

USN

Internal Assessment Test 2 – MAY

2025

Sub:
MICROCONTROLLERS Sub

Code:
BCS402 Branch: CSE

Date: 26/05/25 Duration: 90 mins Max Marks: 50
Sem /

Sec:
IV Sem A/B/C OBE

Answer any FIVE FULL Questions MARKS
CO RBT

1. a) Explain Arm c compiler data types.

ANS:

 Compilers use the datatype mappings which is shown in below table-

[2] CO2 L2

1. b) Consider the following C code to calculate the Checksum of a data packet containing 64

words. Illustrate the compiler output generated for the same code shown below. Summarize

the drawbacks of the compiler output.

short checksum_v3(short *data)

{

unsigned int i;

short sum = 0;

for (i = 0; i < 64; i++)

{

sum = (short)(sum + data[i]);

}

return sum;

}

Ans:

The compiler output generated for the same code are as follows—

[8] CO4 L2

The loop is now three instructions longer which are

ADD r3,r2,r1,LSL #1

MOV r0,r0,LSL #16

MOV r0,r0,ASR #16

There are two reasons for the extra instructions:

The LDRH instruction does not allow for a shifted address offset as the LDR instruction

did in checksum_v2. Therefore the first ADD in the loop calculates the address of item i

in the array. The LDRH loads from an address with no offset.

The cast reducing total + array[i] to a short requires two MOV instructions. The

compiler shifts left by 16 and then right by 16 to implement a 16-bit sign extend.

The shift right is a sign-extending shift so it replicates the sign bit to fill the upper 16 bits.

How to overcome the drawback

We can avoid the second problem by using an int type variable to hold the partial sum.

We only reduce the sum to a short type at the function exit.

However, the first problem is a new issue. We can solve it by accessing the array by

incrementing the pointer data rather than using an index as in data[i]. This is efficient

regardless of array type size or element size. All ARM load and store instructions have

a post increment addressing mode.

2 a) Briefly explain steps to enable IRQ and FIQ mode in ARM processor.

Ans:

IRQ and FIQ exceptions only occur when a specific interrupt mask is cleared in the cpsr.

An IRQ or FIQ exception causes the processor hardware to go through a standard

procedure (provided the interrupts are not masked):

1. The processor changes to a specific interrupt request mode, which reflects the interrupt

being raised.

2. The previous mode’s cpsr is saved into the spsr of the new interrupt request mode.

3. The pc is saved in the lr of the new interrupt request mode.

4. Interrupt/s are disabled—either the IRQ or both IRQ and FIQ exceptions are disabled

in the cpsr. This immediately stops another interrupt request of the same type being

raised.

5. The processor branches to a specific entry in the vector table.

Following Table shows how IRQ and FIQ interrupts are enabled. The procedure uses three

ARM instructions.

The first instruction MRS copies the contents of the cpsr into register r1. The second

instruction clears the IRQ or FIQ mask bit. The third instruction then copies the updated

contents in register r1 back into the cpsr, enabling the interrupt request. The postfix _c

identifies that the bit field being updated is the control field bit [7:0] of the cpsr. The

interrupt request is either enabled or disabled only once the MSR instruction has completed

the execution stage of the pipeline. Interrupts can still be raised or masked prior to the MSR

completing this stage.

[6] CO3 L3

2.b) Explain full descending Stack with proper example.

Ans:

The ARM architecture uses the load-store multiple instructions to carry out stack

operations. The pop operation (removing data from a stack) uses a load multiple instruction;

similarly, the push operation (placing data onto the stack) uses a store multiple instruction.

When using a stack we have to decide whether the stack will grow up or down in

memory. A stack is either ascending (A) or descending (D). Ascending stacks grow towards

higher memory addresses; in contrast, descending stacks grow towards lower memory

addresses. When we use a full stack (F), the stack pointer sp points to an address that is the

last used or full location (i.e., sp points to the last item on the stack). In contrast, if we use an

empty stack (E) the sp points to an address that is the first unused or empty location (i.e., it

points after the last item on the stack).

ARM has specified an ARM-Thumb Procedure Call Standard (ATPCS) that defines how

routines are called and how registers are allocated. In the ATPCS, stacks are defined as

being full descending stacks. Thus, the LDMFD and STMFD instructions provide the pop

and push functions, respectively.

The STMFD instruction pushes registers onto the stack, updating the sp. Figure 3.7 shows

a push onto a full descending stack. We can see that when the stack grows the stack pointer

points to the last full entry in the stack.

Example--

PRE

r1 = 0x00000002

r4 = 0x00000003

sp = 0x00080014

STMFD sp!, {r1,r4}

STMFD instruction—full stack push operation

POST

 r1 = 0x00000002

[4] CO2 L2

r4 = 0x00000003

sp = 0x0008000c

3 a) With a neat diagram explain ARM processor exceptions and modes.

Ans:

Each exception causes the core to enter a specific mode. In addition, any of the ARM

processor modes can be entered manually by changing the cpsr. User and system

mode are the only two modes that are not entered by a corresponding exception.

When an exception causes a mode change, the core automatically

■ saves the cpsr to the spsr of the exception mode

■ saves the pc to the lr of the exception mode

Figure shows a simplified view of exceptions and associated modes.

• sets the cpsr to the exception mode

• sets pc to the address of the exception handler

[6] CO4 L2

3. b) What is interrupt latency and how software handler can minimize the interrupt latency.

Ans:

The interval of time from an external interrupt request signal being raised to the first fetch of

an instruction of a specific interrupt service routine (ISR).

Interrupt latency depends on a combination of hardware and software. System architects

must balance the system design to handle multiple simultaneous interrupt sources and

minimize interrupt latency.

The first method is to use a nested interrupt handler

Nested interrupt handler– This allows further interrupts to occur even when currently

servicing an existing interrupt This is achieved by reenabling the interrupts as soon as the

interrupt source has been serviced (so it won’t generate more interrupts) but before the

interrupt handling is complete. Once a nested interrupt has been serviced, then control is

relinquished to the original interrupt service routine.

The second method involves prioritization-- In this case program the interrupt controller

[4] CO4 L1

to ignore interrupts of the same or lower priority than the interrupt we are handling, so only a

higher-priority task can interrupt wer handler.

The processor spends time in the lower-priority interrupts until a higher-priority interrupt

occurs. Therefore higher-priority interrupts have a lower average interrupt latency than the

lower-priority interrupts, which reduces latency by speeding up the completion time on the

critical time-sensitive interrupts.

4 a) Write a C program for ARM micro controller to sort the numbers in ascending order using

bubble sort

Ans:

#include<lpc21xx.h>

int main(void)

{

unsigned long int temp, arr[4]= {0x00000001, 0x00000002, 0x00000004, 0x00000003};

unsigned char i,j,n=4;

for (i=0;i<n-1;i++)

{

for (j=0;j<n-1;j++)

{

if (arr[j]<arr[j+1])

{

temp = arr[j];

arr[j]=arr[j+1];

arr[j+1]= temp;

}

}

}

}

[05] CO3 L3

4 b) Define Pointer aliasing. Analyze the concept of pointer-aliasing by using the code

given below.

void timers_v1(int *timer1, int *timer2, int *step)

{

*timer1 += *step;

*timer2 += *step;

}

Ans: Two pointers are said to alias when they point to the same address. If we write to one
pointer, it will affect the value we read from the other pointer.
The following function increments two timer values by a step amount:
void timers_v1(int *timer1, int *timer2, int *step)
{
*timer1 += *step;
*timer2 += *step;
}

This compiles to
timers_v1
LDR r3,[r0,#0] ; r3 = *timer1
LDR r12,[r2,#0] ; r12 = *step

ADD r3,r3,r12 ; r3 += r12
STR r3,[r0,#0] ; *timer1 = r3
LDR r0,[r1,#0] ; r0 = *timer2
LDR r2,[r2,#0] ; r2 = *step
ADD r0,r0,r2 ; r0 += r2
STR r0,[r1,#0] ; *timer2 = t0
MOV pc,r14 ; return

The compiler loads from step twice. Usually a compiler optimization called common
subexpression elimination would kick in so that *step was only evaluated once, and the value
reused for the second occurrence. However, the compiler can’t use this optimization here.
The pointers timer1 and step might alias one another. In other words, the compiler cannot be
sure that the write to timer1 doesn’t affect the read from step. In this case the second value of

[05] CO3 L4

*step is different from the first and has the value *timer1.This forces the compiler to insert
an extra load instruction.

5. a) Describe the features of Red Hat Red Boot firmware tool.

Ans:

RedBoot is a firmware tool developed by Red Hat. It is provided under an open source

license with no royalties or upfront fees. RedBoot is designed to execute on different CPUs

(for instance, ARM, MIPS, SH, and so on). It provides both debug capability through GNU

Debugger (GDB), as well as a bootloader. The RedBoot software core is based on a HAL.

RedBoot supports these main features:

Communication—configuration is over serial or Ethernet. For serial, X-Modem protocol

is used to communicate with the GNU Debugger (GDB). For Ethernet, TCP is used

to communicate with GDB. RedBoot supports a range of network standards, such as

bootp, telnet, and tftp.

Flash ROM memory management—provides a set of filing system routines that can

download, update, and erase images in flash ROM. In addition, the images can either

be compressed or uncompressed.

■ Full operating system support—supports the loading and booting of Embedded Linux,

Red Hat eCos, and many other popular operating systems. For Embedded Linux,

RedBoot supports the ability to define parameters that are passed directly to the kernel

upon booting

[06] CO4 L2

5. b) Illustrate the steps in the execution flow of sandstone code structure.

Ans: Sandstone consists of a single assembly file. The file structure is broken down into a

number of steps, where each step corresponds to a stage in the execution flow of Sandstone

Step 1: Take the Reset Exception

Execution begins with a Reset exception. Only the reset vector entry is required in the

default vector table. It is the very first instruction executed. reset vector is used to move the

execution flow to the second stage.

Step 2: Start Initializing the Hardware

The primary phase in initializing hardware is setting up system registers. These registers

have to be set up before accessing the hardware. For example, the ARM Evaluator-7T has a

seven-segment display, which we have chosen to be used as a feedback tool to indicate that

the firmware is active. Before we can set up the segment display, we have to position the

base address of the system registers to a known location

Step 3: Remap Memory

One of the major activities of hardware initialization is to set up the memory environment.

Sandstone is designed to initialize SRAM and remap memory. This process occurs fairly

early on in the initialization of the system.

Step 4: Initialize Communication Hardware

Communication initialization involves configuring a serial port and outputting a standard

banner. The banner is used to show that the firmware is fully functional and memory has

been successfully remapped.

N.B—if mark is 10 write the the code for each step.

[04] CO4 L2

6.a) Explain the swap instruction with an example code.

Ans: The swap instruction is a special case of a load-store instruction. It swaps the

contents of memory with the contents of a register. This instruction is an atomi

operation—it reads and writes a location in the same bus operation, preventing any other

instruction from reading or writing to that location until it completes.

[04] CO2 L2

Example—

6. b) Given:

PRE:

 r1 = 0x00000002,

 r4 = 0x00000003,

Show the stack content and register contents after execution of following

instructions.

 STMFD sp! , {r1, r4} sp = 0x00080014.

 STMED sp! , {r1, r4} sp = 0x00080010.

Ans

This instruction:

1. Decrements sp by 4 * number of registers → 2 registers ⇒ 8 bytes.

2. Stores r1 and r4 at the new sp (in order: r1 first, then r4).

3. Updates the stack pointer (due to the !).

i) New SP = 0x00080014 - 8 = 0x0008000C

Memory content after execution:

Registers after execution:

sp = 0x0008000C

r1 = 0x00000002

r4 = 0x00000003

ii) Now, Initial sp = 0x00080010 (as given before this instruction).

Again:

• 2 registers → 8 bytes to be stored

• New SP = 0x00080010 - 8 = 0x00080008

[06] CO2 L2

• Values stored in order: r1, r4

Memory content after execution:

Registers after execution:

sp = 0x00080008

r1 = 0x00000002

r4 = 0x00000003

Faculty Signature CCI Signature HOD Signature

