

Internal Assessment Test 2 – May 2025

Sub :	BIOLOGY	FORCO	Sub Code:	BBOC40 7	Bra h:	anc ISE		,				
Dat e:	27/05/202 5	Duratio n:	90 min's	Max Marks:	5 0	Sem/Se c:	IV A, B & C				OBE	
Answer any FIVE FULL Questions									MA KS		C O	R B T
	Use a neat labeled diagram and explain the mechanism of filtration by the nephrons									10		L2
2.	The structure and design of the Kingfisher's beak led to the design of the bullet trains. Interpret.								10		CO4	L3
3.	Define EEG. Briefly explain the procedure of EEG.								10		CO3	L2
4.	Explain echolocation using application of echolocation in ultrasonography								10		CO4	L3
5.	Explain the working of Brain as a CPU								10		CO3	L2
6.a	Write a short note on Bionic leaf								10		CO4	L2
6.b	Write a short note on human blood substitutes								10		CO4	L2

1. Use a neat labeled diagram and explain the mechanism of filtration by the nephrons.

(10 Marks - CO3, L2)

Diagram of Nephron:

(Since I can't draw here, please use a labeled diagram with the following parts: Bowman's capsule, Glomerulus, Proximal convoluted tubule, Loop of Henle, Distal convoluted tubule, Collecting duct, Afferent and Efferent arterioles)

Explanation:

The nephron is the functional unit of the kidney, and filtration primarily occurs in the **renal corpuscle**, which includes the **glomerulus** and **Bowman's capsule**.

Step 1: Glomerular Filtration

- Blood enters the glomerulus through the afferent arteriole.
- Due to high pressure, water, salts, glucose, amino acids, and urea pass through the capillary walls into Bowman's capsule, forming glomerular filtrate.
- Larger molecules like proteins and blood cells remain in the blood.

Step 2: Tubular Reabsorption

 Essential substances like glucose, amino acids, and most of the water are reabsorbed in the proximal convoluted tubule and loop of Henle.

Step 3: Tubular Secretion

 Additional waste products like H⁺, K⁺, and certain drugs are secreted into the tubule from surrounding capillaries.

• Step 4: Formation of Urine

 The final filtrate, now called **urine**, flows into the **collecting duct** and ultimately into the **ureter**.

2. The structure and design of the Kingfisher's beak led to the design of the bullet trains. Interpret.

(10 Marks – CO4, L3)

Interpretation:

The Kingfisher bird has a unique beak that allows it to **dive into water with minimal splash**, due to its **streamlined shape**. Engineers observed this **natural design** while working on **Japan's Shinkansen bullet train**, which faced a problem of loud sonic booms when exiting tunnels.

- **Problem:** Earlier train noses caused a loud boom due to rapid air displacement.
- **Solution:** Inspired by the Kingfisher's beak, engineers redesigned the train's nose to be **long and pointed**, reducing air resistance.
- Outcome: This led to:
 - Quieter operation

- Increased speed
- Improved energy efficiency

This is an example of **biomimicry**, where nature-inspired solutions are applied to engineering and design.

3. Define EEG. Briefly explain the procedure of EEG.

(10 Marks - CO3, L2)

Definition:

EEG stands for **Electroencephalogram**. It is a test used to evaluate the **electrical activity of the brain** by detecting abnormalities in brain waves.

Procedure:

1. Preparation:

- The patient is made to lie down comfortably.
- Electrodes (small metal discs with thin wires) are attached to the scalp using a conductive gel.

2. Recording:

- The electrodes detect electrical signals produced by neurons.
- These signals are sent to a computer and recorded as waveforms.

3. Duration:

- The procedure usually takes 20–40 minutes.
- Sometimes, **stimuli** like light or breathing exercises are used to activate brain activity.

4. Applications:

Diagnose epilepsy, sleep disorders, brain tumors, and brain death.

4. Explain echolocation using application of echolocation in ultrasonography.

(10 Marks - CO4, L3)

Echolocation:

- Echolocation is a biological sonar used by animals like bats and dolphins to navigate.
- They emit sound waves which reflect off objects and return as echoes, allowing them to judge distance, size, and shape.

Application in Ultrasonography:

- Medical ultrasonography (ultrasound scanning) uses the same principle.
- A transducer sends high-frequency sound waves into the body.
- The waves reflect off internal structures and are captured back.
- A computer converts these echoes into real-time images.

Uses:

- Fetal imaging
- Diagnosing tumors and cysts
- Visualizing internal organs like liver, kidney, heart

Thus, ultrasonography is a **technological application** of a natural phenomenon.

5. Explain the working of Brain as a CPU.

(10 Marks - CO3, L2)

The brain functions like a **Central Processing Unit (CPU)** of a computer:

Brain Function	CPU Equivalent	Description
Cerebrum	Processor	Performs logic, decision-making, memory storage
Neurons	Circuits/Processors	Transmit electrical signals
Spinal Cord	Data bus	Carries data between brain and body
Sensory Organs	Input devices	Eyes, ears send data to brain
Muscles	Output devices	Receive signals from brain
Memory (Hippocampus)	RAM/Storage	Stores short-term and long-term data

Like the CPU processes inputs and sends outputs, the **brain interprets stimuli, makes decisions**, and sends responses through the nervous system.

6.a Write a short note on Bionic Leaf

(10 Marks – CO4, L2)

Bionic Leaf:

- The bionic leaf is a synthetic system that mimics natural photosynthesis.
- Developed by scientists to **convert sunlight into fuel**, it uses:
 - Solar energy
 - Bacteria
 - Water and carbon dioxide

Working:

- The leaf splits water into hydrogen and oxygen using solar energy.
- Special bacteria then convert hydrogen and CO₂ into fuels like isopropanol.

Applications:

- Sustainable energy
- Reducing carbon footprint
- Potential use in agriculture and remote energy generation

6.b Write a short note on human blood substitutes

(10 Marks – CO4, L2)

Human Blood Substitutes:

- Artificial substances that mimic functions of real blood, mainly oxygen transport.
- Used when real blood is unavailable or incompatible.

Types:

1. Hemoglobin-Based Oxygen Carriers (HBOCs)

2. Perfluorocarbon-Based Carriers (PFCs)

Advantages:

- No blood typing required
- Long shelf life
- Useful in emergency medicine, military, remote areas

Limitations:

- Limited ability to replace all blood functions.
- Research is ongoing to ensure safety and effectiveness.