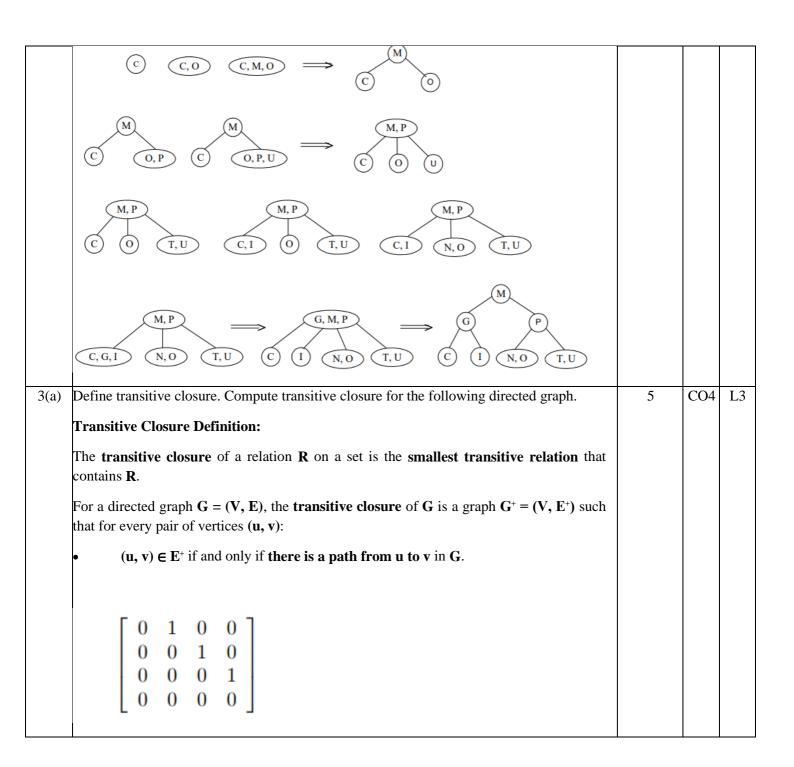
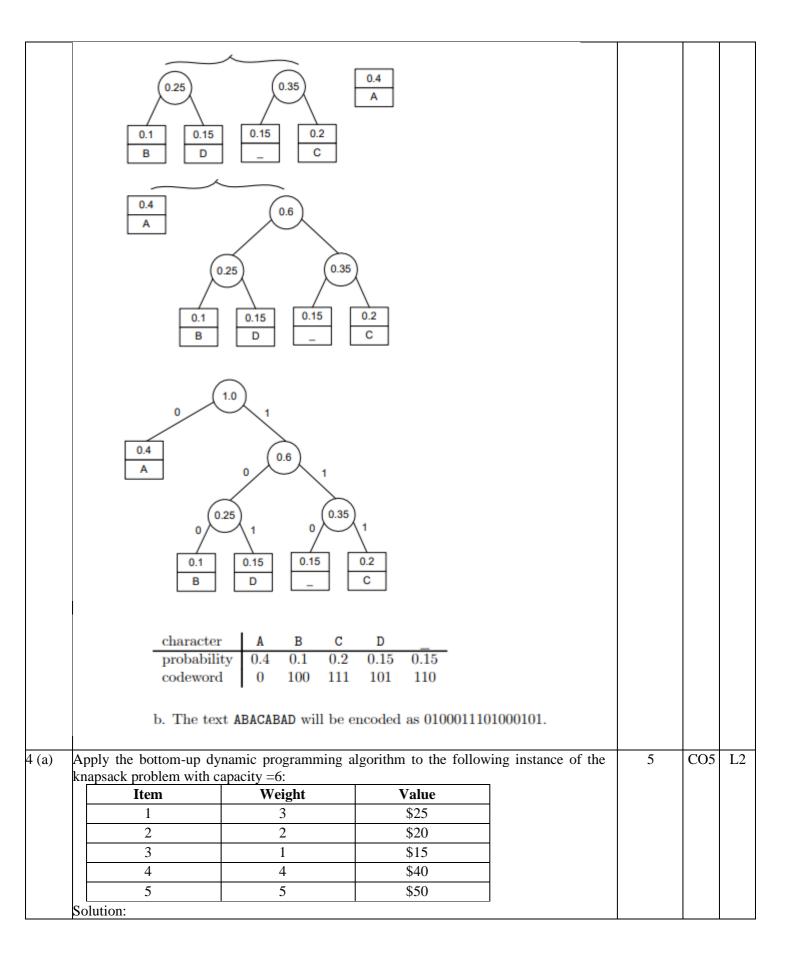
USN					

Internal Assessment Test 2 – May 2025

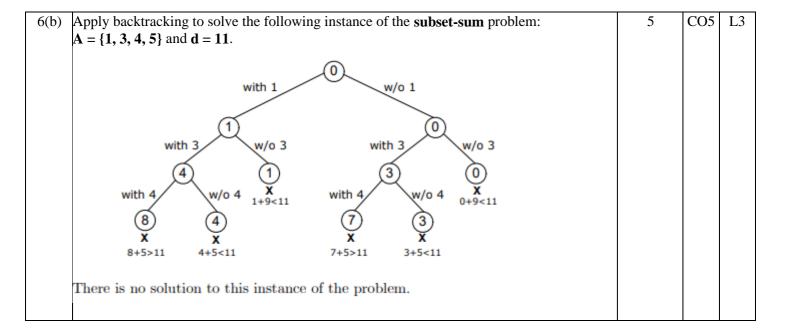
Sub:	Analysis and Design	of Algorit		115505511101		Sub Code:	BCS401	Branch:	CSE		
Date:			0 mins	Max Mark	s: 50	Sem / Sec:		, B & C)		OB	E
				E FULL Q					RKS		RBT
1(a)	Define AVL tree. Ostep of key insertion	Construct	an AVL tr				2, 4 indicating	each	5	CO3	L2
1(b)	a. Construct the sTCCTATTCTb. Apply Horspo	algorithm. A DNA sequence consists of a text on the alphabet {A, C, G, T} and the gene or gene segment is the pattern.								CO3	L3
2(a)	Define Heap. Con algorithm	structing	a heap fo	or the list 1	, 8, 6,	5, 3, 7, 4 1	by the bottom	-up	5	CO3	L2
2(b)	Construct a 2-3 tree for the list C, O, M, P, U, T, I, N, G. Use the alphabetical order of the letters and insert them successively starting with the empty tree.								5	CO3	L3
3(a)	Define transitive closure. Compute transitive closure for the following directed graph. $ \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix} $								5	CO4	L3
3(b)	Construct a Huffman Code. We are given the following characters and probabilities:								5	CO4	L3
	Character	A	В	C	D	_					
	Probability	0.4	0.1	0.2	0.15	0.15					
	Encode the text AF										
4 (a)	Apply the bottom-			nming algor	ithm to	the following	ng instance of	the	5	CO5	L2
	knapsack problem with capacity =6: Item Weight Value										
	1		3		\$25						
	2		2		\$20						
	3		1		\$15						
	4		4		\$40						
	5		5		\$50						


4 (b)	1 2	rogramming using the Knapsack problem usin	-	approach. Write the on method.	5	CO5	L2
5(a)	knapsack problem g	ethod to obtain optima iven capacity, M=60. Find the total profit ea	Weight, $W = \{5,10,2\}$		5	CO5	L3
5(b)	Solve the following algorithm with capaci	instance of the knap ty W=16	sack problem by th	e branch-and-bound	5	CO5	L3
	Item	Weight	Value				
	1	10	\$100				
	2	7	\$63				
	3	8	\$56				
	4	4	\$12				
6(a)	Draw the state space	tree to generate solution	ns to 4-queen's proble	em.	5	CO5	L2
6(b)	Apply backtracking to $A = \{1, 3, 4, 5\}$ and d	o solve the following in = 11.	stance of the subset-s	sum problem:	5	CO5	L3


Internal Assessment Test 2 – May 2025 SOLUTIONS

Sub:	Analysis and Design of Algorithms	Sub Code: BCS401		Branch:	CSE			
				MA	RKS	C O	RB T	
	Define AVL tree. Construct an AVL tree of the list of keys: step of key insertion and rotation. An AVL tree is a self-balancing binary search tree (BST) between the left and right subtrees (called the balance facto	where the d i	ifference in he	eight	5	CO3	L2	
	Key Properties:							
1	• For every node in the tree: Balance Factor = Height of Left Subtree - Height of Right Sand it must be -1, 0, or +1.	ubtree						
	• Whenever an insertion or deletion operation causes this range, the tree performs rotations (single or double) to a		~	side				
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0 1 3	1 5 0					
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$							
	Consider the problem of searching for genes in DNA algorithm. A DNA sequence consists of a text on the alphabor gene segment is the pattern.				5	CO3	L3	
	a. Construct the shift table for the following gene segn TCCTATTCTT	ment of your	chromosome 1	0:				

a) Define Hea A heap is a Types of H Max-Heap values of i Min-Heap values of i	e l	or the looks Heap.	Con	follo	ows:	a hea	$\frac{c}{t(c)}$	A 5	C C 2 1	G .0	abe	t {A	, c,	G, T	c}, the shift			
Define Hea A heap is a Types of H Max-Heap values of i Min-Heap values of i	e l e H	looks	Con	follo	ows:	a hea	$\frac{c}{t(c)}$	A 5	C C 2 1	G .0	Т	t {A	, C,	G, T	c}, the shift			
A heap is a Types of I Max-Heap values of i Min-Heap values of i	p i	•	omp				•	the list	1 0									
Types of I Max-Heap values of i Min-Heap values of i		is a c c	-	lete l	bina	ry tr			1, 0,	6, 5,	3, 7,	4 by	the	botto	m-up algorithm	5	CO3	
Max-Heap values of i Min-Heap values of i	ωf					•	ee tha	at satisfi	ies the	e hea	p pr	oper	ty.					
values of i Min-Heap values of i algorith	Types of Heap:																	
values of i		-			_				-			s gre	eater	thar	n or equal to the			
		-			_				-			e is l	ess t	than	or equal to the			
	or	$_{ m rithm}$	(a	root	of	a su	btree	e being	g hea	pifie	ed is	sho	wn	in b	old):			
1																		
1 (0	7	5	3	6	4	7	-	O	•		0	0	1			
1		8	7	5	3	6	4	\Rightarrow	8	5	7	1	3	6	4			
		8 8 8																
Construct		8 8				liet 4	C, O.	M, P, U	J, T, I	, N, (G. U	se th	e alp	habe	tical order of the	5	CO3	


	$R^{(0)} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$	1 0 0 1 0 0 0 0	$\begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$	$R^{(}$	$ \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix} $	1 0 0 0	0 1 0 0	$\begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$			
	$R^{(2)} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$	1 1 0 1 0 0 0 0	$\begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$	R^0	$^{(3)} = \begin{bmatrix} 0\\0\\0\\0 \end{bmatrix}$	1 0 0 0	1 1 0 0	1 1 1 0			
	$R^{(4)} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$	1 1 0 1 0 0 0 0	$\begin{bmatrix} 1 \\ 1 \\ 1 \\ 0 \end{bmatrix} = 2$	Γ							
3(b) a.	Construct obabilities:	a Huffn	nan Code.	We are	given the	followi	ing o	characters and	5	CO4	L3
	Character				_			7			
	Character	A	В	C	D	_					
	Probability	0.4	0.1	0.2	0.15	0.15	5	-			

	1. a. capacity j			
	i 0 1 2 3 4 5 6			
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
	$w_1 = 3, v_1 = 25$ 1 0 0 0 25 25 25 25			
	$w_1 = 0$, $v_1 = 20$ 1 0 0 0 20 25 25 25 25 $w_2 = 20$ 2 0 0 0 20 25 25 45 45			
	$w_3 = 1, v_3 = 15$ 3 0 15 20 35 40 45 60			
	$w_4 = 4, v_4 = 40$ 4 0 15 20 35 40 55 60			
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			
	The maximal value of a feasible subset is $F[5,6]=65$. The optimal subset is {item 3, item 5}.			
4 (b)	Explain Dynamic Programming using the Memory Function approach. Write the algorithm for the 0/1 Knapsack problem using the Memory Function method. Problem with Direct Top-Down Approach: Solves the same subproblems multiple times, especially in recursive solutions. Leads to inefficient algorithms—often exponential time complexity. Classic Bottom-Up Dynamic Programming: Fills a table from smallest to largest subproblem. Every subproblem is solved once. Drawback: All subproblems are solved, even if some are not needed for the final result. Combining Strengths: Memoization (Top-Down + Table) Aims to solve only the necessary subproblems, and only once. Uses a top-down recursive approach (like naive recursion). Adds a memory table (like in bottom-up DP). How It Works: A table (cache) is created and initialized with a special value (e.g., null or -1) indicating "not yet computed." When a recursive function is called: If pes, it returns the cached result. If no, it computes the value recursively, stores it in the table, and returns it. Benefits: Avoids redundant calculations. Saves time compared to naive recursion. More space-efficient than bottom-up DP in some cases (solves only needed subproblems).	5	CO5	L2

ALGORITHM $MFKnapsack(i, j)$ //Implements the memory function method for the knapsack problem //Input: A nonnegative integer i indicating the number of the first // items being considered and a nonnegative integer j indicating // the knapsack capacity //Output: The value of an optimal feasible subset of the first i items //Note: Uses as global variables input arrays $Weights[1n]$, $Values[1n]$, //and table $F[0n, 0W]$ whose entries are initialized with -1 's except for //row 0 and column 0 initialized with 0 's if $F[i, j] < 0$ if $j < Weights[i]$ $value \leftarrow MFKnapsack(i-1, j)$ else $value \leftarrow max(MFKnapsack(i-1, j), Values[i] + MFKnapsack(i-1, j-Weights[i]))$ $F[i, j] \leftarrow value$ return $F[i, j]$			
5(a) Apply the greedy method to obtain optimal solution to continuous and discrete the	5	CO5 I	L3
knapsack problem given capacity, $M=60$. Weight, $W=\{5,10,20,30,40\}$ and Profit $P=\{30,20,100,90,60\}$ Find the total profit earned			
5ax Areedy method (knaprack problem)			
M = 60			
Ttem Weight Profit VI			
Hi (Manager)			
2 10 20 2.1.111			
3 20 100 5			
30 40 3			
5 40 60 1.5			
devrange in duranding order based on vi valu			
Item weight Profit VI			
5 30 6			
20 100 5			
30 90 3			
10 20 2			
40 60 1.5			

					1		
	Discoute	knamack	proplem =	i a r			
	3	0 + 100 + 9	0=220. (1	profit)			
	Continuou	r knapra	ok problem	^ , .			
	30	+ 100+90.	+ 10 = 230	(propert)			
	Solve the following instar with capacity W=16	nce of the knapsack pro	oblem by the branch-ar	nd-bound algorithm	5	CO5	L3
	Item	Weight	Value	7			
	1	10	\$100	-			
	2	7	\$63				
	3	8	\$56				
	4	4	\$12				
	X with 3 not feasible 7 w = 18	with 1 $v = 10, v = 100$ $v = 142$ $v = 10, v = 100$ $v = 142$ $v = 10, v = 100$ $v = 118$ $v = 10, v = 100$ $v = 118$ $v = 10, v = 100$ $v = 118$ $v = 10, v = 100$	with 2 $w = 7, v = 63$ $ub = 126$ with 3 $w = 15, v = 119$ $ub = 122$ $w = 15, v = 119$ $ub = 119$ optimal solution ble $\{2,3\}$	2 $v = 0, v = 0$ $v = 144$ $v = 0, v = 0$ $v = 112$ $v $			
6(a)	Draw the state space tree	to generate solutions t	o 4-queen's problem.		5	CO5	L2

CI CCI HOD