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Internal Assessment Test 2 - May 2025 

Sub: Machine Learning Sub Code: BCS602 Branch: ISE 

Date: 23/05/2025 Duration: 90 min Max Marks: 50 Sem/Sec: VI / A, B & C OBE 

Answer any FIVE FULL Questions 
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1a Briefly describe the scope of Reinforcement learning [3] CO5 L1 

1b Consider the given training dataset of 4 instances which contains the student’s 

performance and their likelihood of getting a job offer or not. Apply Candidate 

Elimination Method. 

CGPA Interactiv

eness 

Practical 

Knowled

ge 

Commun

ication 

Skill 

Logical 

Thinking 

Interset Job Offer 

≥ 9 Yes Excellent Good Fast Yes Yes 

≥ 9 Yes Good Good Fast Yes Yes 

≥ 8 No Good Good Fast No No 

≥ 9 Yes Good Good Slow No Yes 
 

[7] CO2 L3 

2 Derive Linear regression model with necessary equations. [10] CO3 L1 

3a Consider the student performance dataset given in the table. Based on the performance 

of a student, classify whether a student will pass or fail using K -NN. Given the test 

case (6.1, 40,5). Assume k = 3 

S. No CGPA Assessment Project 

Submitted 

Result 

1. 9.2 85 8 Pass 

2. 8 80 7 Pass 

3. 8.5 81 8 Pass 

4. 6 45 5 Fail 

5. 6.5 50 4 Fail 

6. 8.2 72 7 Pass 

7. 5.8 38 5 Fail 

8. 8.9 91 9 Pass 
 

[5] CO3 L3 

3b Consider the given training dataset T and construct a decision tree using C4.5 method. 

(Note: One Iteration is enough) 

 

S.No Credit 

Score 

Income Collateral Approve 

Loan 

1. High High High Yes 

2. High High No Yes 

3. Medium High Yes Yes 

4. Low Low No No 

[5] CO3 L3 



 

 

5. Low High Yes No 

 

 
 

 

 

4 

 

Consider a perceptron to represent the Boolean function AND with the initial 

weigths w1 = 0.3, w2 = -0.2, learning rate α = 0.2, and bias ϴ = 0.4. Use 

Step function to calculate the output and derive the perceptron that performs 

AND operation. 

 

 

 

 

[10] 

 

 

 

CO4 

 

 

 

L3 

5a Draw the architecture of Fully Connected and Multilayer Perceptron Network [04] CO4 L2 

5b Assess a student’s performance using Naïve Bayes algorithm with the dataset provided 

in the table. Given test data {(CGPA ≥ 9, Interactiveness  = Yes, Practical Knowledge = 

Average}, apply Naïve Bayes theorem 

 

S.No CGPA Interactiveness Practical 

Knowledge 

Job Offer 

1. ≥ 9 Yes Very Good Yes 

2. ≥ 8 No Good Yes 

3. ≥ 9 No Average No 

4. < 8 No Average No 

5. ≥ 8 Yes Good Yes 
 

[06]  

 

 

CO4 

 

 

 

L3 

6a   Consider the following set of data given in the table. Apply Single Linkage algorithm 

 

Objects  X-Coordinate Y - coordinate 

1 1 4 

2 2 8 

3 5 10 

4 12 18 

5 14 28 
 

 

 

 

[05] 

 

 

 

CO5 

 

 

 

L3 

6b If the given coordinates of the objects are (0,3) and (5.8), calculate the Euclidean, 

Manhattan and Chebyshev distance. 

[03] CO5 L3 

6c Explain Markov Decision Process [02] CO5 L1 
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SOLUTION 

Ans- 1a The scope of Reinforcement Learning (RL) involves teaching agents to make 

sequences of decisions by interacting with an environment to maximize cumulative rewards. It covers: 

1. Learning from Interaction: Agents learn optimal behaviors by exploring and exploiting 

outcomes of actions. 

2. Dynamic Environments: Applied where outcomes depend on both current actions and evolving 

states. 



 

 

3. Applications: RL is used in robotics, game playing (e.g., AlphaGo), autonomous vehicles, 

recommendation systems, finance, and healthcare. 

4. Key Techniques: Includes value-based methods (like Q-learning), policy-based methods, and 

deep reinforcement learning (combining RL with deep learning). 

In summary, RL's scope spans both theoretical and practical domains, enabling machines to learn 

decision-making strategies in complex, uncertain environments. 

Ans 1(b) To apply the Candidate Elimination Algorithm, we maintain two sets: 

• S (the most specific hypothesis) 

• G (the most general hypothesis) 

We generalize S only when it fails to cover a positive instance and specialize G only when it 

incorrectly covers a negative instance. 

Step-by-step Execution 

Initial Hypotheses 

• S = First positive instance: 

⟨≥ 9, Yes, Excellent, Good, Fast, Yes⟩ 

• G = Most general: 

⟨?, ?, ?, ?, ?, ?⟩ 

Instance 2 (Positive): 

⟨≥ 9, Yes, Good, Good, Fast, Yes⟩ 

Compare with S and generalize it: 

• Practical Knowledge: Excellent → Good → generalize to ? 

Updated S: 

⟨≥ 9, Yes, ?, Good, Fast, Yes⟩ 

G remains unchanged. 

Instance 3 (Negative): 

⟨≥ 8, No, Good, Good, Fast, No⟩ 

This negative example is covered by G but not by S, so we specialize G to exclude this 

instance. 

We specialize G by making hypotheses that exclude this instance while still covering S. 

S = ⟨≥ 9, Yes, ?, Good, Fast, Yes⟩ 

Possible specializations of G that exclude the negative: 



 

 

• CGPA: ≥ 9 

• Interactiveness: Yes 

• Interest: Yes 

So new G becomes: 

• ⟨≥ 9, ?, ?, ?, ?, ?⟩ 

• ⟨?, Yes, ?, ?, ?, ?⟩ 

• ⟨?, ?, ?, ?, ?, Yes⟩ 

Remove those that do not cover S: 

• ⟨≥ 9, ?, ?, ?, ?, ?⟩ — OK 

• ⟨?, Yes, ?, ?, ?, ?⟩ — OK 

• ⟨?, ?, ?, ?, ?, Yes⟩ — OK 

So all 3 stay. 

 

Instance 4 (Positive): 

⟨≥ 9, Yes, Good, Good, Slow, No⟩ 

Compare with S = ⟨≥ 9, Yes, ?, Good, Fast, Yes⟩ 

S doesn’t cover due to: 

• Logical Thinking: Fast ≠ Slow 

• Interest: Yes ≠ No 

So generalize S: 

• Logical Thinking → ? 

• Interest → ? 

Updated S = ⟨≥ 9, Yes, ?, Good, ?, ?⟩ 

Now filter G to keep only those that still cover the updated S and the current positive instance. 

From previous G: 

1. ⟨≥ 9, ?, ?, ?, ?, ?⟩ — OK 

2. ⟨?, Yes, ?, ?, ?, ?⟩ — OK 



 

 

3. ⟨?, ?, ?, ?, ?, Yes⟩ — Reject (doesn't cover Interest = No) 

Final G = 

• ⟨≥ 9, ?, ?, ?, ?, ?⟩ 

• ⟨?, Yes, ?, ?, ?, ?⟩ 

 

Final Version Space 

• S = ⟨≥ 9, Yes, ?, Good, ?, ?⟩ 

• G = {⟨≥ 9, ?, ?, ?, ?, ?⟩, ⟨?, Yes, ?, ?, ?, ?⟩} 

ANS-2   1) Objective of Linear Regression 

To model the relationship between a dependent variable y and one or more independent variables 

x, assuming a linear relationship: 

y=β0+β1x+ϵ 

Where: 

• y: actual output (dependent variable) 

• x: input feature (independent variable) 

• β0,β1 : regression coefficients (intercept and slope) 

• ϵ: error term 

2) Hypothesis Function 

y^=h(x)=β0+β1x where y^ is the predicted output 

3)  Cost Function (Mean Squared Error – MSE 

𝐽(𝛽0, 𝛽1) =
1

2𝑚
∑(ℎ(𝑥𝑖) − 𝑦𝑖)2

𝑚

𝑖=1

 

  

Where: 

• m: number of training examples 

• ℎ(𝑥𝑖): predicted value 

• 𝑦𝑖:  actual value 

4. Gradient Descent (to minimize cost) 

Update rules for coefficients: 



 

 

𝛽𝑜 =  𝛽𝑜 −  𝛼
𝜕𝐽

𝜕𝛽𝑜
, 𝛽1 =  𝛽1 −  𝛼

𝜕𝐽

𝜕𝛽1
 

Compute gradients: 

𝜕𝐽

𝜕𝛽𝑜
=

1

𝑚
∑ (ℎ(𝑥𝑖) − 𝑦𝑖)𝑚

𝑖=1 ,
𝜕𝐽

𝜕𝛽1
=

1

𝑚
∑ (ℎ(𝑥𝑖) − 𝑦𝑖)(𝑥𝑖) 𝑚

𝑖=1  ,   

 

Ans 3 (a)  

 

S. No CGPA Assessment Project 

Submitted 

Result 

1. 9.2 85 8 Pass 

2. 8 80 7 Pass 

3. 8.5 81 8 Pass 

4. 6 45 5 Fail 

5. 6.5 50 4 Fail 

6. 8.2 72 7 Pass 

7. 5.8 38 5 Fail 

8. 8.9 91 9 Pass 
 

Use Euclidean Distance Formula 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =  √(𝑥1 −  𝑥1)2 + (𝑦 − 𝑦1)2  
Compute Distances 

S.No CGPA Assess Proj Result Distance to (6.1, 40, 5) 

1 9.2 85 8 Pass √[(9.2−6.1)² + (85−40)² + (8−5)²] ≈ 45.3 

2 8.0 80 7 Pass √[(8−6.1)² + (80−40)² + (7−5)²] ≈ 40.1 

3 8.5 81 8 Pass √[(8.5−6.1)² + (81−40)² + (8−5)²] ≈ 41.9 

4 6.0 45 5 Fail √[(6.0−6.1)² + (45−40)² + (5−5)²] ≈ 5.0 

5 6.5 50 4 Fail √[(6.5−6.1)² + (50−40)² + (4−5)²] ≈ 10.2 

6 8.2 72 7 Pass ≈ 33.6 

7 5.8 38 5 Fail √[(5.8−6.1)² + (38−40)² + (5−5)²] ≈ 2.2 

8 8.9 91 9 Pass ≈ 51.2 

 
4. Select 3 Nearest Neighbors 

Sorted distances: 

1. S7 – Distance ≈ 2.2 – Fail 

2. S4 – Distance ≈ 5.0 – Fail 

3. S5 – Distance ≈ 10.2 – Fail 

 
5. Majority Voting 

All 3 nearest neighbors are Fail. 

Final Classification: FAIL 

So, the student with (6.1, 40, 5) is predicted to Fail using K-NN with k=3k = 3k=3. 

_____________________________________ 

Ans 3(b) Step 1: Dataset Summary 



 

 

S.No Credit Score Income Collateral Approve Loan 

1 High High High Yes 

2 High High No Yes 

3 Medium High Yes Yes 

4 Low Low No No 

5 Low High Yes No 

  Total instances: 5 

  Class label: Approve Loan (Yes/No) 

Step 2: Entropy of Dataset (D) 

We compute the Entropy of the entire dataset DDD: 

• Yes: 3 instances 

• No: 2 instances 

Entropy(D)= −
3

5
log

3

5
−

2

5
log

2

5
=0.971 

Step 3: Choose Attribute with Highest Gain Ratio 

We compute Gain Ratio for each attribute: 

• C4.5 uses Gain Ratio = Information Gain / Split Information 

Attribute: Credit Score 

Values: High, Medium, Low 

• High → Instances 1,2 → Yes, Yes → Entropy = 0 

• Medium → Instance 3 → Yes → Entropy = 0 

• Low → Instances 4,5 → No, No → Entropy = 0 

Expected Entropy =
2

5
. 0 +  

1

5
. 0 = 0 

Gain = 0.971−0=0.9710.971 - 0 = 0.9710.971−0=0.971 

SplitInfo =- ( 
2

5
log

2

5
+

1

5
log

1

5
+

2

5
log

2

5
 )= 1.522 

Gain Ratio=0.971/ .522=0.638 

Attribute: Income 

Values: High (4 instances), Low (1 instance) 

• High → Yes, Yes, Yes, No → 3 Yes, 1 No 

𝐸𝑛𝑡𝑟𝑜𝑝𝑦 = −
3

4
log

3

4
−

1

4
log

1

4
 

• Low → No → Entropy = 0 

Expected Entropy =
4

5
. 0.811 +  

1

5
. 0 = 0.649 

Gain = 0.971−0.649=0.3220.971 - 0.649 = 0.3220.971−0.649=0.322 

SplitInfo ≈ 0.722 

Gain Ratio≈0.322/0.722≈0.44 

Attribute: Collateral 

Values: High, No, Yes 

• High → Instance 1 → Yes → Entropy = 0 

• No → Instances 2, 4 → Yes, No → Entropy ≈ 1.0 

• Yes → Instances 3, 5 → Yes, No → Entropy ≈ 1.0 

Expected Entropy =
1

5
. 0 +  

2

5
. 1 +  

2

5
. 1 = 0.8 

Gain = 0.971−0.8=0.171  

SplitInfo ≈ 1.522 

Gain Ratio≈0.171/ 0.522= 0.112 

Step 4: Choose Attribute with Highest Gain Ratio 

• Credit Score has the highest gain ratio ≈ 0.638 



 

 

Final tree- 1 Iteartion 

Credit Score? 

├── High → Approve Loan = Yes 

├── Medium → Approve Loan = Yes 

└── Low → Approve Loan = No 

Ans -4 To derive a Perceptron for the AND function, we’ll follow these steps: 

Given: 

• Initial Weights: 

w1=0.3w_1 = 0.3w1=0.3, w2=−0.2w_2 = -0.2w2=−0.2 

• Learning Rate: α=0.2\alpha = 0.2α=0.2 

• Threshold (Bias): θ=0.4\theta = 0.4θ=0.4 

• Activation Function: Step function: 

𝑓(𝑛𝑒𝑡) = {
1   𝑖𝑓 𝑛𝑒𝑡 ≥ 𝜃
0    𝑖𝑓 𝑛𝑒𝑡 <  𝜃

} 

Step 1: Truth Table for AND 

x₁ x₂ Target (t) 

0 0 0 

0 1 0 

1 0 0 

1 1 1 

Step 2: Perceptron Training Loop (One Epoch) 

We'll go through each input, compute output, compare with target, and adjust weights: 

Case 1: (0, 0) → Target: 0 

• Net input = 0∗0.3+0∗(−0.2)=0 

• Since 0<θ(0.4)0 <θ(0.4), Output = 0 → No weight chang 

Case 2: (0, 1) → Target: 0 

Net = 0∗0.3+1∗(−0.2)=−0.20 → Output = 0 →  No weight change 

Case 3: (1, 0) → Target: 0 

• Net = *0.3 + 0*(-0.2) = 0.3  → Output = 0 →  No weight change 

Case 4: (1, 1) → Target: 1 

• Net = 1∗0.3+1∗(−0.2)=0.1 → Output = 0  Incorrect 

Update weights: 

Δw1=α⋅(t−o)⋅ x1=0.2⋅ (1−0)⋅1=0.2 

Δw2=0.2⋅(1−0)⋅1=0.2 

New weights: 

w1=0.3+0.2=0.5 

w2=−0.2+0.2=0.0 

New Weights After One Epoch: 

• w1=0.5w_1 = 0.5w1=0.5 

• w2=0.0w_2 = 0.0w2=0.0 

• Threshold = 0.4 

 

x₁ x₂ Net = w₁x₁ + w₂x₂ Output Target 



 

 

0 0 0.0 0 0 

0 1 0.0 0 0 

1 0 0.5 1   0 

1 1 0.5 1    1 

 

Conclusion: 

You need another epoch to fix (1,0). Repeat weight update for that input: 

• Net = 0.5 → Output = 1 (should be 0) 

Δw1=0.2⋅(0−1)⋅1=−0.2⇒w1=0.5−0.2=0.3 

Δw2=0.2⋅(0−1)⋅0=0⇒w2=0.0 

Final Weights After Convergence: 

• w1=0.3w_1 = 0.3w1=0.3 

• w2=0.0w_2 = 0.0w2=0.0 

• Threshold = 0.4 

This perceptron correctly classifies the AND function. 

Ans-5  

• Fully Connected Network refers to the connectivity: each neuron is connected to every neuron 

in the next layer. 

• Multilayer Perceptron is a type of Fully Connected Network that has at least one hidden layer 

and uses nonlinear activation functions. 

Fully connected neural network architecture 

Input Layer         Hidden Layer           Output Layer 

   (X1)  ● ─┬─────┬→ ● (H1) ──┬─────┬────→ ● (O1) 

   (X2)  ● ─┘     │   ● (H2) ─┘     │ 

   (X3)  ● ───────┘   ● (H3) ──────┘ 

  Each input node connects to every node in the next layer. 

  Typically consists of: 

• Input layer 

• One or more hidden layers 

• Output layer 

Multilayer Perceptron (MLP) Architecture 
 

Input Layer       Hidden Layer(s)             Output Layer 

   X1  ● ─┬─────┬→ ● H1 ─┬─────┬→ ● H4 ─┬──→ ● Y1 

   X2  ● ─┘     │   ● H2 ┘     │   ● H5 ┘ 

   X3  ● ───────┘   ● H3 ──────┘   ● H6 

 

        [Hidden Layer 1]     [Hidden Layer 2] 

  Activation Functions like ReLU, sigmoid, or tanh are applied in hidden layers. 

  Typically trained using backpropagation and gradient descent. 

Key Differences / Notes: 

Feature Fully Connected Network Multilayer Perceptron 

Layers May include only 1 layer Always includes ≥1 hidden layer 

Activation Functions Not always applied Non-linear activations used 

Depth Shallow or deep Deep (≥1 hidden layers) 

 

Ans-6 (a) Single Linkage Algorithm 

Step-1 Find Euclidean distance 



 

 

Pair Distance 

(1,2) √[(2−1)² + (8−4)²] = √[1 + 16] = √17 ≈ 4.12 

(1,3) √[(5−1)² + (10−4)²] = √[16 + 36] = √52 ≈ 7.21 

(1,4) √[(12−1)² + (18−4)²] = √[121 + 196] = √317 ≈ 17.80 

(1,5) √[(14−1)² + (28−4)²] = √[169 + 576] = √745 ≈ 27.29 

(2,3) √[(5−2)² + (10−8)²] = √[9 + 4] = √13 ≈ 3.61 

(2,4) √[(12−2)² + (18−8)²] = √[100 + 100] = √200 ≈ 14.14 

(2,5) √[(14−2)² + (28−8)²] = √[144 + 400] = √544 ≈ 23.32 

(3,4) √[(12−5)² + (18−10)²] = √[49 + 64] = √113 ≈ 10.63 

(3,5) √[(14−5)² + (28−10)²] = √[81 + 324] = √405 ≈ 20.12 

(4,5) √[(14−12)² + (28−18)²] = √[4 + 100] = √104 ≈ 10.20 

Step 2: Apply Single Linkage Clustering 

Single Linkage: At each step, merge the two clusters that have the smallest minimum distance 

between any two members. 

Initial Clusters: 

• {1}, {2}, {3}, {4}, {5} 

Step 1: Merge Closest Pair 

• Closest: (2,3) → Distance ≈ 3.61 

→ New Cluster: {2,3} 

Clusters: 

• {1}, {2,3}, {4}, {5} 

Step 2: Next Closest 

• (1,2) ≈ 4.12 

→ Merge {1} and {2,3} → {1,2,3} 

Clusters: 

• {1,2,3}, {4}, {5} 

Step 3: Next Closest 

• Min({1,2,3}, {4}) = min(17.80, 14.14, 10.63) = 10.63 (3,4) 

→ Merge {1,2,3} and {4} → {1,2,3,4} 

Clusters: 

• {1,2,3,4}, {5} 

Step 4: Final Merge 

• Min({1,2,3,4}, {5}) = min(27.29, 23.32, 20.12, 10.20) = 10.20 (4,5) 

→ Merge all → {1,2,3,4,5} 

 
Dendrogram Order (Approximate Distances) 

1. Merge (2,3) → 3.61 

2. Merge (1) to (2,3) → 4.12 

3. Merge (4) to (1,2,3) → 10.63 

4. Merge (5) to (1,2,3,4) → 10.20 

Ans 6(b) Let's calculate the Euclidean, Manhattan, and Chebyshev distances between the two 

points: 

• Point A: (0, 3) 

• Point B: (5, 8) 

1. Euclidean Distance 𝑑 = √(𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2 = √(5 − 0)2 + (8 − 3)2 = √25 + 25 =

√50  

2. Manhattan Distance- d=∣x2−x1∣+∣y2−y1∣=∣5−0∣+∣8−3∣=5+5=10 

3. Chebyshev Distance 



 

 

d=max(∣x2−x1∣,∣y2−y1∣)=max(∣5−0∣,∣8−3∣)=max(5,5)=5 

Ans 6 (c) A Markov Decision Process (MDP) is a mathematical framework used to describe a fully observable 

environment in decision-making problems, especially in reinforcement learning. It provides a formal way to 

model sequential decision-making where outcomes are partly random and partly under the control of a 

decision maker. 

Components of an MDP: 

An MDP is defined by a 5-tuple: 

(S,A,P,R,γ)(S, A, P, R, \gamma)(S,A,P,R,γ)  

1. S – States 

The set of all possible states the environment can be in. 

Example: In a grid-world, each grid cell is a state. 

2. A – Actions 

The set of all actions available to the agent. 

Example: Up, Down, Left, Right. 

3. P – Transition Probability 

P(s′∣s,a)P(s'|s, a)P(s′∣s,a): The probability of transitioning to state s′s's′ from state sss after taking action 

aaa. 

This satisfies the Markov property: the future is independent of the past given the present. 

4. R – Reward Function 

R(s,a)R(s, a)R(s,a): The immediate reward received after performing action aaa in state sss. 

It defines the goal of the agent—to maximize the cumulative reward. 

5. γ – Discount Factor 

0≤γ≤10 \leq \gamma \leq 10≤γ≤1: A factor that determines the importance of future rewards. 

o If γ = 0 → only immediate reward matters. 

o If γ ≈ 1 → long-term rewards are also important. 

 
    Goal of MDP: 

To find a policy π(a∣s)\pi(a|s)π(a∣s) that defines the best action to take in each state in order to 

maximize the expected cumulative reward over time (often called the return). 

 
    Value Function: 

1. State Value Function Vπ(s)V^\pi(s)Vπ(s) 

Expected return when starting in state sss and following policy π\piπ. 

2. Action Value Function Qπ(s,a)Q^\pi(s, a)Qπ(s,a) 

Expected return after taking action aaa in state sss, and then following policy π\piπ. 

 
 Applications: 

• Reinforcement learning 

• Game playing (e.g., chess, Go) 

• Robotics and control systems 

• Finance and operations research 

 


