DBMS-IAT-2 Solution-4th semester-BCS403

1.Explain Unary Relational operations with examples?
Ans:

The SELECT Operation

0 The SELECT operation is used to choose a subset of the tuples from a relation that

satisfies a— selection condition.

O It restricts the tuples in a relation to only those tuples that- satisfy the condition.

0 It can also be visualized as a horizontal partition of the relation into two sets of
tuples—those tuples that satisfy the condition and are selected, and those tuples that
do not satisfy the condition and are discarded.

0 For example, to select the EMPLOYEE tuples whose department is 4, or those whose
salary is greater than $30,000

6Dno=4(EMPLOYEE)
5Salarv>30000(EMPT.OYFEFE)

0 In general, the SELECT operation is denoted by
o<selection condition>(R)

where the symbol ¢ (sigma) is used to denote the SELECT operator and the selection
condition is a Boolean expression (condition) specified on the attributes of relation R.

0 The Boolean expression specified in is made up of a number of clauses of the form :

<attribute name><comparison op><constant value>
Or
<attribute name><comparison op><attribute name>

The PROJECT Operation

0 The PROJECT operation, selects certain columns from the table and discards the other
columns.

0 The result of the PROJECT operation can be visualized as a vertical partition of the
relation into two relations: one has the needed columns (attributes) and contains the
result of the operation, and the other contains the discarded columns.

O For example, to list each employee’s first and last name and salary, we can use the
PROJECT operation as follows:

TCLname, Fname,

TU<attribute list>(R)

0 The general form of the PROJECT operation is

where (pi) is the symbol used to represent the PROJECT operation, and is the desired
sublist of attributes
from the attributes of relation R.

The result of the PROJECT operation has only the attributes specified in in the same
order as they appear in the list. Hence, its degree is equal to the number of attributes
in <attribute list>.

The PROJECT operation removes any duplicate tuples, so the result of the PROJECT
operation is a set of distinct tuples, and hence a valid relation. This is known as
duplicate elimination.

RENAME Operation

The relations shown above depict operation results do not have any names.

Either we can write the operations as a single relational algebra expression by
nesting the operations, or we can apply one operation at a time and create
intermediate result relations.

In the latter case, we must give names to the relations that hold the intermediate results.

For example, to retrieve the first name, last name, and salary of all employees who
work in department number 5, apply a SELECT and a PROJECT operation.

nFname, Lname, Salary(cDno=5(EMPLOYEE))

Alternatively, we can explicitly show the sequence of operations, giving a name to each
intermediate

relation, and using the assignment operation, denoted by < (left arrow), as follows:

DEP5 EMPS « 6¢Dno=5(EMPLOYEE)
RESULT « nFname, Lname, Salary(DEP5_EMPS)

2.Discuss ER to Relational Mapping algorithm with example for each step.
2.1 Relational Database Design using ER-to-Relational mapping.

Step 1: For each regular (strong) entity type E in the ER schema, create a relation R that
includes all the simple attributes of E.

Fnama

Nams

©

=
NI Dar

EMFLOYER

EMPLOYEE
SSN Lname [Fname

DEPARTMENT
NUMBER INAME |

Lincations

I NEFPARTRENT

*..,_ Nmnvﬁmj.lm':##s_’ J::'

Step 2: For each weak entity type W in the ER schema with owner entity type E, create a
relation R, and include all simple attributes (or simple components of composite attributes) of
W as attributes. In addition, include as foreign key attributes of R the primary key attribute(s)
of the relation(s) that correspond to the owner entity type(s).

AT OOV R

¢ Ralationship I DEFENDENT |

DEPENDENT
EMPL-SSN NAME Relationship

Step 3: For each binary 1:1 relationship type R in the ER schema, identify the relations S and
T that correspond to the entity types participating in R. Choose one of the relations, say S, and
include the primary key of T as a foreign key in S. Include all the simple attributes of R as
attributes of S.

Step 4: For each regular binary 1:N relationship type R identify the relation (N) relation S.

DEPARTMBENT

INaml=

FERIFLOYRER

DEPARTMENT

MANAGER-SSN |StartDate

the primary key of T as a foreign key of S. Simple attributes of R map to attributes of S.

=11 ol e = Il ol T

T8

EMPLOYEE
SupervisorssiN

Step 5: For each binary M:N relationship type R, create a relation S. Include the primary
keys of participant relations as foreign keys in S. Their combination will be the primary key
for S. Simple attributes of R become attributes of S.

WORKS FOR
N am= T
(Ssn) / I DEPARTRIENT
mes o
WORKS-FOR

EmployeeSSN DeptNumber

Step 6: For each multi-valued attribute A, create a new relation R. This relation will include
an attribute corresponding to A, plus the primary key K of the parent relation (entity type or
relationship type) as a foreign key in R. The primary key of R is the combination of A and K.

N

i DEPARTRLTE

CRatars S NumOmmployss)

DEP-LOCATION

Location DEP-NUMBER

Step 7: For each n-ary relationship type R, where n>2, create a new relation S to represent
R. Include the primary keys of the relations participating in R as foreign keys in S. Simple
attributes of R map to attributes of S. The primary key of S is a combination of all the foreign
keys that reference the participants that have cardinality constraint > 1. For a recursive
relationship, we will need a new relation.

3a.With a neat diagram explain transition diagram of a transaction.
Ans:

READ,
WRITE
= " COMMIT
TRANSACTION o TRANSACTION . PARTIALLY

COMMITTED

Figure: State transition diagram

= A transaction is an atomic unit of work that should either be completed in its entirety or

not done at all. For recovery purposes, the system keeps track of start of a transaction,

termination, commit or aborts.
+ BEGIN_TRANSACTION: marks the beginning of transaction execution

» READ or WRITE: specify read or write operations on the database items that are

executed as part of a transaction

« END_TRANSACTION: specifies that READ and WRITE transaction operations have

ended and marks the end of transaction execution

* COMMIT_TRANSACTION: signals a successful end of the transaction so that any

changes (updates) executed by the transaction can be safely committed to the

database and will not be undone

* ROLLBACK: signals that the transaction has ended unsuccessfully, so that any

changes or effects that the transaction may have applied to the database must be

undone

= A transaction goes into active state immediately after it starts execution and can

execute read and write operations.

* When the transaction ends it moves to partially committed state.

» At this end additional checks are done to see if the transaction can be committed or not.
If these checks are successful the transaction is said to have reached commit point and
enters committed state. All the changes are recorded permanently in the db.

= A transaction can go to the failed state if one of the checks fails or if the transaction is
aborted during its active state. The transaction may then have to be rolled back to undo
the effect of its write operation.

» Terminated state corresponds to the transaction leaving the system. All the information

about the transaction is removed from system tables.

3b.Why are concurrency control and recovery needed in DBMS? Explain 4 types of
problems that may occur when two simple transactions run concurrently.

Ans:

Concurrency control and recovery are crucial in DBMS because they ensure data
consistency and integrity, especially when multiple transactions run simultaneously.
Concurrency control manages the execution of multiple transactions to prevent
conflicts and maintain data integrity, while recovery mechanisms protect the database
from failures, ensuring data can be restored to a consistent state. Four common
problems that can occur when two simple transactions run concurrently are dirty
reads, lost updates, unrepeatable reads, and phantom reads.

Concurrency Control:

Concurrency control aims to prevent interference between concurrent transactions by
ensuring that the database remains in a consistent state even when multiple
transactions are running simultaneously. Without proper concurrency control, the
database could be corrupted, leading to inaccurate data or even application crashes.

Recovery:
Recovery mechanisms handle failures, such as system crashes or hardware failures,
by restoring the database to a consistent state. Without recovery, the database could

be left in an inconsistent state, leading to data corruption or loss.

Four Problems with Concurrent Transactions:

1. Dirty Reads:

One transaction reads data that is being updated by another, uncommitted
transaction. This can lead to an inaccurate view of the data, as the updated data
may not yet be committed.

2. Lost Updates:

Two transactions attempt to update the same data simultaneously, and one
transaction's update is lost or overwritten by the other. This can lead to
inconsistencies and incorrect data.

3. Unrepeatable Reads:

A transaction reads a value, and then another transaction updates that value and
commits the change. If the first transaction attempts to read the same value again, it
may receive a different value. This can lead to inconsistencies and incorrect data.
4.Phantom Reads:

A transaction reads a set of records, and then another transaction inserts new
records that satisfy the same query criteria. If the first transaction attempts to read
the same set of records again, it may find that the new records have been inserted.
This can lead to inconsistencies and incorrect data.

4a.What is Normalization.Why it is needed?

Ans:

Normalization is the process of minimizing data redundancy and inconsistency from a
relation (table) or from a set of relations. The data redundancy in relation may cause
insertion, deletion, and updating anomalies.

To address the anomalies and to make the database as consistent, the normal forms are
used. Using normal forms we can eliminate or reduce redundancy in database tables.

b.Explain INF,2NF,3NF, BCNF with an example

Ans:
The domain of an attribute must include only atomic values and the value of any attribute
in a tuple must be a single value from the domain of that attribute.A table is considered to
be in INF if all the fields contain only single values (instead of list of values).

Example (Notin 1 - NF)

ISEN Title AnName AuPhone PubName PubPhone Price

0-321-32133-1 Balloon Blaapy, 321-321-1111, Small House T14-000-0000 $34.00
Snoopy, 232-234-1234,
Grumpy 665-235-6332

0-33-123456-9 Main Streat Jones, Smith 123-333-3333, Small House 714-000-0000 $22.83
£54-223-3435

0-123-436780 Ulyszas Joyea BE6-666-6666 Alpha Prazs 9592959095 53400

1-22-233700-0 Wiznal Basic Foman 4244444442 Big Houze 123-456-73%0 $25.00

1. Place all items that appear in the repeating group in a new table

N

Designate a primary key for each new table produced.
3. Duplicate in the new table the primary key of the table from which the repeating group
was extracted or vice versa.

ISBN AulName AnFPhone

0-321-32132-1 Bleepy 321-321-1111
ISBN Title FubName FubFhone Price 0-321-32132-1 Bnoopy 132-134-1234
0-321-32132-1 Ealloon Small Houze T14-000-0000 334.00 0-321-32132-1 Gnmpy 665-135-6532
0-35-123434-9 DMz Strest Small Houze T14-000-0000 F22.95 0-35-113456-0 Jones 123-333-3333
0-123-45678-0 Ulyvzzes Alphs Prazz Do0-000.0000 334.00 0-33-123456-9 Bmith 6G54-123-3433
1-22-233700-0 Visual Bazic Eig Houszs 123-456-T800 525.00 0-123-454678-0 TJayoe G65-656-6668

1-22-233700-0 Foman H4-g4d049

Second Normal Form

» Asecond normal is a method of arranging attributes semantically (logically) based on the
constraints 1) a relation must be in first normal form and 2) relation should not contain any
partial dependency.

» No non-prime attribute (attribute which are not part of any candidate key) is dependent on
any proper subset of any candidate key of the table.

* The partial dependency - is the proper subset of candidate key determines non-primary
attribute in a relation.

» Every non-key attribute is fully functionally dependent on the primary key. Thus, no non-
key attributes are functionally dependent on the part (but not all) of the primary key. That
means, no partial dependency exists.

* Note: If a key is single attribute, then it is always in 2nd Normal form.
Example 2 (Not 2NF)
Scheme [J {City, Street, HouseNumber, HouseColor, CityPopulation}

1. key [1 {City, Street, HouseNumber}

{City, Street, HouseNumber} 1 {HouseColor}

{City} (] {CityPopulation}

CityPopulation does not belong to any key.

CityPopulation is functionally dependent on the City which is a proper subset of
the key

gk owm

Example 2 (Convert to 2NF)
Old Scheme (] {City, Street, HouseNumber, HouseColor, CityPopulation}
New Scheme [{City, Street, HouseNumber, HouseColor}

New Scheme 1 {City, CityPopulation}
Example 2 (Convert to 2NF)

Old Scheme 7 {Studio, Movie, Budget, StudioCity}

New Scheme [{Movie, Studio, Budget}

New Scheme 1 {Studio, City}

Example 3 (Not 2NF)
Scheme [{studio, movie, budget, studio_city}

Key [{studio, movie}

{studio, movie} [{budget}

{studio} [J {studio_city}

studio_city is not a part of a key

studio_city functionally depends on studio which is a proper subset of the key

ghrowbdE

Example 3 — Decomposed into 2NF
Example 3 (Convert to 2NF)

Old Scheme [{City, Street, HouseNumber, HouseColor, CityPopulation}

New Scheme [{City, Street, HouseNumber, HouseColor}

New Scheme [{City, CityPopulation}
Third Normal Form

This form dictates that all non-key attributes of a table must be functionally dependent
on a candidate key i.e. there can be no interdependencies among non-key attributes.

For a table to be in 3NF, there are two requirements

. The table should be second normal form

. No attribute is transitively dependent on the primary key
Example (Not in 3NF)

Scheme [{Studio, StudioCity, CityTemp}
1. Primary Key [{Studio}

{Studio} 1 {StudioCity}

{StudioCity} [{CityTemp}

{Studio} [{CityTemp}

Both StudioCity and CityTemp depend on the entire key hence 2NF
CityTemp transitively depends on Studio hence violates 3NF

Example (Convertto 3NF)

ok wn

Old Scheme @ {Studio, StudioCity, CityTemp}
New Scheme & {Studio, StudioCity}

New Scheme & {StudioCity, CityTemp}

Boyce-Codd Normal Form (BCNF)
A relation schema ‘R’ is in BCFN with respect to a set of ‘F’ of functional dependencies
if, for all functional dependencies they are in the form o [§ where, a, B €= R, at least

of the following holds:
. o [0 B is a trivial FD (B c= a)
. a is the super key for schema R

A relation is in BCNF if every determinant is a candidate key.

. BCNF does not allow dependencies between attributes that belong to candidate
keys.
. BCNF is a refinement of the third normal form in which it drops the restriction of a non-

key attribute from the 3rd normal form.

Third normal form and BCNF are not same if the following conditions are true:

. The table has two or more candidate keys

. At least two of the candidate keys are composed of more than one attribute

. The keys are not disjoint i.e. The composite candidate keys share some attributes
BCNF - Decomposition
1. Place the two candidate primary keys in separate entities
2. Place each of the remaining data items in one of the resulting entities according to its

dependency on the primary key.
Example 1 - Address (Not in BCNF)
Scheme [J {City, Street, ZipCode }
Keyl (] {City, Street }
Key2 (1 {ZipCode, Street}
No non-key attribute hence 3NF
{City, Street} [{ZipCode}
{ZipCode} [{City}
Dependency between attributes belonging
to a key

ogarwnE

Example 1 (Convert to BCNF)
Old Scheme [{City, Street, ZipCode }
New Schemel [{ZipCode, Street}

New Scheme2 (1 {City, Street}
Loss of relation {ZipCode} (1 {City}
Alternate New Schemel (1 {ZipCode, Street }

Alternate New Scheme?2 1 {ZipCode, City}
5a. What is document based NOSQL systems? Explain basic operations CRUD in
MongoDB.
Ans:
Document based Databases
Imagine you have a folder for every person in your class. Each folder has different things—some have

drawings, some have stories, some have both. You don’t need every folder to look the same.
That’s how document databases work, they keep everything about one thing in one place, and each one
can look different!
e Document-based databases store data as documents, usually in JSON or BSON format.
Each document can have its own structure, unlike SQL tables that require fixed columns.
Ideal when:

o You have varying types of data for each record
o You want to retrieve entire "objects" easily (like a blog post, product, or user profile)
e Fast and flexible — easy to update, and great for agile development.

Use Cases:
Content Management Systems
E-commerce product catalogs
User profile storage
CRUD Operations
Il Syntax to create a collection:
db.createCollection(name, options);
/I Example: db.createCollection("users");

1. Create (C)

To create a new document or insert data into a collection:
db.collection.insertOne({ key: value });

/I Example:

db.users.insertOne({ name: "Alice", age: 30, email: "alice@example.com™ });
You can also insert multiple documents at once using insertMany():

db.collection.insertMany([
{ keyl: valuel },

{ key2: value2 },

/[More documents...

D;
/Il Example:

db.users.insertMany([

{ name: "Bob", age: 25, email: "bob@example.com™ },

{ name: "Charlie", age: 35, email: "charlie@example.com" }

D;

2. Read (R)

To retrieve or read documents from a collection:

// Find all documents in a collection

db.collection.find();

// Find documents that match a specific condition

db.collection.find({ condition });

I/l Example:

db.users.find(); // Find all documents in the 'users' collection

db.users.find({ age: { $gt: 25 } }); // Find users where age is greater than 25

3. Update (U)

To update existing documents in a collection:

I/l ' Update a single document that matches a condition

db.collection.updateOne({ filter }, { $set: { update } });

/I Update multiple documents that match a condition
db.collection.updateMany({ filter }, { $set: { update } });

/[Example:

db.users.updateOne({ name: "Alice" }, { $set: { age: 31 } }); // Update Alice's age
to 31

db.users.updateMany({ age: { $It: 30 } }, { $inc: { age: 1 } }); // Increment age by
1 for all users under 30

4. Delete (D)

To delete documents from a collection:

/I Delete a single document that matches a condition

db.collection.deleteOne({ filter });

I/ Delete all documents that match a condition

db.collection.deleteMany({ filter });

/I Example:

db.users.deleteOne({ name: "Bob" }); // Delete the document where name is Bob
db.users.deleteMany({ age: { $gte: 40 } }); // Delete all users who are 40 years or
Older

5b.Explain CAP theorem

Ans:

Imagine you’re sharing information with your friends over walkie-talkies. Sometimes, one
friend’s walkie-talkie doesn’t work (like a broken network).

Now, you have to choose between:
e Making sure everyone gets the same number of information(Consistency),
e Making sure everyone gets a reply when they ask for information(Availability),

e Or keeping things going even when some walkie-talkies don’t work (Partition Tolerance).

CAP Theorem applies to distributed systems (like NoSQL databases spread over servers).
It says a system can only guarantee two of the following three:

1. Consistency (C): All nodes see the same data at the same time.
(Like a bank — your balance is always the same everywhere)

2. Availability (A): Every request gets a response, even if it’s not the most recent data.
(Like WhatsApp — you always get a reply, even if slow)

3. Partition Tolerance (P): The system keeps working even if there’s a communication
failure between nodes.

(Like servers in two cities losing connection but still running)
Example:
MongoDB chooses Availability + Partition Tolerance, which means it

may temporarily return slightly outdated data to stay available when
there's a network issue.

[co

Nnsistency)

Availability / \ ng:gf:e
AP

6.Explain the Concurrency control based on Timestamp ordering
Ans:

= The idea for this scheme is to order the transactions based on their
timestamps.

» A schedule in which the transactions participate is then serializable, and the
only equivalent serial schedule permitted has the transactions in order of their
timestamp values. This is called timestamp ordering (TO).

= The algorithm must ensure that, for each item accessed by conflicting

Operations in the schedule, the order in which the item is accessed does not
violate the timestamp order.

= To do this, the algorithm associates with each database item X two timestamp
(TS) values:

1. read_TS(X). The read timestamp of item X is the largest timestamp
among all the timestamps of transactions that have successfully
read item X—that is, read_TS(X) = TS(T), where T is the youngest
transaction that has read X successfully.

2. write_TS(X). The write timestamp of item X is the largest of all the

timestamps of transactions that have successfully written item X—
that is, write_TS(X) = TS(T), where T is the youngest transaction that

has written X successfully.

Thomas's Write Rule

= A modification of the basic TO algorithm, known as Thomas's write rule, does not

enforce conflict serializability, but it rejects fewer write operations by modifying the

checks for the write_item(.X) operation as follows:

1. If read_TS(X) = TS(T), then abort and roll back T and reject the operation,

2. If write_TS(X) > TS(T), then do not execute the write operation but continue
processing. This is because some transaction with timestamp greater than TS({T)—
and hence after T in the timestamp ordering—has already written the value of X.
Thus, we must ignore the write_item(X) operation of T because it is already outdated
and obsolete. Notice that any conflict arising from this situation would be detected by
case (1).

If neither the condition in part (1) nor the condition in part (2) occurs, then execute

the write_item(X) operation of T and set write_TS(X) to TS(T).

	σ<selection condition>(R)
	<attribute name><comparison op><constant value>
	<attribute name><comparison op><attribute name>
	RENAME Operation
	2.1 Relational Database Design using ER-to-Relational mapping.

