3 using a pair of input buffers

Each buffer is of the same size N, and N is usually the size of a disk block,
e.g., 4096 bytes. Using one system read command we can read N
characters mio a buffer, rather than using one system call per character. If
fewer than N characters remain in the input file, then a special character,
represented by eof, marks the end ofthe source file and is different from any
possible character of the source program.

Two pointers to the mput are mantained:
1. Pointer lexemeBegin, marks the beginning of the current lexeme,
whose extent we are attempting to determine.
2. Pointer forward scans ahead until a pattern match is found;

Once the next lexeme is determined, forward is set to the character at right
end of the lexeme. For example In Fig. 3.3, we see forward has passed the
end of the next lexeme, ** (the Fortran exponentiation operator),

and must be retracted one position to its left. The lexeme is recorded as an
attribute value of a token. After the token is returned to the parser,
lexemeBegin is set to the character immediately after the lexeme just found.

Advancing forward requires that we first test whether we have reached the
end of one of the buffers, and if so, we must reload the other buffer from the
mput, and move forward to the beginning of the newly loaded buffer. we
shall never overwrite the lexeme in its buffer before determining it.

Sentinels

In the buffer pair scheme each time we advance forward ie, for each character
read, we make two tests:
o For the end of'the buffer, and

e To determine what character is read.

We can combine the buffer-end test with the test for the current character if
we extend each buffer to hold a sentinel character at the end. The sentinel is
a special character that cannot be part of the source program, and a natural
choice is the character eof.

Figure 3.4 shows the same arrangement as Fig. 3.3, but with the sentinels
added. Note that eof retains its use as a marker for the end of the entire
mput. Any eof that appears other than at the end of a buffer means that the
mput is at an end. The following algorithm shows how forward is advanced.

T

lexemeBegin

forward

Buffer with sentinels at the end

b) Demonstrate the process of specification of tokens in lexical analyzer.

An alphabet is any finite set of symbols. Typical examples of symbols are
letters, digits, and punctuation. The set {0,1) is the binary alphabet. ASCII
is an important example of an alphabet; it is used in many software systems.

A string over an alphabet is a finite sequence of symbols drawn from that
alphabet. In language theory, the terms "sentence" and "word" are often used as
synonyms for "string."

The length of a string is, usually written |s | is the number of occurrences
of symbols in s.
For example, banana is a string of length six. The empty string, denoted € , is

the string of length zero.
A language is any countable set of strings over some fixed alphabet.

Abstract languages like &, the empty set €, or , the set containing only the

empty string, are included under this definition. The set of all syntactically
well-formed C programs are examples of language.

Ifx and y are strings, then the concatenation of x and y, denoted xy, is the string
formed by appending y to
x. For example, if x = dog and y = house, then xy = doghouse.

The empty string is the identity under concatenation; that is, for any string s, €S
=SE€ =s.

If we think of concatenation as a product, we can define the 'exponentiation” of
strings as follows.

Define s° to be €, and

for all i > 0, define s' to be s''s.

[5]

CO2

L3

Since €S =S, it follows that s' = s. Then s*> = ss, s3 = sss, and so on.

Operations on Languages

In lexical analysis, the most important operations on
languages are union, concatenation, and closure.

Operations Definition and notations

Union of L and M LUM={s|sisinL orsisin\
Concatenation of L and M LM={st| sis n L and t is in M}
Kleene closure of L L*=U~ =0 L

Positive clodure of L L+=u~ . Li

=1

Union is the string taken from either of the languages.

The concatenation of languages is all strings formed by taking a string from the
first language and a string from the second language, in all possible ways, and
concatenating them.

The (Kleene) closure of a language L, denoted L*, is the set of strings

you get by concatenating L zero or more times. Note that L°, the
"concatenation of L zero times,"

Finally, the positive closure, denoted L+, is the same as the Kleene closure, but
without the term L°. That is,

€ will not be in L+.

Example 3.3 : Let L be the set of letters {A, B,...,Z, a,b,...,z)and
let D be the set of digits {0,1... .9). L and D are, respectively, the alphabets
of uppercase and lowercase letters and of digits. The second way is that L
and D are languages, all of whose strings happen to be of length one.

Here are some other languages that can be constructed from languages L
and D, using the operators of Fig. 3.6:

1. L U D is the set of letters and digits - the language with 62 strings
of length one, each of which strings is either one letter or one digit.

2. LD is the set df 520 strings of length two, each consisting of one letter

followed by one digit.
3. L is the set of all 4-letter strings.
4. L* is the set of ail strings of letters, including e, the empty string.
5. L(L U D)* is the set of all strings of letters and digits beginning with a letter.
6. D+ is the set of all strings of one or more digits.

a) write the regular definition for identifier and number. 5] lcoz

Regular Definitions

For notational convenience, we can give names to certain regular expressions and use
those names in subsequent expressions and they are called as regular definitions.

IfX is an alphabet of basic symbols, then a regular definition is a sequence of definitions
of the form where:

Each diis a new symbol, not in C and not the same as any other of'the d's, and
Eachriis a regular expression over the alphabet r {dl, d2,. . ., di-]).

By restricting ri to X and the previously defined d's, we avoid recursive definitions, and
we can construct a regular expression over X alone.

The regualar definitions of identifiers can be rewritten as
letter ->[A-Za-z] digit->[0-9]
id->letter_(letter|digit)*

The regular Definition of numbers can be rewritten as
digit->[0-9] digits->digit+
number->digits(.digits)?(E[+-]? digits)?

b) Demonstrate the unsigned numbers with the help ofa transition diagram.

digit digit digit

There are two ways to handle reserved words that look like identifiers:

Install the reserved words in the symbol table mitially:

A field of the symbol-table entry indicates that these strings are never ordinary identifiers,
and tells which token they represent. When we find an identifier, a call to mstalllD places it
in the symbol table if it is not already there and returns a pointer to the symbol-table entry
for the lexeme found. Any identifier not in the symbol table during lexical analysis cannot be
a reserved word, so its token is id. The function getToken examines the symbol table entry

for the lexeme found, and returns whatever token name the symbol table says this lexeme

[5]

CO2

L3

represents - either id or one of the keyword tokens that was mitially installed in the table.
Create separate transition diagrams for each keyword:

an example for the keyword then is shown in Fig. Such a transition diagram consists of
states representing the situation after each successive letter of the keyword is seen,
followed by a test for a "nonletter-or-digit," i.e., any character that cannot be the
continuation of an identifier. It is necessary to check that the identifier has ended, or else
we would return token then in situations where the correct token was id,For example when|
there is a lexeme like thenextvalue that has then as a proper prefix it should return the token
as then here the token is an id. If this approach is used, then we must prioritize the tokens
so that the reserved-word tokens are recognized in preference to id, when the lexeme
matches both patterns.

a) Explain Recognition of tokens with an example.

Patterns are Expressed using regular expressions. The patterns of all needed tokens have
to to build a piece of code that matches the input string and finds a lexeme that matches a
pattern

Consider the Grammar Given below

stmt->if expr then stmt | if expr then stmt else stmt |€ expr-> term relop term | term
term ->id | number

Grammar for branching statements

The grammar given above describes a simple form of branching statements and
conditional expressions. The patterns for these tokens are described using regular
definitions, as follows.

Digit->[0-9] digits-> digit+

number-> digits (.digits)? (E[+-]? digits)? letter->[A-Za-z]
id->letter(letter|digit)* if=>if

then->then else->else

re]op-> < |> |<: |>= |= |<>

for this language, the lexical analyzer will recognize the keywords if, then, and else, as
well as lexemes that match the patterns for relop, id, and number.

mn addition, the lexical analyzer have to strip out whitespace, by recognizing the "token"
ws defined below ws->(blank| tab | newline)+

Here, blank, tab, and newline are abstract symbols that we use to express the ASCII

characters of the same names. Token ws is different from the other tokens in that, when we

[5]

CO2

L2

recognize it, we do not return it to the parser, but rather restart the lexical analysis from the
character that follows the whitespace.

Fig. 3.12.shows, for each lexeme or family of lexemes, which token name is returned to
the parser and what attribute value, For the six relational operators, symbolic constants LT,
LE, and so on are used as the attribute value, in order to indicate the instance of the token
relop that was found.

Lexemes Token Marne Attribute value
ALY WS - -
If if |
then then
else else
Ay id Id Fointerto table entry
Any number Mumber Fointertotable entry
< Relop LT
<= Relop LE
= Relop EC
<= Relop ME
= Relop GT
»= Relop GE

Figure 3.10 Tokens their patterns and attribute values

Transition Diagrams

Transition diagram is the intermediate step in the construction of a lexical analyzer.
Transition diagrams have a collection of nodes or circles, called states. Each state
represents a condition that could occur during the process of scanning . A state is a
summary of all we need to know about what characters we have seen between the
lexemeBegin pointer and the forward pointer.

Edges are directed from one state of the transition diagram to another. Each edge is
labeled by a symbol or set of symbols. If we are in some states, and the next input symbol
is a, we look for an edge out of state s labeled by a. If we find such an edge, we advance
the forward pointer to enter the state of the transition diagram to which that edge leads. All
the transition diagrams are deterministic.

Some important conventions about transition diagrams are:

Certain states are said to be accepting, or final. These states indicate that a lexeme has
been found, although the actual lexeme may consist of all positions between the
LexemeBegin and forward pointers. We always indicate an accepting state by a double
circle, and if there is an action to be taken - typically returning a token and an attribute
value to the parser - we shall attach that action to the accepting state.

In addition, if it is necessary to retract the forward pomter one position then we shall
additionally place a * near that accepting state. If'is necessary to retract forward by more
than one position, that many number of *'s have to be attached to the accepting state.

One state is designated the start state, or initial state; it is indicated by an edge,
labeled "start ," entering from nowhere. The transition diagram always begins in the start
state before any input symbols have been read.

The transition diagram to recognize the lexemes that match the token relop . The relational
operators that are considered are <,<=<>=, >, >=

b) Explain the role of lexical analyzer.

As the first phase of a compiler, the main task of the lexical analyzer is to read the mput
characters of the source program, group them into lexemes, and produce as output a
sequence of tokens for each lexeme in the source program.

The stream of tokens is sent to the parser for syntax analysis. The lexical analyzer
interacts with the symbol table as well. When the lexical analyzer discovers a lexeme
constituting an identifier, it needs to enter that lexeme into the symbol table. In some cases,
information regarding the kind of identifier may be read from the symbol table by the lexical
analyzer to assist it in determining the proper token it must pass to the parser. These
mteractions are given in Fig. 3.1. The mteraction is implemented by having the parser call
the lexical analyzer. The call, suggested by the getNextToken command, causes the lexical
analyzer to read characters from its mput until it can identify the next lexeme and produce
for it the next token, which it returns to the parser.

Token <

Source Scanner Parser Semantic
Program (Lexical analyzer) (Syntax analyzer) Analysis
getNextToken()
Symbol
Table

Interaction between the Lexical analyzer and the parser

[5]

CO2

L2

Since the lexical analyzer is the part of the compiler that reads the source text, it performs
certain other tasks like

Stripping out comments and whitespace (blank, newline, tab, and other characters that
are used to separate tokens in the input).

Correlating error messages generated by the compiler with the source program. For
instance, the lexical analyzer may keep track of the number of newline characters seen, so
it can associate a line number with each error message. In some compilers, the lexical
analyzer makes a copy of the source program with the error messages inserted at the
appropriate positions.

Ifthe source program uses a macro-preprocessor, the expansion of macros may also be
performed by the lexical analyzer.

Lexical analyzers are divided into a cascade of two processes:

Scanning consists of the simple processes that do not require tokenization of the input,
such as deletion of comments and compaction of consecutive whitespace characters into
one.

Lexical analysis proper is the more complex portion, where the scanner produces the
sequence of tokens as output.

Lexical Analysis Versus Parsing

There are a number of reasons why the analysis portion of a compiler is normally
separated into lexical analysis and parsing (syntax analysis) phases.

Simplicity of design: It is the most important consideration. The separation of lexical and
syntactic analysis often allows us to simplify at least one of these tasks. For example, a
parser that had to deal with comments and whitespace as syntactic units would be
considerably more complex than one that can assume comments and whitespace have
already been removed by the lexical analyzer.

Compiler efficiency is improved: A separate lexical analyzer allows us to apply specialized|
techniques that serve only the lexical task, not the job of parsing. In addition, specialized
buffering techniques for reading input characters in the lexical analyzer phase can speed up
the compiler significantly.

Compiler portability is enhanced: Input-device-specific peculiarities can be restricted to
the lexical analyzer.

Tokens, Patterns, and Lexemes

When discussing lexical analysis, we use three related but distinct terms:

A token is a pair consisting of a token name and an optional attribute value. The token
name is an abstract symbol representing a kind of lexical unit, e.g., a particular keyword, o
a sequence of input characters denoting an identifier. The token names are the mput
symbols that the parser processes. We will often refer to a token by its token name.

A pattern is a description of the form that the lexemes of a token may take. In the case of
a keyword as a token, the pattern is just the sequence of characters that form the

keyword. For identifiers and some other tokens, the pattern is a more complex structure
that is matched by many strings.

A lexeme is a sequence of characters in the source program that matches the pattern for a
token and is identified by the lexical analyzer as an instance of that token.

CI CCI HOD

CO-PO Mapping | oo |MoMles 1 p02{p03(PO4[POS[POG[PO7[POS[PO9PO10[PO11 PO12[PSO1 PS 02[PS O3PS O4

Understand the
different
CO phases of
compiler 12 1 3131203 0]00 |0 [0 |0 (O 2 0 0 2 2
design
techniques

lAnalyze the
CO working of
lexical 14 2 31312 0010 0O [0 [0 |0 210 10]2]2
lAnalyser in
design of
compilers.

Design syntax
CO |analyser using L6 3 313128 (ololo o o o o 2101022
3 |top down and
bottom up

approaches.

[llustrate
syntax directed
CQO |[translation for
4 a given
grammar.

Explain
intermediate
CO code
representation | L2 5 313(2(3(0]010 0 [0 [0 0 2 0 0 2 2
and code
generation of
compilers.

COGNITIVE
LEVEL

REVISED BLOOMS TAXONOMY KEYWORDS

List, define, tell, describe, identify, show, label, collect, examine, tabulate, quote, name, who,

L1
when, where, etc.
L summarize, describe, interpret, contrast, predict, associate, distinguish, estimate, differentiate,
discuss, extend
3 Apply, demonstrate, calculate, complete, illustrate, show, solve, examine, modify, relate,
change, classify, experiment, discover.
L4 Analyze, separate, order, explain, connect, classify, arrange, divide, compare, select, explain,
mfer.
Ls Assess, decide, rank, grade, test, measure, recommend, convince, select, judge, explam,
discriminate, support, conclude, compare, summarize.
PROGRAM OUTCOMES (PO), PROGRAM SPECIFIC OUTCOMES (PSO) COII{JIS\E/I;E?TSION
PO1 | Engneering knowledge PO7 | Environment and sustainability 0 | No Correlation
PO2 | Problem analysis PO8 | Ethics 1 | Slight/Low
PO3 | Design/development of solutions PO9 | Individual and team work 2 Moderate/
Medum
PO4 Conduct investigations of PO10 | Communication 3 | Substantial/
complex problems High
PO5 | Modern tool usage PO11 | Project management and finance
PO6 | The Engneer and society PO12 | Life-long learning
PSO1 | Develop applications using different stacks of web and programming technologies
PSO2 | Design and develop secure, parallel, distributed, networked, and digital systems
PSO3 | Apply software engineering methods to design, develop, test and manage software systems.
PSO4 | Develop intelligent applications for business and industry

