

Sub:	Machine Learning				Sub Cod e:	BCS 602	Branch:	CSE		
Date:	27/05/2025	Duration:	90 mins	Max Marks:	50	Sem / Sec:		6 A,B,C		

Answer 1. Distance Calculation Mistake: 1 Mark for each distance, 2 marks if not in ascending order.

Age 1	garder 1	class	of sports	d (3,1)	
32	0	F	1	28.27.01	
40	0	N		36 35.01	18 do - fol - fo.
16	1	C	26.08	NII	107
34	1	c	49		
65	D	N		5 50.009	
40	0	c	.60.1	36 35.01	
20	1	N		15 15	
15	0	C		N 10-04	
55	1	F		52 50	
15	O	F		1 10.04	36-7 76-56-53
		· ·	PE 0-		
d, =	(32-5)2+	(1-0) 2		
	(27)2+				
	= 28.27.0				
agis	tances		orden		
varrang	i in asce	The state of the s	,		SPAC .

Answer 2: Entropy: 2 Marks, Entropy (A): 2 Marks, Information Gain: 2 Marks, Tree: 2 Marks, Calculation Mistake: 1 Marks.

$$E = -\frac{3}{5} \log_{2} \theta_{1}$$

$$E = -\frac{3}{5} \log_{2} \theta_{1}$$

$$E = -\frac{3}{5} \log_{2} \theta_{2}$$

$$= -0.6 \log_{2} 0.6 - 0.4 \log_{2} 0.4$$

$$= 0.4421 + 0.52844$$

$$= 0.9708$$

$$E \left(\text{outlook} \right) = \frac{2}{5} \left(\frac{1}{1} \right) + \frac{1}{5} \left(\frac{1}{1} \right) + \frac{2}{5} \left(\frac{1}{1} \right) = 1$$

$$= \frac{2+2}{5}$$

$$= 4 | 5$$

$$= \frac{3}{5} \left[-\frac{2}{3} \log_{2} \frac{2}{5} - \frac{1}{3} \log_{2} \frac{1}{3} \right] + 0 + 0$$

$$= \frac{3}{5} \left[-\frac{2}{3} \log_{2} 0.66 - 0.33 \log_{2} 0.35 \right]$$

$$= 0.6 \left[0.3956 + 0.5278 \right] + 6$$

$$= 0.5540$$

$$= \left(3 + \frac{1}{5} \left(\frac{1}{5} \right) \right) + \frac{1}{5} \left(\frac{1}{5} \right)$$

$$= \frac{4}{5} + 0$$

$$= 0.8 \left[-3.1 \right] + \frac{1}{5} \left[0.1 \right]$$

$$= 0.8 \left[-0.75 \log_{1} 0.75 - 0.25 \log_{1} 0.25 \right]$$

$$= 0.8 \left[-0.75 \log_{1} 0.75 - 0.25 \log_{1} 0.25 \right]$$

$$= 0.6489.$$
Information gain (I6) for outlook = 0.9708 - 0.8.
$$= 0.1708.$$

$$= 0.4168.$$

$$E(\text{oillook}) = +\frac{2}{3} \begin{bmatrix} 1 & 1 \end{bmatrix} + \frac{1}{3} & (1 & 0) \\ = \frac{2}{3} \times 1 & 0 \\ = 0.66$$

$$E(\text{Jumidity}) = \frac{3}{3} & (2 & 1) \\ = \frac{3}{3} & [-\frac{2}{3} \log_{2} \frac{2}{3} - \frac{1}{3} \log_{2} \frac{1}{3}] \\ = 0.9234$$

$$E(\text{wind}) = \frac{2}{3} & (2 & 0) + \frac{1}{3} & (0 & 1) \\ = 0 & 1 & (0 & 0) + (0 & 0) + (0 & 0) + (0 & 0) \\ = 0.2634$$

$$E(\text{Jumidity}) = 0.9234 - 0.9234$$

$$E(\text{Jumidity}) = 0.9234 - 0.9234$$

$$= 0 & 0.9234$$

$$= 0.9234$$

$$= 0.9234$$

$$= 0.9234$$

$$= 0.9234$$

$$= 0.9234$$

Answer 3: Prior Probability: 2 Marks, Likelihood Probability: 6 Marks, Calculation Mistake: 2 Marks.

Answer 4 a Different Types of Neural Network: Each type and figure are 1 mark.

10.5.1 Feed Forward Neural Network

This is the simplest neural network that consists of neurons which are arranged in layers and the information is propagated only in the forward direction. This model may or may not contain a hidden layer and there is no back propagation. Based on the number of hidden layers they are further classified into single-layered and multi-layered feed forward networks. These ANNs are simple to design and easy to maintain. They are fast but cannot be used for complex learning. They are used for simple classification and simple image processing, etc. The model of a Feed Forward Neural Network is shown in Figure 10.7.

Figure 10.7: Model of a Feed Forward Neural Network

10.5.2 Fully Connected Neural Network

Fully connected neural networks are the ones in which all the neurons in a layer are connected to all other neurons in the next layer. The model of a fully connected neural network is shown in Figure 10.8.

Figure 10.8: Model of a Fully Connected Neural Network

10.5.3 Multi-Layer Perceptron (MLP)

This ANN consists of multiple layers with one input layer, one output layer and one or more hidden layers. Every neuron in a layer is connected to all neurons in the next layer and thus they are fully connected. The information flows in both the directions. In the forward direction, the inputs are multiplied by weights of neurons and forwarded to the activation function of the

10.5.4 Feedback Neural Network

Feedback neural networks have feedback connections between neurons that allow information flow in both directions in the network. The output signals can be sent back to the neurons in the same layer or to the neurons in the preceding layers. Hence, this network is more dynamic during training. The model of a feedback neural network is shown in Figure 10.10.

Figure 10.10: Model of a Feedback Neural Network

Answer 4-b Reinforcement Learning Components: All components 1 mark, Mathematical Expression 1 mark and figure is 1 mark.

Components of Reinforcement Learning

- Environment and Agent
- States and Actions
- Policies
- Rewards:
 - 1. Immediate Award

$$G_t = r_{t+1} + r_{t+2} + r_{t+3} + \dots + r_T$$

2. Long term Award

$$\begin{split} G_t &= \gamma_{t+1} + \gamma r_{t+2} + \gamma^2 r_{t+3...} \\ &= \sum_{j=0}^{\infty} \gamma^j r_{t+j+1} \end{split}$$

Figure 14.4: Basic Components of RL

Key components of reinforcement learning:

- 1.Agent: The learner or decision-maker that interacts with the environment. It observes the state of the environment, takes actions, and receives feedback.
- 2.Environment: The external system or world with which the agent interacts. It responds to the actions taken by the agent and transitions between different
- 3. Actions: Choices made by the agent at each time step, affecting the state of the environment.
- 4.State: represents the current situation or configuration of the environment, which influences the next state based on the agent's actions.
- 5.Rewards: Numeric values provided by the environment to indicate the desirability of the actions taken by the agent. The goal of the agent is to maximize the cumulative reward over time.
- 6.Policy: The strategy or set of rules that the agent uses to determine its actions based on the observed states. It maps states to actions and guides the decision-making process.

Answer 5-a: Epoch: 2 Marks, Calculated Output Calcu; ation: 2 Marks, Calculation: 2 Marks


```
there is \Delta \omega_1 = 0.5 \times 1 \times 1

\Delta \omega_2 = 0.5 \times 1 \times 0

\omega_1' = 0.6 + 0.5

\omega_1' = 0.6 + 0.5

\omega_1' = 1.1 + 0

\omega_2' = 1.1 + 0

\omega_1' = 1.1 + 0

\omega_2' = 1.1 + 0

\omega_1' = 1.1 + 0

\omega_1' = 1.1 + 0

\omega_2' = 1.1 + 0

\omega_1' = 1.1 + 0

\omega_1'
```


Answer 5-b MultiArm Bandit Problem: Steps: 2 Marks, Selection Policies: 2 Marks.

MULTI-ARM BANDIT PROBLEM

- *Imagine you're in front of several slot machines (arms).
- Each machine gives a random reward, but some are better than others.
- You don't know which one is best, so you have to try different machines, observe their rewards, and figure out where to keep playing to maximize total reward over time.

Key Methods Used in Multi Arm Bandit Problem:

Exploration

- Trying out different arms to gather information.
- Helps discover which machines give higher rewards.
- Prevents getting stuck with a suboptimal choice too early.

Exploitation

- Playing the arm with the highest known average reward.
- Focuses on maximizing immediate reward using current knowledge.
- Might miss out on better options if not explored enough.

Selection Policies (How to choose an arm)

- Rules/strategies used to balance exploration and exploitation.
- Aim: maximize long-term reward.
- Examples: Greedy, Epsilon-Greedy

A. Greedy Method

- Always selects the arm with the highest average reward so far.
- Exploitation-only: no exploration.
- Simple, but can get stuck in a local optimum.

B. Epsilon-Greedy Method

- Mostly greedy, but with a small chance (ϵ) to explore.
- With probability 1–ε, choose the best-known arm (exploit).
- With probability ε , choose a random arm (explore).
- Balances exploration and exploitation better than greedy.

Answer 6: Complete Linkage Calculation 3 marks, Dendrogram 2 marks and Average Linkage Calculation 3 Marks, Dendrograms: 2 Marks

	Answer. 6.		6	0	0
1. Sample No	XyI				
max n Status	4 3 44				
C	a Lugar Lugar	actual o	ill		
phitalbuming 54	3 8			ti e	ha
salp althouse etals Into lar ent sal sal	the heaven of the second	is bus elde			
complete sinkage.	w. Hy ece				
11 20 20 6	2000	6		0	

$$d_{12} = \sqrt{(4-1)^2 + (3-4)^2}$$

$$= \sqrt{3^2 + (-1)^2}$$

$$= \sqrt{10}$$

$$= \sqrt{10}$$

$$d_{13} = \sqrt{(4-2)^2 + (3-1)^2}$$

$$= \sqrt{2^2 + 2^2}$$

$$= \sqrt{4+4}$$

$$= \sqrt{8} = 2 \cdot 82$$

$$d_{14} = \sqrt{(4-3)^2 + (3-8)^2}$$

$$= \sqrt{12} + \sqrt{2}$$

$$= \sqrt{24+4}$$

$$= \sqrt{8} = 2 \cdot 82$$

$$= \sqrt{12+5^2}$$

$$= \sqrt{16-6} + \sqrt{16-6}$$

$$d_{35} = \sqrt{(1-2)^{2} + (4-1)^{2}}$$

$$= \sqrt{1^{2} + 3^{2}}$$

$$= \sqrt{10}$$

$$= \sqrt{3^{2} + 1^{2}}$$

$$= \sqrt{10}$$

$$= \sqrt{3^{2} + 1^{2}}$$

$$= \sqrt{3^{2} + 1^$$

$$d\{(s_{1},s_{6}), \{s_{2}\}\} = \frac{1}{2} \left[d(s_{1},s_{2}) + d(s_{1},s_{6}) \right]$$

$$= \frac{1}{2} \left[3.16 + 5 \right]$$

$$= 4.00.$$

$$d\{(s_{1},s_{6}), (s_{3},s_{6})\} = \frac{1}{2} \left[2.82 + d(s_{1},s_{3}) + d(s_{3},s_{6}) \right]$$

$$= \frac{1}{2} \left[2.82 + 3 \right]$$

$$= 2.91$$

$$d(d\{s_{1},s_{6}\}, \{s_{4}\}\}) = \frac{1}{2} \left[d(s_{1},s_{4}), (s_{4},s_{6}) \right]$$

$$= \frac{1}{2} \left[s_{1},s_{4} \right]$$

$$d(\{s_1, s_6\}, \{s_5, s_6\}) = \underbrace{1}_{2\cdot 1} \left[d(s_1, s_5), d(s_5, s_6) \right]$$

$$= \underbrace{1}_{2\cdot 1} \left[\underbrace{2 \cdot 2 \cdot 3}_{2\cdot 1} 6 \cdot 32 + 0 \cdot 06 \right]$$

$$= \underbrace{7 \cdot 19}$$

$$Marge \left(s_{11} s_{37} s_6 \right) \text{ as new cluster, some two structs}$$

$$(s_{11} s_{37} s_6) \underbrace{s_2}_{0} \underbrace{s_4}_{0} \underbrace{s_5}_{0}$$

$$(s_{11} s_{31} s_6) \underbrace{s_2}_{0} \underbrace{s_4}_{0} \underbrace{s_5}_{0}$$

$$\underbrace{s_4}_{0} \underbrace{s_4}_{1} \underbrace{s_7}_{1} \underbrace{s_7}_{1}$$

$$\underbrace{s_1}_{0} \underbrace{s_4}_{0} \underbrace{s_7}_{1} \underbrace{s_7}_{1}$$

$$\underbrace{s_7}_{0} \underbrace{s_7}_{0} \underbrace{s_7}_{0}$$

