Internal Assessment Test II — May 2025

Sub: | Blockchain Technology Sub Code: | BCS613A Branch: | CSE
Date: 2025 | Duration: | 90 minutes | Max Marks: | 50 | Sem/ Sec: VI/A,B,C OBE
Answer any FIVE FULL Questions MARKS| co |RBT
Discuss the concept of Gas in Ethereum. Why is Gas important, and how does it impact
1 transaction execution? 10 [CO4 (L2
[What is a Genesis Block? Describe its significance in maintaining the security and
2 |continuity of the blockchain
10 jco3 |L2
3 [Briefly discuss about the operation of Ethereum Virtual Machine (EVM) with the
help of a neat diagram. 10 (co4 |L2
4 |What are Ricardian Contracts? Compare and contrast Ricardian Contracts and Smart
Contracts. 10 [CO5 |L2
5 |Discuss real-world applications of Hyperledger Fabric and Corda in industries like finance,
healthcare, and supply chain management. 10 [cos5 L2
6 |Give the different types of Transactions in Ethereum and also explain the fields
included in these transactions. 10 |CO4 [L2
CI CCI HoD
USN
Internal Assessment Test II —May 2025
Sub: | Blockchain Technology Sub Code: | BCS613A Branch: | CSE
Date: 2025 Duration: | 90 minutes Max Marks: | 50 [Sem / Sec: VI/A,B,C OBE
Answer any FIVE Questions .
Answer any FIVE Questions MARKS | co RBT
Discuss the concept of Gas in Ethereum. Why is Gas important, and how does it impact
1 [transaction execution? 10 CO3 |L2
'What is a Genesis Block? Describe its significance in maintaining the security and
2 |continuity of the blockchain
10 COo4 |L2
3 |Briefly discuss about the operation of Ethereum Virtual Machine (EVM) with the
help of a neat diagram. 10 Co3 L2
4 |What are Ricardian Contracts? Compare and contrast Ricardian Contracts and Smart
Contracts. 10 CO4 |L2
5 [Discuss real-world applications of Hyperledger Fabric and Corda in industries like
finance, healthcare, and supply chain management. 10 Cco5 |L2
6 |Give the different types of Transactions in Ethereum and also explain the fields
included in these transactions. 10 CcO5 |L2

CI CCI

HoD

Q 1 : Discuss the concept of Gas in Ethereum. Why is Gas important, and
how does it impact transaction execution? (10 Marks)

1. Introduction to Gas in Ethereum (2 Marks)

In the Ethereum blockchain, Gas is a fundamental unit that measures the computational effort
required to perform transactions and execute smart contracts. It serves as a fee mechanism to
allocate resources fairly and ensure that the Ethereum Virtual Machine (EVM) functions
efficiently. Gas is paid in Ether (ETH), the native cryptocurrency of Ethereum.

2. Importance of Gas in Ethereum (4 Marks)
Gas plays a crucial role in the Ethereum ecosystem for the following reasons:
1. Prevents Network Abuse

o Gas ensures users pay for computation, preventing spam and denial-of-service
(DoS) attacks.

2. Fair Resource Allocation

o The Ethereum network has limited processing power. Gas fees help in
distributing these resources fairly.

3. Transaction Prioritization

o Validators (previously miners) prefer transactions with higher gas prices,
ensuring faster inclusion in the blockchain.

4. Incentive Mechanism

o Gas fees are given as rewards to validators, encouraging them to process
transactions and maintain the network.

3. Gas and Transaction Execution (4 Marks)

Gas directly impacts how transactions are executed on the Ethereum network:
e Gas Limit

o The maximum amount of gas a user is willing to consume for a transaction. If the
execution exceeds the gas limit, the transaction fails, but the gas is still
consumed.

e Gas Price (in Gwei)

o Itis the amount the user is willing to pay per unit of gas. It affects the speed of
transaction processing—higher gas prices lead to quicker confirmation.

e Transaction Fee Calculation
Transaction Fee=Gas UsedxGas Price\text{Transaction Fee} = \text{Gas Used} \times
\text{Gas Price}

e EIP-1559 Upgrade (London Hard Fork)

o Introduced a base fee (burned) and an optional tip to incentivize validators. This
improved transaction fee predictability.

4. Conclusion (1 Mark)

Gas is a vital part of Ethereum’s infrastructure. It not only facilitates transaction processing but
also maintains the economic and operational stability of the network. By regulating computation
and storage costs, gas ensures efficient and secure execution of operations within Ethereum.

Q:2 What is a Genesis Block? Describe its significance in maintaining the
security and continuity of the blockchain. (10 Marks)

1. Definition of Genesis Block (2 Marks)

The Genesis Block is the first block in any blockchain. It is the foundation upon which the
entire blockchain is built. In Ethereum and Bitcoin, this block is hardcoded into the software and
has no previous block (i.e., its parent hash is null or zero).

e Also referred to as Block 0 or Block #0.

e |tis created manually and distributed to all network nodes.

2. Characteristics of the Genesis Block (2 Marks)
e Has no predecessor (Parent Hash = 0).
e Contains initial configuration parameters, like:
o Network difficulty
o Initial timestamp
o Initial allocation of cryptocurrency (e.g., pre-mined coins or token distribution).

e Cannot be changed or removed without changing the entire blockchain.

3. Significance in Blockchain Security (3 Marks)
1. Trust Anchor

o All subsequent blocks are validated based on the Genesis Block. It is the root of
the blockchain's trust.

2. Tamper Resistance

o Since every block contains the hash of its previous block, altering the Genesis
Block would break the entire chain, making tampering highly detectable.

3. Cryptographic Linking

o Itinitiates the cryptographic link between blocks, enabling immutability and
consistency.

4. Significance in Continuity (2 Marks)
1. Ensures Blockchain Integrity

o Acts as a permanent starting point that nodes agree on, ensuring a consistent
ledger across the decentralized network.

2. Synchronization Reference

o New nodes joining the network use the Genesis Block to start syncing with the
rest of the blockchain.

5. Conclusion (1 Mark)

The Genesis Block plays a foundational role in blockchain technology. It ensures security
through cryptographic linking and continuity by serving as the trusted starting point. Without it,
the entire chain would lack structure and trustworthiness.

Q 3 Briefly discuss about the operation of Ethereum Virtual Machine (EVM) with the
help of a neat diagram.

Elements of the Ethereum blockchain

* Ethereum virtual machine (EVM) EVM is a simple stack-based execution machine that
runs bytecode instructions in order to transform the system state from one state to
another. The word size of the virtual machine is set to 256-bit.

* The stack size is limited to 1024 elements and is based on the LIFO (Last in First Out)
queue. EVM is a Turing-complete machine but is limited by the amount of gas that is
required to run any instruction. This means that infinite loops that can result in denial
of service attacks are not possible due to gas requirements.

* EVM also supports exception handling in case exceptions occur, such as not having
enough gas or invalid instructions, in which case the machine would immediately halt
and return the error to the executing agent.

* EVM is a fully isolated and sandboxed runtime environment. The code that runs on
the EVM does not have access to any external resources, such as a network or
filesystem.

* AEVM is a stack-based architecture. EVM is big-endian by design and it uses 256-bit

wide words. This word size allows for Keccak 256-bit hash and elliptic curve cryptography
computations.

There are two types of storage available to contracts and EVM. The first one is called
memory, which is a byte array. When a contract finishes the code execution, the
memory is cleared. It is akin to the concept of RAM.

* The other type, called storage, is permanently stored on the blockchain. It is a key
value store. Memory is unlimited but constrained by gas fee requirements. The

storage associated with the virtual machine is a word addressable word array that is
non-volatile and is maintained as part of the system state.

* Keys and value are 32 bytes in size and storage. The program code is stored in a virtual
read only memory (virtual ROM) that is accessible using the CODECOPY instruction.

The CODECOPY instruction is used to copy the program code into the main memory.
Initially, all storage and memory is set to zero in the EVM. The following diagram

shows the design of the EVM where the virtual ROM stores the program code that is
copied into main memory using CODECOPY.

* The main memory is then read by the EVM by referring to the program counter and
executes instructions step by step. The program counter and EVM stack are updated
accordingly with each instruction execution.

VIRTUAL ROM
POP PUSH MAIN MEMORY
K- — == e, .F"'-d___ﬁh\. .
| sTop :
!4 PROGRAM
o[] CODECOPY CODE
K | 5 OPCODE
= I_ ! I I
K | 7
, 2 | [aoD
=] |
S| | | PUsH1 | .
. STORAGE
) PROGRAM - . _
| | e BY TE ARRAY (SYSTEM STATE)
(256 BH WORD)
| mEM 1 |
L 4
EVM STACK
32-byte Values

EVM optimization is an active area of research and recent research has suggested that
EVM can be optimized and tuned to a very fine degree in order to achieve high
performance. Research into the possibility of using Web assembly (WASM) is
underway already. WASM is developed by Google, Mozilla, and Microsoft and is now
being designed as an open standard by the W3C community group. The aim of WASM

is to be able to run machine code in the browser that will result in execution at native
speed. Similarly, the aim of EVM 2.0 is to be able to run the EVM instruction set
(Opcodes) natively in CPUs, thus making it faster and efficient.

Execution environment

There are some key elements that are required by the execution environment in order
to execute the code. The key parameters are provided by the execution agent, for
example, a transaction. These are listed as follows:

1. The address of the account that owns the executing code.

2. The address of the sender of the transaction and the originating address of this
execution.

3. The gas price in the transaction that initiated the execution.

4. Input data or transaction data depending on the type of executing agent. This is a
byte array; in the case of a message call, if the execution agent is a transaction, then
the transaction data is included as input data.

5. The address of the account that initiated the code execution or transaction sender.
This is the address of the sender in case the code execution is initiated by a
transaction; otherwise, it's the address of the account.

6. The value or transaction value. This is the amount in Wel. If the execution agent is
a transaction, then it is the transaction value.

7. The code to be executed presented as a byte array that the iterator function picks
up in each execution cycle.

8. The block header of the current block

9. The number of message calls or contract creation transactions currently in
execution. In other words, this is the number of CALLs or CREATEs currently in
execution.

The execution environment can be visualized as a tuple of nine elements, as follows:

EXECUTION ENVIRONMENT

ADDRESS OF CODE OWNER

ADDRESS OF SENDER

GAS PRICE

INPUT DATA
(TRANSACTION OR DATA)

INITIATOR ADDRESS

VALUE(WEIs)

BYTE CODE

BLOCK HEADER

MESSAGE CALL DEPTH

Q 4 : What are Ricardian Contracts? Compare and contrast Ricardian
Contracts and Smart Contracts.

(10 Marks)

1. Definition of Ricardian Contracts (3 Marks)

A Ricardian Contract is a digital contract format that is both human-readable and
machine-readable. It acts as a legal agreement that can be parsed and interpreted by
computer systems while remaining understandable by humans.

e Introduced by lan Grigg in 1996.

e It represents a bridge between legal prose and code execution.

e |t contains:
o Legal text (terms and conditions)
o Digital signature
o Cryptographic hash (for identity and immutability)

s# Example: A Ricardian contract can define the issuance of a token with legally
binding terms and be digitally signed by both parties.

2. Definition of Smart Contracts (2 Marks)

A Smart Contract is a self-executing code deployed on a blockchain (like Ethereum) that
automatically enforces rules and conditions written in code.

e Introduced by Nick Szabo in the 1990s.
e ltis not a legal document but a program.
e Deployed on blockchain, it ensures automation, trustlessness, and immutability of

execution.

& Example: A smart contract for a crowdfunding campaign automatically refunds
users if the target amount is not reached.

3. Comparison Table (4 Marks)

Feature Ricardian Contract Smart Contract
Nature Legal agreement with machine Self-executing code
readability
Readability Human-readable + Mostly code-based; not directly

machine-readable human-readable

Execution

Binding

Immutability

Use Case

Platform

Not automatically executed

Can be legally binding

Cryptographically hashed for
integrity

Financial instruments, token
issuance

Any digital system

4. Conclusion (1 Mark)

Automatically executed on

blockchain

Not inherently legally binding

Stored on blockchain, immutable

dApps, escrow, voting, DeFi

Blockchain platforms like Ethereum

Ricardian Contracts serve as a hybrid between legal and digital systems, ensuring legal
enforceability along with machine processability. In contrast, Smart Contracts focus purely on
automated execution within a blockchain environment. Both play complementary roles in the
future of digital agreements and decentralized applications.

Q 5: Discuss real-world applications of Hyperledger Fabric and Corda in
industries like finance, healthcare, and supply chain management.

(10 Marks)

1. Introduction (1 Mark)

Hyperledger Fabric and Corda are two popular permissioned blockchain platforms
designed for enterprise use.

e Hyperledger Fabric is developed by The Linux Foundation.

e Corda is developed by R3, focused on financial institutions.

Both platforms are used across various industries to improve transparency, security, and
efficiency.

2. Applications in Finance (3 Marks)
& Hyperledger Fabric

e Trade Finance: Used by we.trade (IBM and major banks) to manage cross-border trade
with real-time tracking and smart contracts.

e Asset Tokenization: Enables digital representation of financial assets and secure
peer-to-peer transfers.

& Corda

e Interbank Settlements: Used by banks like HSBC and ING for real-time gross
settlement and reconciliation.

e Know Your Customer (KYC): Enables secure sharing of verified identity information
without duplication or data leakage.

3. Applications in Healthcare (2 Marks)
& Hyperledger Fabric

e Medical Records Management: Enables secure and interoperable sharing of
Electronic Health Records (EHR) among hospitals and patients.

o Example: MediLedger Project for pharmaceutical traceability.

e Clinical Trials: Ensures immutability and auditability of trial data.

& Corda

e Insurance Claims: Used in health insurance to automate and validate claims processing
between hospitals and insurers with minimal fraud.

4. Applications in Supply Chain Management (3 Marks)

@ Hyperledger Fabric

e Food Traceability: Used by Walmart and IBM Food Trust to track produce from farm
to shelf, ensuring quality and safety.

e Logistics: Ensures transparency across multiple vendors, carriers, and warehouses.

& Corda

e Document Exchange: Secure sharing of logistics documents like Bills of Lading,
purchase orders, and invoices in a tamper-proof way.

e Supply Chain Finance: Allows manufacturers and suppliers to access financing based
on verified delivery milestones.

5. Conclusion (1 Mark)

Both Hyperledger Fabric and Corda provide robust blockchain solutions tailored for enterprise
applications.

e Hyperledger Fabric offers modular architecture suitable for diverse industries.
e Corda excels in financial-grade applications with a strong focus on privacy and

interoperability.

Their adoption in real-world use cases is transforming traditional workflows by enhancing trust,
automation, and efficiency.

Q 6 : Give the different types of transactions in Ethereum and also explain
the fields included in these transactions.

(10 Marks)

1. Introduction (1 Mark)

In Ethereum, a transaction is a cryptographically signed message sent from one account to
another. Transactions are the building blocks of operations like transferring ETH, deploying
smart contracts, and calling contract functions.

2. Types of Transactions in Ethereum (3 Marks)

Ethereum supports three main types of transactions:

L 4

L 4

L 4

1. Regular Transactions (Ether Transfer)

e Transfers ETH from one Externally Owned Account (EOA) to another EOA.

2. Contract Deployment Transactions
e Sent from an EOA without a to address but with compiled bytecode in the data field.

e Deploys a new smart contract on the blockchain.

3. Contract Invocation Transactions

e Sent to an existing smart contract address, usually with input data (function signature
+ arguments).

e Executes contract functions like token transfers or updates.

3. Fields in an Ethereum Transaction (5 Marks)

Each Ethereum transaction includes the following key fields:

Field Description

Nonce Number of transactions sent from the sender’s address. Prevents
double-spending and ensures correct order.

Gas Price Amount of ETH the sender is willing to pay per unit of gas (in Gwei). Affects
transaction speed.

Gas Limit Maximum gas allowed for transaction execution. Prevents infinite loops in
smart contracts.

To Recipient address (can be an EOA or smart contract address). Empty for
contract creation.

Value Amount of ETH (in wei) to send. 0 if calling a contract function without transfer.

Data Optional field for input data (e.g., function call in smart contract). Contains
bytecode for contract creation.

v, I, S Components of the digital signature, used to validate the sender's identity.

Chain ID Identifies the network (e.g., Mainnet = 1), added to prevent replay attacks.

& Note: In Ethereum post-London hard fork (EIP-1559), transactions may also
include:

e Max Priority Fee per Gas (Tip)

e Max Fee per Gas (Total fee cap)

4. Conclusion (1 Mark)

Ethereum transactions enable various functionalities such as value transfer, contract
deployment, and smart contract interaction. Each transaction includes essential fields that
define its behavior, cost, and validation. Understanding these components is crucial for working
with Ethereum effectively.

	Q 1 : Discuss the concept of Gas in Ethereum. Why is Gas important, and how does it impact transaction execution? (10 Marks)
	1. Introduction to Gas in Ethereum (2 Marks)
	2. Importance of Gas in Ethereum (4 Marks)
	3. Gas and Transaction Execution (4 Marks)
	4. Conclusion (1 Mark)
	Q:2 What is a Genesis Block? Describe its significance in maintaining the security and continuity of the blockchain. (10 Marks)
	1. Definition of Genesis Block (2 Marks)
	2. Characteristics of the Genesis Block (2 Marks)
	3. Significance in Blockchain Security (3 Marks)
	4. Significance in Continuity (2 Marks)
	5. Conclusion (1 Mark)
	Q 4 : What are Ricardian Contracts? Compare and contrast Ricardian Contracts and Smart Contracts.
	1. Definition of Ricardian Contracts (3 Marks)
	2. Definition of Smart Contracts (2 Marks)
	3. Comparison Table (4 Marks)
	4. Conclusion (1 Mark)
	Q 5: Discuss real-world applications of Hyperledger Fabric and Corda in industries like finance, healthcare, and supply chain management.
	1. Introduction (1 Mark)
	2. Applications in Finance (3 Marks)
	🔷 Hyperledger Fabric
	🔷 Corda

	3. Applications in Healthcare (2 Marks)
	🔷 Hyperledger Fabric
	🔷 Corda

	4. Applications in Supply Chain Management (3 Marks)
	🔷 Hyperledger Fabric
	🔷 Corda

	5. Conclusion (1 Mark)
	Q 6 : Give the different types of transactions in Ethereum and also explain the fields included in these transactions.
	1. Introduction (1 Mark)
	2. Types of Transactions in Ethereum (3 Marks)
	🔹 1. Regular Transactions (Ether Transfer)
	🔹 2. Contract Deployment Transactions
	🔹 3. Contract Invocation Transactions

	3. Fields in an Ethereum Transaction (5 Marks)
	4. Conclusion (1 Mark)

