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Question 1 is compulsory and Answer any 6 from the remaining questions. Marks COOBERBT
1 [State and prove Five Colour Theorem.
[8] | cos| L3
2. Define the following. Give an example for each one of them.
(a) Planar graph
(b) Homeomaorphism of graphs
(c) Chromatic number of a graph

(d) Covering of a graph 45 L1
(e) Spanning tree '

(f) Rooted tree
(g) Cut vertex

3 [Prove that a connected graph is a tree if and only if it is minimally connected. 71 |coz| L3

4 (a) Let F be a forest with k components(trees). If n is the number of vertices and
m is the number of edges in F, prove that n=m + k. L3
(b) If a tree has 4 vertices of degree 3, 2 vertices of degree 4 and one vertex of | [5+2] co3
degree 5, show that it should have 10 pendant vertices.
5 |Prove that a connected planar graph with n vertices, m edges has exactlym+2-n
1 A e 4t L3
regions in all its diagrams. [7] | cO4
6 (a) Find the geometric dual of the graph given below.
/A -
7 [4+3]
: +
LY &“’ ‘-? 1 CD4 L3
M N
(b) State the Kuratowski's theorem. Draw the Kuratowski's first and second
graphs.
7 [Explain maximal independent sets and finding all maximal independent sets | [7] 12 L3
CO05 )
8 |Write a short note on Greedy colouring algorithm. 71 | cos| L3
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starca reduie.

Five Color Thcorcmf The vertices of every connected simple planar graph can pe pro"g

_ colored with five colors.

Proof: Let nbe the number of vertices in a connected, simple planar graph. If n <5 (hep e
theorem is trivially truc. Assume that the thcorem is true for all graphs with n < £, COnSider'a
graph G with £+ 1 vertices. Then, by virtue of Euler’s theorem, G contains a vertex v of degre;
A most 5*. 1f we consider the graph H = G — v, obtained by deleting v from (, then H hagy
vertices. Therefore, by the assumption made, Hf is S-colorable.

Since the degree of v is at most 5, v has at most 5 neighbours in G. Suppose v has 4 or less
number of neighbours. Then the neighbours can be colored with at most four different colors
and v can be colored with the fifth color, all drawn from the colors used in A. Thus, a proper
coloring of G can be done by using the five colors with which H can be colored. Thus, G is

5-colorable.

Next, suppose that v has 5 neighbours, say vy, Va2, V3, V4, vs. Let us arrange them around
v in anti-clockwise order as in Figure 2.61. If the vertices vy, v, V3, ..., Vs are all mutually
- adjacent, then they constitute Ks which is non-planar. This is not possible, because, being a
planar graph, G cannot contain a non-planar graph as a subgraph. Therefore, at least two of
v, V2, ..., Vs, say v; and v, are non-adjacent. ‘

U3

Vg4

Vg
V1

Figure 2.61

will have

Now, construct a graph G’ by merging the edges vsv and . The groph therefor®

(k+1)=2 = k-1 vertices (with v3vv; as the merged vertex). This graph 1S,

I

*See Section 2.2, Corollary 4,
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2.6. Map Colering 143

5-colorable. Let us assign a color ) to the merged vertex v3vvy, a color a; 1o vy, a color aq to
vs and a color as to vs. With this scheme of coloring of vi, va, v3, v4, vs and with the use of just
one more color @3 assigned to other appropriate vertices, the graph G gets properly colored.
Now, unravel the merged vertex va3vvi and assign the color @ to both v3 and v; and the color
a; to v, without disturbing the colors of other vertices. This will produce a proper coloring of
G with colors ay, @y, @3, @4, @s. Thus, G 1s 5_colorable in this case also (where the degree of
vis 5). |

We have proved that a graph with n = I + 1 vertices is S-colorable if a grgph with n £ .k
vertices is 5-colorable. Hence, by induction, it follows that a graph with n vertices, where 118
any positive integer, is S-colorable.

This completes the proof of the theorem.
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| m §4 connected graph is a tree i
\; ' O

if and only if it is minimally connected.
X

A &

!

Proof: Suppose G is a connected graph which is not a tree. Then G contains a cycle C. The
removal of any one edge e from this cycle will not make the

graph disconnccted. Therefore,
G is not minimally connected. Thus, if a connected graph is n

Ot a tree then it is not minimally
connccted. This is equivalent to saying that if a connected graph is minimally connected then
it is a tree (contrapositive).

Conversely, suppose G is a connected graph which is not minimally connected. Then there
exists an edge e in G such that G — e is connected. Therefore, e nust be in some cycle in G.
This implies that G is not a tree. Thus, if a connected graph 1s not minimally

is not a tree. This is equivalent to sa

connected then it
connected (contrapositive). |

ying that if a connected graph is a tree, then it is minimally

- T

This completes the proof of the theorem. \ &>

‘._'.
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/Let F be a forest with k components (trees). If n is the number of vertices - dn

is the number of edges in I, prove that n = m + k.

:F .
-

f-';i > Lct Fy, s, ..., H; be the components of /. Since each of these 1s a tree, if n; is the Numbey
of vertices in H; and m; is the number of edges in H;, we have

mi=n;—1, for i=12,...,k

This gives
myt+my+---+me = (m=-1)+m-1)+---+(m-1)
= n+m+---+n.—Kk.
But my +my+---+mpy =m and ny+ny+---+n = n Therefore, m = n-k o
n=m+k. ~\7 7

F 4
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d connected planar graph G with n vertices and m edees has exactly m — n + 2

Theorem §

regions in all ofits diagrams.

~Proof: Let » denote the number of regions in a diagram of . The theorem states that

&
r=m-n+2, or n—m+r=2 (1

We give the proof by induction ¢n m.
If m = 0, then » must be equal to 1. Because, if n > 1, then G will have at lcast two vertices

and there must be an edge connecting them (because G is connected), so that m # 0, which is
a contradiction,

If n = 1, a diagram of G determines only one region — the entire plane region (as shown
1n Figure 2.21(a)).

This formula is known as the Euler s formula.
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2.2. Euler’s formula
105

Thus, if m = 0, then n = 1 and r = 1, so that n — m + r =2, This verifies the theorem for

m=0.

Re,

(a) (b)

Figure 2.21 s

Now, assume that the theorem holds for all graphs with m = k number of edgcs, where & 1s

a non-negative integer.

Consider a graph Ggyy with k£ + 1 cdges and n vertices. First, supposec that G, has no
cycles in it. Then a diagram of Gy will be of the form shown in Figure 2 21(b)" in which the
number of vertices will be exactly one more than the number of edges, and the diagram will

determine only one region — the entire planc region (as in Figure 2.21(b)). Thus, for Gy, we
‘have, in this case, n = (k+ 1) + 1 and r = 1, so that '

n—(k+1)+r=2.

This means that the result (1) is the true when m = k + 1 as well, if Gk contains no cycles in
it.
- Next, suppose Gy, contains at least one cycle. Let r be the number of regions which a
diagram of Gy, detecrmine. Consider an edge e in a cycle and removc it from Ggyi- T}}C
resulting graph, G,,, — e, will have n vertices and (k + 1) — | = k edges, and its diagram will
determine 7 - | regions. Since Gy, — e has k edges, the theorem holds for this graph (by the

induction assumpltion made). That is, we have

r—1=k-n+2, or n—(k+1)+r=2

This means that in this case also the result (1) is true when m = k + 1 as well.
3
! Hence, by induction, it follows that the result (1) is true for all non- -negative intcgers 7 ;

g This ‘_-c_‘_"‘mplctes the proof of the theoxjem. ©

A il
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;I nece.éxs*}ry and sufficient condition for a graph G to be planar is that G does
not contain Ks or K33 as a subgraph or any subgraph homeomorphic to either of these.™
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adjacent to any of those already selected. This ﬁxmulmw will rultﬂmlzely
& maximal independent set. This ser however, ks not necessarily a maximal

Finding All Maximal Independent Sers: A reasomable (b nor very efficien
for large graphs) method for obtaining all masimal Independent sets o any graph
can be developed using Boolean arithmetic on the vertioss, Let each vertex i the
graph be weated as 2 Boolean variable, Let the logloal (or Boolean) swmw a « b
denote  the operation of including vertex a or B or bowy ler e losgical
multuplication ab denote the operation of including boly vertioms o and 6, and let
the Boolean complement ¢ denote that vertes o 15 mon Lo Daded,

Foe a given graph G we must find a masiosal sobrser of verthoss thar does mol
sl the two end vertices of any edge i Go Let s epeess an edge |, W s
Esrolean product, xy, of s end vertces x and v, s e v soen all sueb producrs
ey ot e a Boolean expression

g = X oy for all (w0, v by .
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Fig. 83

The number of vertices in the largest independent set of a graph G is called

the independence number (or coefficient of internal stability), B{G).
Consider a x-chromatic graph G of n vertices properly colored with x different
colors. Since the largest number of vertices in G with the same color cannot

exceed the independence number (G), we have the inequality
G = -

Finding a Maximal Independent Set: A reasonable mcthlc,l of finding a
maximal independent set in a graph G will be to start with any-vertex v of G in

the set. Add more vertices to the set, selecting at each stage a vertex that is not
adjacent 1o any of those already selected. This procedure will ultimately produce
a maximal independent set. This set, however, is not necessarily a maximal

independent set with.a largest number of vertices.
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Finding All Maximal Independent Sets: A reasonable (but not very efficient
for large graphs) method for obtaining all maximal independent sets in any graph
can be developed using Boolean arithmetic on the vertices. Let each vertex in the
graph be treated as a Boolean variable. Let the logical (or Boolean) sum a + b
denote the operation of including vertex a or b or both; let the logical
multiplication ab denote the operation of including both vertices g and 6, and let
the Boolean complement a’ denote that vertex a is not included.

For a given graph G we must find a maximal subset of vertices that does not
include the two end vertices of any edge in G. Let us express an edge (x, y) as a
Boolean product, xy, of its end vertices x and V. amd let us sum all such products

in G to get a Boolean expression |
@ = ¥ xy for all (x, ;y) in‘G.

Let us further take the Boolean comp]ement @' of thls expresmon, and express it
as a sum of Boolean products : ,

# SR AT O e )

whlch is poss:ble if and nnlv 1f qu = 1 (true}* wlnch is posmble if and onlv if at
least one f;. = 1, which is possible if and only if each vertex appearing in f;, (in

complememed form) is excluded from thc' vertex set of ;. Thus each f, will yield

a maximal independent set, and every maximal independent set will be produced
by this method. This procedure can be best explained by an example. For the

graph G in Fig. 8-3,
@ =ab + bc + bd + be + ce + de + ef + eqg + fig,
@ =(a +bWb' + Wb +dWb' + e+ e)Nd + e
(e f)e+auf +qg)
Mulriplying these out and emploving the usual identities of Boolpan arithmetic,
such as

7 S O 7 =

y
& - an (.
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we get
¢ =be ’f+ be'g +acdef+acdeg+ bcdfyg.

Now if we exclude from the vertex set of G vertices appearing in any one of
these five terms, we get a maximal mdependent set. The five maximal
independent sets are ‘

acdf, acdg, bg, bﬁ and ae.

These are all the maximal independent sets of the grlph

Finding Independence and Chromatic Numbers: Once all the maximal
independent sets of G have been obtained, we find the size of the one with the
largest number of wvertices to get the mdependenc’e number B(G). The
independence number of the graph in Fig. 8-3 is four. |

To find the chromatic number of G, we must find the minimum number of
these (maximal mdependent) sets, which culiecnvelv include all the vertices of
G. For the graph in Fig. 8-3, sets {a, ¢;'* d, f1. {b,g}. and {a. e}. for example,
satisfy this condition. Thus the graph is 3~chrnmat1c ‘ ‘

Chromatic Partitioning: Given a 51mple cnnnemccll graph G, partition all
vertices of & into the smallest possﬂ:ﬂe number of disjoint, independent sets.
This problem, known as the chromatic partitioning of graphs, is perhaps the
most important problem in partitioning of graphs.

By enumerating all maximal independent sets and then selecting the smallest
number of sets that include all vertices of the graph, we just solved this problem.
The following four are some chromatic partitions of the graph in Fig. 8-3, for

xample.

o, c.d, D.(bh.g) (e},
{{a, c,d, g), (b, ). (e)},
{(c, d. ., (b, g), (a, e)}.
{(c.d. g). (b, N, (a, e)}.
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