USN	N			CAR INSTITUTE OF TECHNO	CMF DLOGY, BENG GRAUSE BY	RIT IALURU.					
			Internal A	Assessment 7	Γest 1	- Mar 2025	<u> </u>				
Sub:	Machine Le	earning				Sub Code:	BCS602	Bı	ranch:	nch: ISE	
Date:	24/03/2025	Duration:	90 min	Max Marks:	50	Sem/Sec:	VI / A,	В &	\mathbf{C}	OB	BE
Answer any FIVE FULL Questions										СО	RBT
1a	Define Machi	ne Learning.	Data, Info	rmation, Kno	wled	e, and Intell	igence with		[06]	CO1	L1
	an example. E	0			•		•		L J		
	Consider the s			}, Apply Mi	n-Ma	x procedure	and map		[04]	CO1	L3
_	the marks to a			C3.5. 1:	.	,	1 6		F01	CO1	1.2
	Explain in det	all about dif	terent types	of Machine	Learr	ning with exa	imples for		[8]	COI	L2
	each type.								[0]	CO1	1.2
	Do the stem a	nd Leaf plot	for the foll	owing Englis	h Ma	rks {46, 53,	72, 73, 83,		[2]	CO1	L3
	85,92 }	11 0.7	M 1' T	1 .	•1				5051	001	1.0
	List out the ch								[05]	CO1	L2
	For the studen	`				-)R		[05]	CO2	L3
4a	Explain Big D	Pata Analytic	s and its Ty	pes with exa	mple	S			[05]	CO1	L2
	Explain Flat files and list the popular spreadsheet formats with the relevant examples.								[05]	CO2	L3
Let the data points be $\binom{2}{6}$ and $\binom{1}{7}$ Apply PCA and find the transformed data. Apply reverse and prove that PCA Works.									[10]	CO2	L3
6a	Apply Find-S	algorithm fo	or the below	training data	aset c	onsists of 5 i	nstances.				
	Eyes	Nose	Head	Fcolor		Hair	Smile				
	Round	Triangle	Round	Purple		Yes	Yes				
	Square	Square	Square	Green		Yes	No		[07]	CO2	L3
											l

Faculty Signature	CCI Signature	HOD Signature

Yellow

Green

Yellow

Yes

No

Yes

Yes

No

Yes

[03]

CO2 L3

Triangle

Triangle

Square

Square

Round

Square

6b

Round

Round

Round

Find the Covariance of the data $X = \{4,5,6,7,9\}$, and $Y = \{16,25,36,49,56\}$

USN CAR INSTITUTE OF TECHNOLOGY IN							OGY, BEN	RIT GALURU. YHRING			
		Internal	Assessme	ent Test 1 Scho	eme &	& Solution -	Mar 2025				
Sub:	Machine Le	arning				Sub Code:	BCS602	В	ranch:	ISE	
ate:	24/03/2025	Duration:	90 min	Max Marks:	50	Sem/Sec:	VI/A,	В &	z C	OF	BE
		Answ	er any FI	VE FULL Qu	estio	<u>ns</u>			MARK S	СО	RB
	an example. E Proces relatio For ex the fas Conde For ex sales d Unless not use Intellig knowle Compt The ul maturi Here learnin decisic develo	of machine cisions to design and to the comes the leg is to procons to design perfective of the comes the comes the comes the comes to design perfective of the comes	Sketch the called info ng data. It is data can boduct. It is attorical particular and the called known in a pulled in the capplied in the capp	cted, data is of to action. knowledge for	extra e. ture t no u actic l this nid is only b ing. for (c) the Pyrami these	d representation les patterns, a ct information rends obtainers e. Similarly, ons. An action stage. It is wisdom that by humans. The objective organizations business product data for organizations of the data for org	ion ssociations, n like which ed in the above knowledge nable form represents the e of machine to take bett ocesses, and	is ve is of ne ne er to	[06] 4m	CO1	

Consider the set: $V = \{42, 80, 82, 98\}$, Apply Min-Max procedure and map	[04]	CO1	
the marks to a new range 0-1. For 42: 0	1 m 1 m		
For 80 : 0.678	1m		
For 82: 0.714	1m		
For 98: 1			
Explain in detail about different types of Machine Learning with	[8]	CO1	
examples for each type.			
Machine			
learning			
Supervised Unsupervised Semi-supervised Reinforcement learning learning learning			
	1m		
Cluster Association Dimension			
Classification Regression analysis mining reduction			
Figure 1.5: Types of Machine Learning			
 Supervised algorithms use labelled dataset. As the name suggests, there is a supervisor or teacher component in supervised learning. 			
A supervisor provides labelled data so that the model is	2m		
constructed and generates test data.			
 In supervised learning algorithms, learning takes place in two stages. 			
• In layman terms, during the first stage, the teacher communicates			
• In layman terms, during the first stage, the teacher communicates the information to the student that the student is supposed to			
 In layman terms, during the first stage, the teacher communicates the information to the student that the student is supposed to master. 			
 In layman terms, during the first stage, the teacher communicates the information to the student that the student is supposed to master. The student receives the information and understands it. 			
 In layman terms, during the first stage, the teacher communicates the information to the student that the student is supposed to master. The student receives the information and understands it. During this stage, the teacher has no knowledge of whether the 			
 In layman terms, during the first stage, the teacher communicates the information to the student that the student is supposed to master. The student receives the information and understands it. During this stage, the teacher has no knowledge of whether the information is grasped by the student. 			
 In layman terms, during the first stage, the teacher communicates the information to the student that the student is supposed to master. The student receives the information and understands it. During this stage, the teacher has no knowledge of whether the information is grasped by the student. Supervised learning has two methods: 			
 In layman terms, during the first stage, the teacher communicates the information to the student that the student is supposed to master. The student receives the information and understands it. During this stage, the teacher has no knowledge of whether the information is grasped by the student. Supervised learning has two methods: Classification 			
 In layman terms, during the first stage, the teacher communicates the information to the student that the student is supposed to master. The student receives the information and understands it. During this stage, the teacher has no knowledge of whether the information is grasped by the student. Supervised learning has two methods: Classification Regression 	2m		
 In layman terms, during the first stage, the teacher communicates the information to the student that the student is supposed to master. The student receives the information and understands it. During this stage, the teacher has no knowledge of whether the information is grasped by the student. Supervised learning has two methods: Classification Regression Unsupervised Learning 	2m		
 In layman terms, during the first stage, the teacher communicates the information to the student that the student is supposed to master. The student receives the information and understands it. During this stage, the teacher has no knowledge of whether the information is grasped by the student. Supervised learning has two methods: Classification Regression Unsupervised Learning The second kind of learning is by self-instruction. 	2m		
 In layman terms, during the first stage, the teacher communicates the information to the student that the student is supposed to master. The student receives the information and understands it. During this stage, the teacher has no knowledge of whether the information is grasped by the student. Supervised learning has two methods: Classification Regression Unsupervised Learning The second kind of learning is by self-instruction. There are no supervisor or teacher components. 	2m		
 In layman terms, during the first stage, the teacher communicates the information to the student that the student is supposed to master. The student receives the information and understands it. During this stage, the teacher has no knowledge of whether the information is grasped by the student. Supervised learning has two methods: Classification Regression Unsupervised Learning The second kind of learning is by self-instruction. There are no supervisor or teacher components. In the absence of a supervisor or teacher, self-instruction is the 	2m		

 Here, the program is <u>supplied with objects</u>, <u>but no labels are</u> <u>defined</u>. 			
• The algorithm itself observes the examples and recognizes patterns based on the principles of grouping.			
 Grouping is done in ways that similar objects form the same 			
group.			
 Cluster analysis and Dimensional reduction algorithms are 			
examples of unsupervised algorithms.			
emi-supervised Learning			
• There are circumstances where the dataset has a huge collection of <u>unlabelled data and some labelled data</u> .	1.m		
 Labelling is a costly process and difficult to perform by the humans. 	1m		
• Semi-supervised algorithms use <u>unlabelled data by assigning a</u>			
pseudo-label.			
 Then, the labelled and pseudo-labelled dataset can be combined. 			
einforcement Learning			
 Reinforcement learning mimics human beings. 			
• Like human beings use ears and eyes to perceive the world and			
take actions, reinforcement learning allows the agent to interact with the environment to get rewards.			
• The agent can be a human, animal, robot, or any independent program.	2m		
• The rewards enable the agent to gain experience.			
• The agent aims to maximize the reward. The reward can be positive or negative (Punishment). When the rewards are more, the behavior gets reinforced and learning becomes possible.			
 Consider the following example of a Grid game 			
 In this grid game, the gray tile indicates the danger, black is a block, and the tile with diagonal lines is the goal. 			
The aim is to start, say from bottom-left grid, using the actions			
left, right, top and bottom to reach the goal state. Block			
Goal			
Danger			
to the stem and Leaf plot for the following English Marks {46, 53, 72,	[2]	CO1	L.
3, 83, 85,92 }			

3	List ou	it the challen	ges of Machine Learn	ning in detail		[05]	CO1	L2
	•	1. Problems	– Machine learning of	can deal with the 'well-po	sed' problems			
		where speci	fications are complet	te and available.				
	•	Computers of						
			Input (x ₁ , x ₂)	Output (y)				
			1, 1	1				
			2, 1	2				
			3, 1	3				
			4, 1 5, 1	5				
		II						
	•	•	- This is a primary req data is a challenge.	uirement of machine lear	ning. Availability			
	•		_	large and should not have	e data problems			
		such as miss	sing data or incorrect	data.				
	•	_		th the availability of Big	Data, the			
		computation	nal resource requirem	nent has also increased.				
	•	Systems wit	th Graphics Processin	g Unit (GPU) or even Te	nsor Processing			
			-	te machine learning algor				
	•			e selection of algorithms, d	_			
		_	· ·	ns to solve machine learnin	_			
			_	ome necessary for machine	e learning or data			
		 Algorithms have become a big topic of discussion, and it is a challenge for 						
	•							
			= :	lesign, select, and evaluate	-			
	•	•		ror of the model. This lead	s to a problem			
		-	variance tradeoff.	arractly but fails for tost da	ta in gonoral lacks			
	•		on, is called overfitting.	orrectly but fails for test da	ta, in general lacks			
		_	_	fitting where the model fai	ls for training data			
		•	generalization.	intiling where the model fai	is for training data			
		but has good	i generalization.					
		_		6,47,58,59,68 }, Find the	IQR	[05]	CO2	L3
	$\mathbf{Q}_1 = 2$	$4, Q_3 = 58, IQ$	$QR = Q_3 - Q_1 = 34.5$					
4 ()			1	0.4.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.		50.53	001	
4 (a)	Explai	_	•	f Analytics with example		[05]	CO1	L2
		decisions.	y allii of data allarysis	s is to assist business org	anizations to take			
	•		e, a business organiza	ation may want to know w	which is the fastest			
		•	uct, in order for them					
	•	Data analys	sis is an activity th	nat takes the data and	generates useful			
				sting the organizations.				
	•	-		are terms that are used in				
	•		-	ver, there is a subtle diffe nd data analysis is a part				
	•	_	_	cess of data collection, p				
	1	analysis. It	-	-				

• Data analysis is just analysis and is a part of data analytics. It takes historical data and does the analysis.			
There are four types of data analytics:			
• 1. Descriptive analytics			
• •			
• 2. Diagnostic analytics			
• 3. Predictive analytics			
4. Prescriptive analytics			
Descriptive Analytics			
• It is about describing the main features of the data.			
• After data collection is done, descriptive analytics deals with the collected data and quantifies it.			
• It is often stated that analytics is essentially statistics.			
• There are two aspects of statistics – Descriptive and Inference. Descriptive			
analytics only focuses on the description part of the data and not the			
inference part.			
What was our overall productivity?			
Diagnostic Analytics			
• It deals with the question – 'Why?'. This is also known as causal analysis,			
as it aims to find out the cause and effect of the events.			
 For example, if a product is not selling, diagnostic analytics aims to find out 			
the reason. There may be multiple reasons and associated effects are			
analyzed as part of it.			
• Why did our company sales decrease in the previous quarter?			
Predictive Analytics			
• It deals with the future. It deals with the question – 'What will happen in future given this data?'.			
• This involves the application of algorithms to identify the patterns to predict			
the future.			
• The entire course of machine learning is mostly about predictive analytics			
and forms the core of this book.			
Predicting maintenance issues, Predicting article popularity			
Prescriptive Analytics			
• It is about the finding the best course of action for the business			
organizations.			
• Prescriptive analytics goes beyond prediction and helps in decision making			
by giving a set of actions.			
• It helps the organizations to plan better for the future and to mitigate the			
risks that are involved.			
 Automatic adjustment of product pricing based on customer demand and 			
external factors.			
			_
Explain Flat files and list the popular spreadsheet formats with the relevant	[05]	CO2	L
examples.			
These are the simplest and most commonly available data source. It is also the			
cheapest way of organizing the data. These flat files are the files where data is			
stored in plain ASCII or EBCDIC format. (Extended binary coded decimal			
interchange code)			
Minor changes of data in flat files affect the results of the data mining algorithms.			
Hence, flat file is suitable only for storing small dataset and not desirable if the			
· · · · · · · · · · · · · · · · · · ·			
dataset becomes larger.			
Some of the popular spreadsheet formats are listed below:	1		

• TSV files – TSV stands for Tab separated values files where values are separated by Tab.		
Both CSV and TSV files are generic in nature and can be shared. There are many tools like Google Sheets and Microsoft Excel to process these files.		
Let the data points be $\binom{2}{6}$ and $\binom{1}{7}$ Apply PCA and find the transformed	[10]	CO2
data. Apply reverse and prove that PCA Works.		
Solution : One can combine two vectors into a matrix as follows:		
The mean vector can be computed as Eq. (2.53) as follows: $\left(\frac{2+1}{2}\right)$		
$\mu = \begin{pmatrix} \frac{2+1}{2} \\ \frac{6+7}{6.5} \end{pmatrix} = \begin{pmatrix} 1.5 \\ 6.5 \end{pmatrix}$		
As part of PCA, the mean must be subtracted from the data to get the adjusted data:		
$x_1 = \begin{pmatrix} 2 - 1.5 \\ 6 - 6.5 \end{pmatrix} = \begin{pmatrix} 0.5 \\ 0.5 \end{pmatrix}$		
$x_{1} = \begin{pmatrix} 2 - 1.5 \\ 6 - 6.5 \end{pmatrix} = \begin{pmatrix} 0.5 \\ -0.5 \end{pmatrix}$ $x_{2} = \begin{pmatrix} 1 - 1.5 \\ 7 - 6.5 \end{pmatrix} = \begin{pmatrix} -0.5 \\ 0.5 \end{pmatrix}$		
One can find the covariance for these data vectors. The covariance can be obtained using Eq. (2.54):		
$m_{1} = \begin{pmatrix} 0.5 \\ -0.5 \end{pmatrix} (0.5 - 0.5) = \begin{pmatrix} 0.25 - 0.25 \\ -0.25 & 0.25 \end{pmatrix}$		
$m_2 = \begin{pmatrix} -0.5 \\ 0.5 \end{pmatrix} \begin{pmatrix} -0.5 & 0.5 \end{pmatrix} = \begin{pmatrix} 0.25 & -0.25 \\ -0.25 & 0.25 \end{pmatrix}$		
The final covariance matrix is obtained by adding these two matrices as:		
$C = \begin{pmatrix} 0.5 & -0.5 \\ -0.5 & 0.5 \end{pmatrix}$		
The eigen values and eigen vectors of matrix C can be obtained (left as an exercise) as $\lambda_1 = 1$,		
$\lambda_1 = 0$. The eigen vectors are $\begin{pmatrix} -1\\1 \end{pmatrix}$ and $\begin{pmatrix} 1\\1 \end{pmatrix}$. The matrix A can be obtained by packing the		
eigen vector of these eigen values (after sorting it) of matrix C. For this problem, $A = \begin{pmatrix} -1 & 1 \\ 1 & 1 \end{pmatrix}$.		

	$A = \begin{pmatrix} -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}$								
	One can check that the <u>PCA</u> matrix A is orthogonal. A matrix is orthogonal is $A^{-1} = A$ and								
A	$AA^{-1} = I.$ $AA^{T} = \begin{pmatrix} -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}$ $= \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ The transformed matrix y using Eq. (2.55) is given as:								
		anea marary as	$y = A \times$	_					
		Recollect tha	t $(x-m)$ is the adjus	ted matrix.					
	Recollect that $(x-m)$ is the adjusted matrix. $y = A(x-m) = \begin{pmatrix} -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -0.5 & 0.5 \end{pmatrix}$ $= \begin{pmatrix} -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{2} & \frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2} \end{pmatrix} \left(\begin{array}{c} for \ convenience \ 0.5 = \frac{1}{2} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ for \ convenience \ 0.5 = \frac{1}{2} \\ for \ convenience \ 0.5 = \frac{1}{2} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}$								
			(2 2)		. 1 (: (
	T	nererore, one can	infer the original i	is obtained Withou	it any ioss of info	rmation.			
6 (a)	Apply Find-S	algorithm fo	r the below tr	aining datase	t consists of 5	5 instances.			
	Eyes	Nose	Head	Fcolor	Hair	Smile			
	Round	Triangle	Round	Purple	Yes	Yes			
	Square	Square	Square	Green	Yes	No	[07]	CO2	L3
	Square	Triangle	Round	Yellow	Yes	Yes			
	Round	Triangle	Round	Green	No	No			
	Square	Square	Round	Yellow	Yes	Yes			
S	G = { '?', '?', '?','?'} S = {'Φ', 'Φ', 'Φ',, 'Φ'}								

Result: Hypothesis			
h = < ? ? round ? yes >			
Find the Covariance of the data $X = \{4,5,6,7,9\}$, and $Y = \{16,25,36,49,56\}$ $E(X) = 6.2$, $E(Y) = 36.4$, $Cov(X,Y) = 24.588$	[03]	CO2	L3

Faculty Signature CCI Signature HOD Signature