

USN

Internal Assessment Test 1 – March 2025

Sub: Full Stack Development Sub Code: BIS601 Branch: ISE

Date: 26/03/2025 Duration: 90 min’s Max Marks: 50 Sem/Sec: V I/ A, B, C OBE

Answer any FIVE FULL Questions

MAR
KS

CO

RBT

1 a) Explain difference between primitive and reference data types in JavaScript? Provide

detailed examples to explain how primitive types behave differently from reference types
when assigned to new variables or passed to functions.

5M CO1 L2

1 b) Evaluate the closures in JavaScript, and how do they relate to functions and scopes. 5M CO1 L2

2 a) Explain the differences between `==` and `===` operators in JavaScript, and why is one
preferred over the other in most cases?

5M CO1 L2

2 b) Describe the difference between a function declaration, function expression, and arrow

function in JavaScript. Provide examples

5M CO1 L2

3 a) Evaluate "this" keyword in JavaScript, and how is its value determined in different
contexts? Give examples.

5M CO1 L2

3 b) Explain the behavior of loops like `for` and `while` when they interact with

asynchronous operations (e.g., promises and `setTimeout`), and how you can avoid
common issues like closures in loops or accessing incorrect values.

5M CO1 L2

4 a) Evaluate difference between `getElementById()` and `querySelector()` in DOM

manipulation? Provide examples
5M CO2 L2

4 b) What is event bubbling and event capturing in JavaScript? Explain the concepts of
event propagation, including the phases of capturing, target, and bubbling. How does

this affect event handling in the DOM.

5M CO2 L2

5 a) Explain how you enhance a form using JavaScript for better user experience and

validation?
5M CO2 L2

5 b) Explain different types of form validations such as required field validation, email

format validation, password strength validation, and real-time validation using event

listeners. Provide examples of implementing these validations in JavaScript.

5M CO2 L2

6 a) Apply Document Object Model (DOM) on event delegation, and explain how it
represents an HTML document in JavaScript? Give example.

5M CO2 L3

6 b) Create the DOM as a tree structure, with nodes representing HTML elements,

attributes, and text. How can JavaScript interact with the DOM to manipulate the

webpage?

5M CO2 L3

Faculty Signature CCI Signature HOD Signature

Internal Assessment Test 1- Oct. 2024

SCHEME & SOLUTION

 Sub: Cryptography and Network Security Sub Code: 21IS71 Branch: ISE

Answer any FIVE FULL questions MARKS CO RBT

1a Primitive Data Types Primitive types are the most basic types in JavaScript. They
represent single values and are immutable (cannot be changed after creation). These types

include:

Non-primitive data types, also called reference types, are more complex than primitive

types. They store references to the data rather than the actual data. Modifying an object or

array will affect all references to it.

3+2=5M CO1 L2

1b A closure is the combination of a function bundled together (enclosed) with references to

its surrounding state (the lexical environment). In other words, a closure gives a function

access to its outer scope. In JavaScript, closures are created every time a function is
created, at function creation time.

3+2=5M CO1 L2

2a In JavaScript, == (loose equality) performs type coercion before comparison,

while === (strict equality) does not, requiring both value and type to be identical for a
true result.

3+2=5M CO1 L2

2b Function Declaration
A function declaration defines a function with a specified name. It is hoisted to the top of

its scope, meaning it can be called before it is defined in the code.

function add(a, b) {

 return a + b;

}

Function Expression

A function expression defines a function as part of an expression. It can be anonymous

(without a name) or named. Function expressions are not hoisted and must be defined
before they are called.

const multiply = function(a, b) {

 return a * b;
};

const subtract = (a, b) => {

 return a - b;
};

Arrow Function
An arrow function provides a concise syntax for writing function expressions. It does not

have its own this context, arguments object, or super keyword, and cannot be used as a

constructor. Arrow functions are often used for short, simple functions.

const divide = (a, b) => a / b;

3+2=5M CO1 L2

3a The this keyword in JavaScript is a reference variable that is automatically assigned a

value when a function is called. It refers to the object that is executing the current piece of

2+3M CO1 L2

JavaScript code. The value of this is not determined by how or where a function is
declared, but by how it is called – the call-site.

In JavaScript, the this keyword refers to the object that is currently executing the code. Its

value is determined by how a function is called, not where it is defined. Here's

how this behaves in different contexts:
1. Global Context

When this is used outside of any function, it refers to the global object. In browsers, this

is usually the window object.
JavaScript

console.log(this === window); // true (in browsers)

2. Function Context

 Simple Function Call: In a regular function call, this refers to the global object

(or undefined in strict mode).

JavaScript
function showThis() {

 console.log(this === window);

}
showThis(); // true

 Method Call: When a function is called as a method of an object, this refers to

the object that owns the method.

JavaScript

const obj = {

 name: 'John',
 greet: function() {

 console.log('Hello, ' + this.name);

 }
};

obj.greet(); // Hello, John

 Constructor Call: When a function is used as a constructor with

the new keyword, this refers to the newly created instance.

JavaScript

function Person(name) {
 this.name = name;

}

const person = new Person('Alice');
console.log(person.name); // Alice

3b Loops allow you to execute a block of code repeatedly.

Types of Loops:

1. for Loop:

o Used when the number of iterations is known.
for (let i = 0; i < 5; i++) {

console.log(i); // Output: 0, 1, 2, 3, 4

}

2. while Loop:

o Executes as long as the condition is true.

let i = 0;
while (i < 5) {

console.log(i); // Output: 0, 1, 2, 3, 4

i++;

}

2+3=5M CO1 L2

4a Selecting by Tag Name  The getElementsByTagName() method selects all elements

with a specific tag name.

Selecting Using Query Selectors  querySelector(): Selects the first element that matches

a given CSS selector.  querySelectorAll(): Selects all elements that match a given CSS
selector.

4+1=5M CO2 L2

4b The capturing phase
The first phase is the capturing phase, which occurs when an element nested in various

elements gets clicked. Right before the click reaches its final destination, the click event

of each of its parent elements must be triggered. This phase trickles down from the top of

the DOM tree to the target element.

The bubbling phase

The bubbling phase, which is the last phase, is the reverse of the capturing phase. In this

phase, the event bubbles up the target element through its parent element, the ancestor, to
the global window object. By default, all events you add with addEventListener are in the

bubble phase.

4+1=5M CO2 L2

5a For more customized validation logic, JavaScript event listeners such

as addEventListener can be used to trigger validation functions on form submission or
input changes. This approach allows developers to define complex validation rules and

provide instant feedback to users.

4+1=5M CO2 L2

5b . Required Field Validation
This validation ensures that certain fields must be filled out before the form can be

submitted.

if (usernameInput.value.trim() === '') {

usernameFeedback.textContent = 'Username is required.';

2. Email Format Validation

This validation checks if the entered email address is in a valid format.
const emailPattern = /^[^\s@]+@[^\s@]+\.[^\s@]+$/;

 if (!emailPattern.test(emailInput.value)) {

 emailFeedback.textContent = 'Please enter a valid email address.';

3. Password Strength Validation

This validation checks if the password meets certain criteria, such as length, inclusion of

numbers, and special characters.
 passwordInput.addEventListener('input', function() {

 const password = passwordInput.value;

 const isValid = password.length >= 8 && /[A-Z]/.test(password) && /[0-
]/.test(password) && /[!@#$%^&*]/.test(password);

4. Real-time Validation Using Event Listeners

Real-time validation provides immediate feedback to users as they fill out the form. This
can be applied to various fields, such as required fields, email, and password.

const form = document.getElementById('myForm');
 // Real-time validation for username

 document.getElementById('username').addEventListener('input', function() {

 const usernameFeedback = document.getElementById('usernameFeedback');
 usernameFeedback.textContent = this.value.trim() === '' ? 'Username is required.' : '';

 });

 // Real-time validation for email

 document.getElementById('email').addEventListener('input', function() {
 const emailFeedback = document.getElementById('emailFeedback');

 const emailPattern = /^[^\s@]+@[^\s@]+\.[^\s@]+$/;

 emailFeedback.textContent = !emailPattern.test(this.value) ? 'Please enter a valid
email address.' : '';

 });

 // Real-time validation for password

1+1+1+2

=5M

CO2 L2

6a Event delegation is a technique in JavaScript where a single event listener is attached to a
parent element instead of multiple listeners on individual child elements.

Example of Event Delegation
Let's implement event delegation using the above HTML structure. We will add a click

event listener to the element that will handle clicks on its children.

3+2=5M CO2 L3

6b The Document Object Model (DOM) represents an HTML or XML document as a tree-

like structure, organizing its elements into a hierarchy.

3+2=5M CO2 L3

