


Eliminate Left Recursion 

 LL(1) grammar should be free from left recursion. 

 Example: 

 E → E + T | T   (left recursive) 

is rewritten as: 

E → T E’ 

E’ → + T E’ | ε 

 

2. Left Factoring 

 If a non-terminal has two or more productions beginning with the same prefix, 

factor them to remove ambiguity. 

 Example: 

 A → αβ1 | αβ2 

becomes: 

A → αA’ 

A’ → β1 | β2 

 

3. Compute FIRST sets 

 FIRST(X) = set of terminals that can appear first in some string derived from X. 

 Rules: 

o If X is a terminal → FIRST(X) = {X} 

o If X → ε → include ε in FIRST(X) 

o If X → Y1Y2…Yn → add FIRST(Y1). If Y1 can derive ε, then also add 

FIRST(Y2), and so on. 

 

4. Compute FOLLOW sets 

 FOLLOW(A) = set of terminals that can appear immediately to the right of A in 

some sentential form. 



 Rules: 

o Place $ (end marker) in FOLLOW(S) for the start symbol S. 

o If there is a production A → αBβ, then everything in FIRST(β) except ε is 

placed in FOLLOW(B). 

o If there is a production A → αB or A → αBβ where ε ∈ FIRST(β), then 

everything in FOLLOW(A) is placed in FOLLOW(B). 

 

5. Construct the LL(1) Parsing Table 

 For each production A → α: 

1. For each terminal a ∈ FIRST(α), put A → α in M[A, a]. 

2. If ε ∈ FIRST(α), then for each b ∈ FOLLOW(A), put A → α in M[A, b]. 

 

6. Check for Conflicts 

 If any cell of the parsing table contains more than one production, the grammar 

is not LL(1). 

 A grammar is LL(1) iff: 

o It is unambiguous, 

o No left recursion, 

o Left factored, 

o Parsing table has no multiple entries in any cell. 

 

 

1. FIRST 

👉 Definition: 

FIRST(X) = the set of terminals that can appear first in some string derived from X. 

 If X is a terminal → FIRST(X) = {X} 

 If X → ε → add ε to FIRST(X) 

 If X is a non-terminal: 



o For a production X → Y1Y2…Yn: 

 Add FIRST(Y1) to FIRST(X). 

 If Y1 can produce ε, then also add FIRST(Y2), and so on. 

 If all Y1...Yn can derive ε, then add ε to FIRST(X). 

🔹 Example: 

Grammar: 

E → T E' 

E' → + T E' | ε 

T → F T' 

T' → * F T' | ε 

F → (E) | id 

 FIRST(F) = { ( , id } 

 FIRST(T) = { ( , id } (because T → F …) 

 FIRST(E) = { ( , id } 

 FIRST(E') = { + , ε } 

 FIRST(T') = { * , ε } 

 

2. FOLLOW 

👉 Definition: 

FOLLOW(A) = the set of terminals that can appear immediately to the right of A in 

some sentential form. 

 If S is the start symbol → put $ in FOLLOW(S) (end of input). 

 If there is a production A → αBβ: 

o Everything in FIRST(β) (except ε) goes to FOLLOW(B). 

 If there is a production A → αB or A → αBβ where ε ∈ FIRST(β): 

o Everything in FOLLOW(A) goes to FOLLOW(B). 

🔹 Example: (same grammar) 

Start symbol = E, so $ ∈ FOLLOW(E). 



 From E → T E' → FOLLOW(T) includes FIRST(E') = { + , ε }. 

o So FOLLOW(T) = { + , ) , $ } (because ε ∈ FIRST(E'), so FOLLOW(E) ⊆ 

FOLLOW(T)). 

 From E' → + T E' → FOLLOW(T) includes FIRST(E') = { + , ε }. 

 From F → (E) → FOLLOW(E) includes ). 

Final sets: 

 FOLLOW(E) = { ) , $ } 

 FOLLOW(E') = { ) , $ } 

 FOLLOW(T) = { + , ) , $ } 

 FOLLOW(T') = { + , ) , $ } 

 FOLLOW(F) = { * , + , ) , $ } 

 

Bottom-Up Parsing (Shift–Reduce Parsing) 

✅ In short: 

Bottom-up parsing starts from the input string (tokens) and works backwards toward 

the start symbol by reducing substrings to non-terminals until the start symbol is 

reached. 

 

Steps in Bottom-Up Parsing 

1. Input: Sequence of tokens from the lexical analyzer. 

2. Shift: Move (shift) the next input symbol onto the parsing stack. 

3. Reduce: If the symbols on top of the stack match the right-hand side (RHS) of a 

production, replace them with the corresponding non-terminal (LHS). 

4. Accept: If the stack contains only the start symbol and the input is fully read, the 

string is accepted. 

5. Error: If no valid shift/reduce is possible → parsing fails. 

 

Example 

Grammar: 



E → E + T | T 

T → T * F | F 

F → (E) | id 

Input: 

id + id * id 

Parsing Process (Shift–Reduce): 

 Stack: [ ] , Input: id + id * id $ 

 Shift: [id] 

 Reduce: [F] (since F → id) 

 Reduce: [T] (since T → F) 

 Reduce: [E] (since E → T) 

 Shift: [E, +] 

 Shift: [E, +, id] 

 Reduce: [E, +, F] 

 Reduce: [E, +, T] 

 Shift: [E, +, T, *] 

 Shift: [E, +, T, *, id] 

 Reduce: [E, +, T, *, F] 

 Reduce: [E, +, T] (since T → T * F) 

 Reduce: [E] (since E → E + T) 

 Accept ✅ 

 

Types of Bottom-Up Parsers 

1. Operator-Precedence Parser 

2. LR Parsers (most powerful & widely used) 

o SLR(1) (Simple LR) 

o Canonical LR(1) 



o LALR(1) (Lookahead LR, most common in compilers like YACC/Bison) 

 

Comparison with Top-Down Parsing 

 Top-Down (LL): starts from start symbol → derives string. 

 Bottom-Up (LR): starts from input string → reduces to start symbol. 

 

👉 Do you want me to also draw a shift–reduce parsing table for this example so you 

see the moves step by step (like in exam-style solutions)? 

 

Definition: 

Pruning means cutting off unnecessary parts of a search tree or grammar 

derivation to reduce complexity, memory, and time. 

It’s like trimming branches of a tree that will never lead to the desired solution. 

 

1. Pruning in Parsing / Compilers 

 In parsing, pruning refers to ignoring invalid or redundant parse trees. 

 Example: In ambiguous grammar, multiple parse trees may be generated → 

pruning removes the ones that don’t fit the parsing strategy (e.g., LL(1) or 

LR(1) table conflicts). 

 Error pruning is used to discard impossible parsing paths early. 

 

2. Pruning in AI (Search Algorithms) 

 In search trees (like minimax in game playing): 

o Alpha-Beta Pruning removes branches that will never affect the final 

decision, so fewer nodes are explored. 

o Example: In chess AI, it avoids checking useless moves. 

 

3. Pruning in Machine Learning 

 In decision trees (like ID3, C4.5, CART): 



o Pruning removes branches that give little or no improvement in 

prediction accuracy. 

o Types: 

 Pre-pruning (early stopping): Stop splitting when further splits are 

not significant. 

 Post-pruning: Build the full tree, then remove weak branches. 

 

Left Recursion in Grammar 

👉 A grammar is left recursive if it has a non-terminal A such that: 

A ⇒+ Aα 

That means, A can derive itself as the leftmost symbol. 

Example: 

E → E + T | T 

Here E → E + T is left recursive. 

 

Algorithm to Eliminate Immediate Left Recursion 

For each non-terminal A with productions: 

A → Aα1 | Aα2 | … | Aαm | β1 | β2 | … | βn 

 Where: 

o Aαi are left recursive (start with A) 

o βj are non-left recursive (don’t start with A) 

We replace them with: 

A  → β1A' | β2A' | … | βnA' 

A' → α1A' | α2A' | … | αmA' | ε 

 

Step-by-Step Example 

Grammar: 



E → E + T | T 

 Here: 

o Left recursive part = E + T (Aα form) 

o Non-left recursive part = T (β form) 

Apply algorithm: 

E  → T E' 

E' → + T E' | ε 

✅ Now grammar is free from left recursion. 

 

Algorithm to Eliminate General Left Recursion (Multiple Non-terminals) 

Sometimes indirect left recursion exists, like: 

A → Bα 

B → Aβ 

General Algorithm (order the non-terminals: A1, A2, …, An) 

For i = 1 to n: 

For each production of Ai → Ajγ where j < i: 

o Replace Aj with its productions. 

Eliminate immediate left recursion on 

LR(0) Items 

👉 An LR(0) item is just a grammar production with a dot (•) somewhere in the 

RHS,showing how much of the input has been "seen" so far. 

Example: For production A → XYZ, the LR(0) items are: 

When a compiler translates source code → machine code, it often uses Intermediate 

Representations (IR) like: 

Quadruples 

Triples 

Indirect Triples 



These are mainly used for representing three-address code (TAC) operations. 

________________________________________ 

1. Quadruple (Quad) Representation 

👉 A quadruple has 4 fields: 

(op, arg1, arg2, result) 

op → operator (e.g., +, -, *, /) 

arg1 → first operand 

arg2 → second operand 

result → location (temporary variable) where result is stored 

✅ Example 

For expression: x = a + b * c 

Three-address code (TAC): 

t1 = b * c 

t2 = a + t1 

x = t2 

Quadruples: 

(*, b, c, t1) 

(+, a, t1, t2) 

(=, t2, -, x) 

________________________________________ 

2. Triple Representation 

👉 A triple has 3 fields: 

(op, arg1, arg2) 

Result is not stored in a separate temporary variable. 

Instead, it is referred to by its position (index) in the table. 

✅ Example (same expression x = a + b * c) 

Triples: 



0: (*, b, c) 

1: (+, a, (0))   ← refers to result of instruction 0 

2: (=, (1), x) 

Here: 

Instruction 0 = b * c 

Instruction 1 = a + result_of(0) 

Instruction 2 = assign result_of(1) to x 

________________________________________ 

3. Indirect Triples 

👉 In indirect triples, we maintain a pointer table (or index table) that refers to 

triples. 

This allows reordering of instructions easily (helpful in optimization). 

✅ Example 

Pointer Table: 

0 → statement 2 

1 → statement 0 

2 → statement 1 

Triples (same as before): 

0: (*, b, c) 

 (+, a, (0)) 

 (=, (1), x) 

ut execution order is given by the pointer table, not the fixed order. 

A  •XYZ 

A → X•YZ 

A → XY•Z 

A → XYZ• 

If the dot is before a non-terminal, then closure rules apply (we expand). 



If the dot is at the end, it means a reduction can be applied. 

 

Steps to Find LR(0) Items 

Augment the grammar 

Add a new start symbol S' → S. 

This helps mark acceptance. 

Construct items 

For each production, place the dot • in all possible positions. 

Compute Closure 

If an item has a dot before a non-terminal, say A → α • B βthen add all 

productions of B with the dot at the beginning (B → •γ) 

to the closure set. 

Repeat until no new items can be added. 

Compute GOTO 

From a set of items I, if the dot is before a symbol X, 

then GOTO(I, X) gives another set of items where the dot is moved past X. 

Essentially, it’s like shifting the dot across X. 

 

Example 

Grammar: 

E → E + T | T 

T → T * F | F 

F → (E) | id 

Step 1: Augment 

E' → E 

Step 2: List LR(0) items 

For each production, put the dot in all positions: 

E' → •E 



E' → E• 

E → •E + T 

E → E • + T 

E → E + •T 

E → E + T• 

E → •T 

E → T• 

T → •T * F 

T → T • * F 

T → T * •F 

T → T * F• 

T → •F 

T → F• 

F → •(E) 

F → (•E) 

F → (E•) 

F → (E)• 

F → •id 

F → id• 

 

✅ These are the LR(0) items for the grammar. 

Next steps (if we want the full canonical collection of LR(0) sets): 

Start with I0 = closure({E' → •E}) 

Apply closure and GOTO repeatedly to construct all item sets (states) for the 

DFA usd in LR parsing. 

Whn a compiler translates source code → machine code, it often 

usesIntermediate Representations (IR) like: 

Quadruples 



Triples 

Indirect Triples 

These are mainly used for representing three-address code (TAC) operations. 

 

1. Quadruple (Quad) Representation 

👉 A quadruple has 4 fields: 

(op, arg1, arg2, result) 

op → operator (e.g., +, -, *, /) 

arg1 → first operand 

arg2 → second operand 

result → locaion (temporary variable) where result is stored 

✅ ExampleFor expression: x = a + b * c 

Three-address code (TAC): 

t1 = b * c 

t2 = a + t1 

x = t2 

Quadruples: 

(*, b, c, t1) 

(+, a, t1, t2) 

(=, t2, -, x) 

 

2. Triple Representation 

👉 A triple has 3 fields: 

(op, arg1, arg2) 

Result is not stored in a separate temporary variable. 

Instead, it is referred to by its position (index) in the table. 

✅ Example (same expression x = a + b * c) 



Triples: 

 0: (*, b, c) 

1: (+, a, (0))   ← refers to result of instruction 0 

2: (=, (1), x) 

Here: 

Instruction 0 = b * c 

Instruction 1 = a + result_of(0) 

Instruction 2 = assign result_of(1) to x 

 

3. Indirect Triples 

👉 In indirect triples, we maintain a pointer table (or index table) that refers to 

triples. 

This allows reordering of instructions easily (helpful in optimization). 

✅ Example 

Pointer Table: 

0 → statement 2 

 → statement 0 

 → statement 1 

Triples (same as before): 

: (*, b, c) 

 (+, a, (0)) 

: (=, (1), x) 

execution order is given by the pointer table, not the fixed order. 

 

ariants of Syntax Tree 

 



When we parse a program, the compiler generates different tree structures as 

intermediate representations. These include: 

 

1. Concrete Syntax Tree (Parse Tree) 

 

Also called derivation tree. 

 

Represents the complete structure of a program according to the grammar. 

 

Contains all grammar symbols (both terminals and non-terminals). 

 

Shows step-by-step derivation. 

 

✅ Example for expression: a + b * c 

 

Root → E 

 

Expands according to grammar: E → E + T, T → T * F, etc. 

 

Very detailed, but often too big for optimization. 

 

2. Abstract Syntax Tree (AST) 

 

A simplified version of the parse tree. 

 

Keeps only the essential structure (operators & operands). 

 



Grammar details (like E, T, F, parenthesis rules) are removed. 

 

✅ Example for a + b * c 

AST would look like: 

 

     (+) 

    /   \ 

  a      (*) 

        /   \ 

       b     c 

 

 

Much more compact → used for semantic analysis & optimization. 

 

3. Directed Acyclic Graph (DAG) for Expressions 

 

Variant of AST where common sub-expressions are shared. 

 

Avoids duplication of repeated expressions → helps in optimization. 

 

✅ Example: a * b + a * b 

 

AST: 

 

   (+) 

  /   \ 

a*b   a*b 



 

 

DAG: 

 

   (+) 

  /   \ 

 (a*b) same node 

 

 

Only one node for a * b, both branches refer to it. 

 

4. Syntax Directed Translation Trees 

 

Extended AST with annotations or attributes (like type info, intermediate code). 

 

Each node may store extra info needed for code generation. 

 

📌 Summary 

Variant Key Feature 

Parse Tree Shows complete grammar derivation (too detailed). 

Abstract Syntax Tree (AST) Simplified version, only essential structure. 

DAG AST with common sub-expression elimination. 

SDT Tree AST with attributes for translation/code generation. 

 

DAG for Expressions 

👉 A DAG is a compact representation of an expression, similar to an AST, but with 

sharing of common sub-expressions. 



 AST → duplicates sub-expressions. 

 DAG → merges identical sub-expressions. 

 

Steps to Construct DAG 

Given an expression: 

Example: a + a * (b - c) + (b - c) * d 

 

Step 1: Identify Sub-Expressions 

 (b - c) occurs twice. 

 a * (b - c) and (b - c) * d are distinct. 

 

Step 2: Build Nodes 

 Leaf nodes → operands (a, b, c, d). 

 Interior nodes → operators (+, -, *). 

 

Step 3: Merge Common Sub-Expressions 

 For repeated (b - c), create only one node and share it. 

 

Step 4: Construct DAG 

             (+) 

            /   \ 

          (+)    (*) 

         /   \   /  \ 

       a      (*)   d 

             /   \ 

           a     ( - ) 

                /    \ 



              b       c 

 (b - c) appears once and is reused. 

 This makes the representation compact. 

 

Another Simple Example 

Expression: a * b + a * b 

AST: 

   (+) 

  /   \ 

a*b   a*b 

DAG: 

   (+) 

  /   \ 

 (a*b) same node 

 

Advantages of DAG 

1. Eliminates redundant computations (common sub-expressions). 

2. Saves memory by not duplicating sub-trees. 

3. Helps in optimization (e.g., register allocation, code generation). 

 

✅ In short: 

 Construct AST. 

 Identify and merge common sub-expressions. 

 Result = DAG. 

Three-Address Code (TAC) 

Definition 



Three-Address Code is an Intermediate Representation (IR) of a program where each 

instruction contains at most three addresses (operands). 

 Typically used in code generation and optimization. 

 Helps to simplify translation from high-level language to machine code. 

Structure 

A TAC instruction generally looks like: 

x = y op z 

 x → result (temporary variable or memory location) 

 y → first operand 

 op → operator (+, -, *, /, etc.) 

 z → second operand 

Note: Some instructions may have fewer operands: 

 Unary operators: x = -y 

 Assignment: x = y 

 Control transfer: if x < y goto L1 

 

Characteristics 

1. Three addresses max per instruction. 

2. Uses temporary variables (t1, t2…) to hold intermediate results. 

3. Linear sequence – easy for optimization and code generation. 

4. Can represent arithmetic, assignments, conditional/unconditional jumps, 

array accesses, and function calls. 

 

Examples 

Example 1: Arithmetic Expression 

Expression: 

x = a + b * c 

Step 1: Break into TAC using temporaries 



t1 = b * c 

t2 = a + t1 

x = t2 

 

Example 2: Conditional Statement 

High-level code: 

if a < b then x = a + b 

TAC: 

if a < b goto L1 

goto L2 

L1: t1 = a + b 

    x = t1 

L2: 

 

Example 3: Array Access 

High-level code: 

a[i] = b[j] + c 

TAC: 

t1 = b[j] 

t2 = t1 + c 

a[i] = t2 

 

Types of TAC Representation 

1. Quadruples: (op, arg1, arg2, result) 

2. Triples: (op, arg1, arg2) – result referenced by index 

3. Indirect Triples: Uses pointer table to refer triples 

 



Advantages 

 Simple and uniform representation. 

 Easier for code optimization (common sub-expression, constant folding). 

 Helps in translation to machine code. 

 

✅ Summary: 

 TAC breaks complex expressions/statements into simple 3-address 

instructions. 

 Uses temporary variables for intermediate results. 

 Forms the basis for code optimization and generation. 

 

If you want, I can draw a diagram showing a high-level expression → TAC → 

quadruples → triples to visualize it in one shot. 

Do you want me to do that? 

 

“t2 = t1 + c” 

 

 

Would you like me to draw DAG construction step-by-step for a smaller expression 

(like a + a * b + b * c) with tables and node numbering (the way it appears in compiler 

design exam answers)? 

You’ve hit the Free plan limit for GPT-5. 

Responses will use another model until your limit resets after 5:03 PM. 

Upgrade to Go 

 

 

 


