

USN

Internal Assessment Test 1 – March 2025

Sub: Database Management System
Sub

Code:
BCS403 Branch: CSE

Question Paper MARKS CO RBT

1 Differentiate the following concepts with relevant example:

i. Database Schema vs Database State

ii. Logical independence vs Physical independence

iii. Composite attribute vs Multivalued attribute

iv. Primary Key vs Super Key

v. Strong entity vs Weak entity

[10M] CO1 L2

2 Consider the database schemas as Employee (E_id, E_name, salary, age, address) and

Write SQL statements to:

i. Create the Employee table with primary key constraint and not null constraint.

ii. Insert 5 records in the Employee table

iii. Retrieve names of all employees whose age is greater than 25

iv. Delete record of the Employee named “Hari”.

v. Update salary of the Employee named “Sam” by 15%.

[10M] CO2 L3

3

(a)

Describe the Three-schema architecture with a neat diagram. Relate the different data models

with this architecture.

[5M] CO1 L2

(b) Discuss the main characteristics of the database approach. [5M] CO1 L2

4 Consider the following scenario of a Bank database:

Bank have Customer. Banks are identified by a name, code, address of main office. Banks have

branches. Branches are identified by a branch_no., branch_name, address. Customers are

identified by name, cust-id, phone number, address. Customer can have one or more accounts.

Accounts are identified by account_no., acc_type, balance. Customer can avail loans. Loans

are identified by loan_id, loan_type and amount. Account and loans are related to bank’s

branch.

For the above-mentioned scenario draw (show all types of constraints as applicable):

(i) Schema diagram

(ii) ER Diagram

[10M] CO1 L3

 5 Consider the database schema: Faculty (ID, Name, Dept, Sal, Address)

Write SQL statements to:

i. Find the maximum, minimum, total salary of Faculty members.

ii. Find the count of faculty in each Dept.

iii. Sort all the faculty members in descending order of their ID.

iv. Find the highest salary of CSE dept faculty.

v. Change the datatype of Sal attribute from int to float.

[10M] CO2 L3

6 Suppose there is a banking database which comprises following tables :

(i) Customer(Cust_name, Cust_street, Cust_city) (ii) Loan (Branch_name, Loan_number,

Amount) (iii) Depositor(Cust_name, Account_number) & (iv) Borrower(Cust_name,

Loan_number)

Q1) Find the names of all the customers who have taken a loan from the bank and also have an

account at the bank.

Q2) Find the loan amount of all the borrowers who have taken a loan from the bank

Q3) Rename the Loan relation to Loan-Details and also change the attribute Loan_number to

Loan-no

Q4) List only Customer names who stays in Bangalore City

[10M] CO1 L2

Scheme & Solution

1 Differentiate the following concepts with relevant example:

i) Database Schema vs Database State

ii) Logical independence vs Physical independence

iii) Composite attribute vs Multivalued attribute

iv) Primary Key vs Super Key

v) Strong entity vs Weak entity

[5Q*2M=

10M]

CO1 L2

 (i) Database Schema vs Database State

Database Schema:

• The schema is the structure or blueprint of the database. It defines how the data

is organized, including tables, columns, data types, relationships, constraints,

and indexes.

• It is essentially a design or framework that tells you what kind of data can be

stored in the database, how it can be stored, and the relationships between

various pieces of data.

Example: Let's say we are designing a database for a library system. The schema could

be as follows:

• Tables:

o Books table with columns like book_id, title, author,

published_year, etc.

o Members table with columns like member_id, name, email, phone, etc.

o BorrowedBooks table with columns like borrow_id, member_id,

book_id, borrow_date, return_date, etc.

Database State:

• The state of the database refers to the current content of the database at a

particular moment in time. It is the actual data that resides in the tables as per the

schema.

• This is the instance or the snapshot of the database, showing all the actual

records, values, and their current state in all the tables at any given point in time.

Example: Let's assume some data has already been inserted into the library system's

database:

• Books table:
o (1, 'The Catcher in the Rye', 'J.D. Salinger', 1951)
o (2, 'To Kill a Mockingbird', 'Harper Lee', 1960)

• Members table:
o (1, 'Alice Johnson', 'alice@example.com', '555-1234')
o (2, 'Bob Smith', 'bob@example.com', '555-5678')

(ii) Logical independence vs Physical independence

• Logical independence refers to the ability to change the logical schema (the

conceptual design) of the database without affecting the external schema (user

views) or the application programs.

Example: Suppose we have a database system with the following structure for an

Employee table:

• Logical Schema (Conceptual Level):

o Table Employee with columns: emp_id, emp_name, emp_salary.

Now, you want to split the Employee table into two separate tables for better data

organization:

• EmployeePersonal table with columns: emp_id, emp_name.

• EmployeeSalary table with columns: emp_id, emp_salary.

If the database has logical independence, you can change the logical schema without

affecting the external schema (user views or application programs). Users and

applications should still be able to access the data without knowing that the table has

been split into two.

• Physical independence refers to the ability to change the physical storage

structure (how the data is stored, indexed, or partitioned) without affecting the

logical schema or the application programs.

• This means you can optimize or modify the storage mechanisms (such as

indexing, file organization, or storage devices) for performance improvements

without impacting how users access the data or the logical structure of the

database.

Example: Let's say that you have an Employee table, and the data is stored in a

particular format or on a specific set of disks. If you change the way the data is

physically stored (for example, using a new indexing technique, partitioning the table,

or moving the database to a new server), physical independence ensures that the

logical schema (how the data is organized conceptually) and the application programs

are unaffected by these physical changes.

Physical Independence Example:

• Initially, the Employee table is stored on a single disk.

• Later, you decide to store the table on multiple disks (partitioning), or use a B-

tree index to optimize query performance for searching employees by their

emp_id.

(iii) Composite attribute vs Multivalued attribute

• A composite attribute is an attribute that can be divided into smaller sub-

attributes, which are more meaningful individually. These sub-attributes can

collectively represent the information of the composite attribute.

• Essentially, it’s an attribute that can be broken down into other attributes.

Example: Consider an entity Person. One of the attributes of this entity could be

Address. An Address could be broken down into several sub-attributes, such as:

• Street
• City
• State
• ZipCode

In this case, the Address attribute is a composite attribute because it can be divided

into smaller components (sub-attributes) that represent specific pieces of information

about the address.

• A multivalued attribute is an attribute that can have multiple values for a

single entity. This means that an entity can have more than one value for this

attribute at the same time.

• For example, a person can have multiple phone numbers, multiple email

addresses, or multiple skills.

Example: Consider an entity Employee. An Employee can have multiple phone

numbers. This means the PhoneNumbers attribute is a multivalued attribute because

it can have multiple values for a single employee.

(iv) Primary Key vs Super Key

• A super key is any combination of attributes (columns) that can uniquely identify a

record (row) in a table.

• It can be a single attribute or a set of attributes.

• A table can have multiple super keys, as adding more attributes to an existing key

(even if those extra attributes are not necessary for uniqueness) still qualifies it as a

super key.

• A primary key is a special type of super key that is selected to uniquely identify

records in a table.

• A primary key must satisfy two main conditions:

1. Uniqueness: Each value in the primary key must be unique for each record.

2. Non-nullability: No part of the primary key can have a null value.

• There can only be one primary key for a table, but it could be made up of one or

more attributes (i.e., it could be a composite key).

(v) Strong entity vs Weak entity

• A strong entity (also called a regular entity) is an entity that can exist

independently of any other entity. It has a primary key that uniquely identifies each

instance of the entity.

• Strong entities have their own unique identifiers (attributes that can uniquely identify

an instance of the entity) and don't depend on any other entity for their identification.

• A weak entity is an entity that cannot exist independently. It depends on a strong

entity (called the owner entity) for its identification.

• A weak entity does not have a unique primary key on its own. Instead, it uses a

partial key (also called a discriminator) in combination with the primary key of the

strong entity to form a composite key that uniquely identifies instances of the weak

entity.

• A weak entity is typically represented with a double rectangle in an ER diagram

2 Consider the database schemas as Employee (E_id, E_name, salary, age, address) and

Write SQL statements to:

i) Create the Employee table with primary key constraint and not null constraint.

ii) Insert 5 records in the Employee table

iii) Retrieve names of all employees whose age is greater than 25

iv) Delete record of the Employee named “Hari”.

v) Update salary of the Employee named “Sam” by 15%.

[5Q*2M=

10M]

CO2 L3

 i)

CREATE TABLE Employee (

 E_id INT PRIMARY KEY, -- Primary key on E_id

 E_name VARCHAR(255) NOT NULL, -- NOT NULL constraint on E_name

 salary DECIMAL(10, 2) NOT NULL, -- NOT NULL constraint on salary

 age INT NOT NULL, -- NOT NULL constraint on age

 address VARCHAR(255) NOT NULL -- NOT NULL constraint on address

);

ii)

INSERT INTO Employee (E_id, E_name, salary, age, address)

VALUES (1, 'John', 50000.00, 30, '123 Main St');

INSERT INTO Employee (E_id, E_name, salary, age, address)

VALUES (2, 'Sam', 60000.00, 27, '456 Oak St');

INSERT INTO Employee (E_id, E_name, salary, age, address)

VALUES (3, 'Hari', 45000.00, 24, '789 Pine St');

INSERT INTO Employee (E_id, E_name, salary, age, address)

VALUES (4, 'Alice', 55000.00, 28, '101 Maple St');

INSERT INTO Employee (E_id, E_name, salary, age, address)

VALUES (5, 'Bob', 48000.00, 35, '202 Birch St');

iii)

SELECT E_name

FROM Employee

WHERE age > 25;

iv)

DELETE FROM Employee

WHERE E_name = 'Hari';

v)

UPDATE Employee

SET salary = salary * 1.15

WHERE E_name = 'Sam';

3

(a)

Describe the Three-schema architecture with a neat diagram. Relate the different data

models with this architecture.

[5M] CO1 L2

 The Three-Schema Architecture is a framework used in Database Management Systems

(DBMS) to separate user views, the logical structure of data, and the physical storage of

data. This architecture helps achieve data independence, allowing changes in one level of

the database schema without affecting the others.

The architecture consists of three levels:

1. External Schema (View Level)

2. Conceptual Schema (Logical Level)

3. Internal Schema (Physical Level)

(b) Discuss the main characteristics of the database approach. [5M] CO1 L2

1. Self-describing nature of a database system

2. Insulation between programs and data

3. Data Abstraction:

4. Support of multiple views of the data:

5. Sharing of data and multi-user transaction processing

4 Consider the following scenario of a Bank database:

Bank have Customer. Banks are identified by a name, code, address of main office. Banks have

branches. Branches are identified by a branch_no., branch_name, address. Customers are

identified by name, cust-id, phone number, address. Customer can have one or more accounts.

Accounts are identified by account_no., acc_type, balance. Customer can avail loans. Loans

are identified by loan_id, loan_type and amount. Account and loans are related to bank’s

branch.

For the above-mentioned scenario draw (show all types of constraints as applicable):

(i) Schema diagram

(ii) ER Diagram

[4M+6M] CO1 L3

 5 Consider the database schema: Faculty (ID, Name, Dept, Sal, Address)

Write SQL statements to:

i) Find the maximum, minimum, total salary of Faculty members.

ii) Find the count of faculty in each Dept.

iii) Sort all the faculty members in descending order of their ID.

iv) Find the highest salary of CSE dept faculty.

v) Change the datatype of Sal attribute from int to float.

[5Q*2M=

10M]

CO2 L3

i) Find the maximum, minimum, total salary of Faculty members.

SELECT

 MAX(Sal) AS Max_Salary,

 MIN(Sal) AS Min_Salary,

 SUM(Sal) AS Total_Salary

FROM Faculty;

ii) Find the count of faculty in each Dept.

SELECT Dept, COUNT(*) AS Faculty_Count

FROM Faculty

GROUP BY Dept;

iii) Sort all the faculty members in descending order of their ID.

SELECT * FROM Faculty

ORDER BY ID DESC;

iv) Find the highest salary of CSE dept faculty.

SELECT MAX(Sal) AS Highest_Salary

FROM Faculty

WHERE Dept = 'CSE';

v) Change the datatype of Sal attribute from int to float.

ALTER TABLE Faculty

MODIFY COLUMN Sal FLOAT;

6 Suppose there is a banking database which comprises following tables :

(i) Customer(Cust_name, Cust_street, Cust_city) (ii) Loan (Branch_name, Loan_number,

Amount) (iii) Depositor(Cust_name, Account_number) & (iv) Borrower(Cust_name,

Loan_number)

Q1) Find the names of all the customers who have taken a loan from the bank and also have an

account at the bank.

Q2) Find the loan amount of all the borrowers who have taken a loan from the bank

Q3) Rename the Loan relation to Loan-Details and also change the attribute Loan_number to

Loan-no

Q4) List only Customer names who stays in Bangalore City

[4Q*2.5M=

10M]

CO1 L2

Q1) Find the names of all the customers who have taken a loan from the bank and also have an

account at the bank.

πCust_name(Borrower)∩πCust_name(Depositor)

Explanation:

• Projection (π) is used to extract the Cust_name attribute from both the

Borrower and Depositor relations.

• Intersection (∩) retrieves customers present in both relations, ensuring they

have both a loan and an account.

Q2) Find the loan amount of all the borrowers who have taken a loan from the bank

πCust_name,Amount(σBorrower.Loan_number=Loan.Loan_number

(Borrower⋈Loan))

Explanation:

• Selection (σ) ensures that only matching Loan_number values from Borrower

and Loan are considered.

• Natural Join (⨝) is performed between Borrower and Loan on Loan_number

to combine borrower details with loan amounts.

• Projection (π) extracts only Cust_name and Amount.

Q3) Rename the Loan relation to Loan-Details and also change the attribute Loan_number to

Loan-no

ρLoan-Details(Branch_name, Loan-no, Amount)(Loan)

Explanation:

• Rename (ρ) is used to change the table name from Loan to Loan-Details.

• Rename (ρ) is used again to rename the column Loan_number to Loan-no.

Q4) List only Customer names who stays in Bangalore City

πCust_name(σCust_city=′Bangalore′(Customer))

Explanation:

• Selection (σ) filters out customers who live in Bangalore.

• Projection (π) extracts only the Cust_name column.

