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| b. | Explain the general plan for analyzing the efficiency of a recursive | 08 | L3 | CO1
| algorithm. Suggest a recursive algorithm 1o find factorial of number,
Derive its efficiency.
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e. | If 4 (n) eO{gy(n)) and tz(n) eO(ga(n)) then show that t; (n) + tan) | 04 | L2 [ CO1
eo(max { gi(n),g2(n)} ) |
Solutions:
a. |Definition] An algorithm is a finite set of instructions that, if followed, accomplishes a

particular task. In addition, all algorithms must satisfy the following criteria:
(1) Input There are zero or more quantities that are externally supplied.

(2) Output At least one quantity is produced.

(3) Definiteness Each instruction is clear and unambiguous.

(4) Finiteness If we trace out the instructions of an algorithm, then for all cases, the

algorithm terminates after finite number of steps.

(5) Effectiveness  Every instruction must be basic enough to be carried out, in
It is not enough that each

principle, by a person using only pencil and paper.
operation be definite as in(3); it also must be feasible.

O-notation

DEFINITION 1 A function £ (n) is said to be in O(g(n)), denoted t(n) € O(g(n)), =
if £(n) is bounded above by some constant multiple of g(n) for all large n, i.e., if
there exist some positive constant ¢ and some nonnegative integer ng such that

t(n) <cg(n) foralln > ny,.
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FIGURE 2.1 Big-ch notation: r(n) € @{g(n))

pper bound of an algorithm's
running time.
Measures the worst case time
complexity or longest amount
of time an algorithm can
possibly take to complete
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Q2-notation

DEFINITION 2 A function ¢ (n) is said to be in Q (g(n)), denoted 1 (n) € Q2(g(n)),
if #(n) is bounded below by some positive constant multiple of g(n) for all large n,
i.e., if there exist some positive constant ¢ and some nonnegative integer ng such

that

t(n) = ceg(n) forall n = ng. * lower bound of an algorithm's
running time.

t ! ) * It measures the best case time

i) complexity or best amount of
time an algorithm can possibly
take to complete

FIGURE 2.2 Big-omega notation: rin) € £2(g(n))

®-notation

DEFINITION 3 A function ¢ (n) is said to be in ®(g(n)), denoted t(n) € ©(g(n)), =
if £(n) is bounded both above and below by some positive constant multiples of
g(n) for all large n, ie., if there exist some positive constant ¢, and ¢, and some
nonnegative integer ng such that

crg(n) <t(n) <cig(n) foralln > ny.
cgind

tim}
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* express both the lower bound
and upper bound of an
algorithm's running time.

* Average Case

doasn't |
mattes ¢

FIGURE 2.3 Big-theta notation: rin) ¢ B(g(n))

General plan for Analyzing Time Efficiency of Recursive Algorithms

1. Decide on a parameter (or parameters) indicating an input’s size.

2. Identify the algorithm’s basic operation.

3. Check whether the number of times the basic operation is executed can vary
on different inputs of the same size; if it can, the worst-case, average-case, and
best-case efficiencies must be investigated separately.

4. Set up a recurrence relation, with an appropriate initial condition, for the
number of times the basic operation is executed.

5. Solve the recurrence or at least ascertain the order of growth of its solution.




ALGORITHM F@n)

//Computes n! recursively
/MInput: A nonnegative integer n
//Output: The value of n!

if n =0 return 1

elsereturn F(n — 1) % n

F(n)is computed according to the formula

Fmy=Fn—1)-n forn=0,

the number of multiplications M (n) needed to compute it must satisfy the equality

Mmn)=Mmn-1) + 1 forn = 0.
to compute to multiply
Fin=1) Fin—1) by n

we need an initial condition that tells us the value with which the sequence starts. We can obtain
this value by inspecting the condition that makes the algorithm stop its recursive calls:
ifn=0return 1.

Min)y=Mn—-1)+1 forn=0,
M{0) =0,

* For solving recurrence relations, We use method of backward
substitutions.

Mn)y=Mmn-1) +1 substitute M(n = 1) =Mn -2) + 1
=[Mmn—-2)+1]+1=M(n —2)+2 substitute M(n —2)=M(n —3) +
=[Mmn-3)+1]+2=Mn —3)+3.

Mn)=Mn —1i)+1i.
Since it is specified for n = 0, we have to substitute i = n

Mn)y=Mmn-1)+1=---=Mmn—-i)+i=---=Mmn —n)+n=n.




THEOREM 1If #;(n) € O(gy(n)) and t5(n) € O(gs(n)), then
ti(n) + t(n) € O(max(g (n), g2(n)}).

(‘The analogous assertions are true for the  and © notations as well.)

PROOF (As you will see, the proof extends to orders of growth the following
simple fact about four arbitrary real numbers ay, by, a3, and by: if 4 < by and
a; < by, then a; + a; = 2 max(by, by}.) Since fi(n) € O(g(n)), there exist some
positive constant ¢; and some nonnegative integer ny such that

ti(n) = cygy(n)  foralln = ny.
Similarly, since t3{n) € O(g2(n)},

t2(n) = coga(n)  for all n = ny.

Let us denote c; = max{c;, ¢;) and consider n = max{n, n;} so that we can use
both inequalities. Adding the two inequalities above yields the following:
t{n) + () < cqg1(n) + cag2(n)
< ¢3g81(n) + c3g2(n) = c3lgy(n) -+ ga(n)]
= 32 max{g(n), g2(n)).

Hence, t;(n) -+ f(n) € O(max{g,(n), g(n}}), with the constants ¢ and n, required
by the O definition being 2¢4 = 2 max{eq, ¢} and max{ny, a5}, respectively. ]




2.a.

Q.2 |a. | With a neat diagram explain different steps in designing and analyzing | 08 | L2 | COIl 1
algorithm.

b. | Write an algorithm to find the max element in an array of nelements. Give | 08 | L3 | CO1.
the mathematical analysis of this non- recursive algorithm.

c. | With the aigurithm derive the worst case efficiency for selection sort. | 04 | L3 | COI
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| Q.3 [ a, | Explain the concept of divide and conquer, Design an algorithm for merge | 10 | L3 | CO2 ‘
| |

| sort and derive its time complexity.

CO2 |

S S I — e — —— - - I—
i b. | Design an algorithm for insertion algorithm and obtain its time complexity. | 10 | L3
‘ ‘ Apply insertion sort on these elements. 89, 45, 68, 90, 29, 34, 17

e Divide-and-conquer strategy splits the inputs into k distinct subsets,1<k <n,
yielding k sub-problems.

o These sub-problems must be solved,

e Then a method must be found to combine sub-solutions into a solution of the
whole.

e If the sub-problems are still relatively large, then the divide-and-conquer
strategy can be reapplied.

o The Sub-problems are of the same type as the original problem.

® A recursive algorithm is used to solve the problem.

1 Algorithm DAndC(P)

2

3 if Small(P”) then return S(P);

4 else

5

6 divide P into smaller instances Py, Po,...,P., k > 1;

7 Apply DAndC to each of these subproblems;

8 return Combine(DAndC(P,),DAndC(F%),...,DAndC(F%));
9 }

10 }

Merge Sort:

ALGORITHM Mergesort(A[0..n — 1))

/ISorts array A[0..n — 1] by recursive mergesort
/[Input: An array A[0..n — 1] of orderable elements
//Output: Array A[0..n — 1] sorted in nondecreasing order
ifn>1
copy A[0..|n/2] — 1] to B[0..|n/2] — 1]
copy A[|n/2)..n — 1] to C[0..[n/2] — 1]
Mergesort(B[0..\n/2] —1])
Mergesort(C[0..[n/2] — 1])
Merge(B, C, A) [/see below




ALGORITHM Merge(B[0..p — 1], C[0..q — 1], A[0..p + g —1])

//Merges two sorted arrays into one sorted array
/Mnput: Arrays B[0..p — 1] and C[0..g — 1] both sorted
//Output: Sorted array A[0..p + g — 1] of the elements of B and C
i<«0; j«<0: k<0
while /i < p and j < ¢ do

if B[i] < C[/]

Alk] < Bli], i < i+1

else A[k] < C[j], j < Jj+1

k<—k+1
ifi =p

copy Clj..q — 1]to Alk..p +q — 1]
else copy Bli..p — 1]to Alk..p + q — 1]

3.b Insertion Sort

Insertion Sort Steps:
We start from the second element (index 1) and compare it backwards.
Step 1:

Compare 45 with 89 — 45 <89 — Swap
—45 89 68 90 29 34 17

Step 2:

Compare 68 with 89 — 68 <89 — Swap
Then compare 68 with 45 — 68 > 45 — Stop
— 45 68 89 90 29 34 17

Step 3:

Compare 90 with 89 — 90 > 89 — No change
— 45 68 89 90 29 34 17

Step 4:

Compare 29 with 90 — Swap
Compare 29 with 89 — Swap

Compare 29 with 68 — Swap




Compare 29 with 45 — Swap
— 29 45 68 89 90 34 17

Step 5:

Compare 34 with 90 — Swap
34 with 89 — Swap

34 with 68 — Swap

34 with 45 — Swap

34 with 29 — 34 > 29 — Stop
—29 34 45 68 89 90 17

Step 6:

Compare 17 with 90 — Swap
17 with 89 — Swap

17 with 68 — Swap

17 with 45 — Swap

17 with 34 — Swap

17 with 29 — Swap

—17 29 34 45 68 89 90

Algorithm for Insertion sort

for i from 1 to length(array) - 1:
key = arrayli]
j=i-1
while j >= 0 and array[j] > key:
array[j + 1] = array|[j]
i=j-1

array[j + 1] = key




4.a.

Ry

| l b. | Explain Strassen’s Matrix mu]tiplicmia:i and derive its time complexity. 10

Q.4 | a. | Design an_'algnrilhm for Quick sort. Apply quick sort on these clements. | 10 | L3 | CO2 |
5:3,1,9,8,2,4,7. '
L2 | CO2 |

ALGORITHM  Quicksort(A[l..r])
//Sorts a subarray by quicksort
/Input: Subarray of array A[0..n — 1), defined by its left and right
W indices [ and r
/[/Output: Subarray A|l..r] sorted in nondecreasing order
ifl <r
s «Partition(A[l..r]) /s is a split position
Quicksort(A[l..s = 1))
Quicksort(Als + 1..r])

ALGORITHM  HoareFPartition(A[l..r])
([Partitions a subarray by Hoare’s algorithm, using the first element

] as a pivot

//Input: Subarray of array A[0..n — 1), defined by its left and right
I indices ! and r (I < r)

[Output: Partition of A[l..r], with the split position returned as

i this function’s value

p — A[l]

P je=r+1

repeat

repeat | < i + L until Afi] = p
repeat j «— j — luntil A[j] =< p
swap(A[i]. A[j])
until i = j
swap(A[i]. A[j]) /lundo last swap when i = j
swap(A[l], A[;D
return

Applying Quick Sort to thelist: 5, 3, 1, 9, 8, 2, 4, 7

Step Array State Explanation
Initial 5,3,1,9,8,2,4,7 Choose pivot = 7 (last element)
Partition 5,3,1,2,4,7,9,8 Elements < 7 to left, > 7 to right
Left side 53,1,2,4

Apply quick sort recursively

Right side 9,8 Apply quick sort recursively




Sorting left side 5, 3, 1, 2, 4 (pivot=4)

Step Array State Explanation
Partition 3,1,2,4,5 Elements < 4 to left, > 4 to right
Left side 3,1,2 Apply quick sort recursively

Right side 5 One element, already sorted

Sorting 3, 1, 2 (pivot=2)

Step Array State Explanation
Partition 1,2,3 Elements < 2 to left, > 2 to right
Left side 1 One element, already sorted
Right side 3 One element, already sorted

Sorting right side 9, 8 (pivot=28)

Step Array State Explanation
Partition 8,9 Elements < 8 to left, > 8 to right
Left side Empty No elements
Right side 9 One element, already sorted

Final Sorted Array:

1, 2, 3, 4, 5,7, 8, 9

4.b.




Let A and B be two n x n matrices. The product matrix C = AB is also an
n X n. matrix whose 7, jth element 1s formed by taking the elements in the
1th row of A and the jth column of B and multiplying them to get

Cli,j) = Y A(i.k)B(k,J) (3.10)

1<k<n

An A ] [ By By ] _ [ Cn Ch2 ] (3.11)

Ay A By Bxn Cyn Cxp o

then

Cn = AnBy + A;2By
Ci2 = AnBi2+ A;2By (3.12)
Cy = AnBn + AynBy o
Cyp = A2 By + ApBay

We have 8 products and 4 sums.

P = (A + A)(B + By)
Q = (A + An)By,
R = Ay,(B); — Bn)
S = Axp(By — Bj) (3.13)
T = (An+ Aw2)B2
U = (A — An)(Bi + By2)
Vi = (A2 — Ax)(B + Ba)
Ch = P+S-T+V
81 - gif (3.14)
Cyp = P+R—(J+U

The resulting recurrence relation for 7T'(n) is

ey b n <
r(n) = n >

2
TT(n/2) + an? 2

wherce a and b are constants. Working with this formula, we get

ar?(1 +7/4 4+ (7/4)% +---
(712(7/-!)'"”‘"‘ oy oloRe - ooa constant
log, 4+log, T—log, 4 + Tllng_, 7

T(n)

IIA

Cri
On'527) = O(n?")

Il

+(7T/ )+ 7T*T(1)

5(a)

Meodule - 3

Q.5 |a. | Define AVL trees. Expiainr its four rotation types. J1w|L2]cos

15,19, 10,7, 17, 16.

b. | Design an algorithm for Heap sort. Construct bottom — up heap for the list | 10| L3 | CO4

Define AVL tree. Construct an AVL tree of the list of keys: 3, 6, 5, 1, 2, 4 indicating each
step of key insertion and rotation.

CcOo3

L2




[An AVL tree is a self-balancing binary search tree (BST) where the difference in height
between the left and right subtrees (called the balance factor) of any node is at most 1.

Key Properties:

° For every node in the tree:

Balance Factor = Height of Left Subtree - Height of Right Subtree
and it must be -1, 0, or +1.

° Whenever an insertion or deletion operation causes the balance factor to go outside
this range, the tree performs rotations (single or double) to restore balance.
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FIGURE 6.3 Four rotation ypas for 8V trees with three nodes, lal Single R-rotation
b Single L rotation. ] Double L R-ratation. o Double BL-rotation,

SB,HEAPSORT (arr)

BUILD MAX_HEAP(arr)

for i from length(arr) - 1 down to 1
swap arr[0] and arr[i]
heap_size = heap_size - 1

MAX_HEAPIFY (arr, 0, heap_size)




BUILD MAX HEAP(arr)
heap_size = length(arr)
for i from floor(length(arr)/2) down to 0

MAX HEAPIFY (arr, i, heap_size)

MAX HEAPIFY (arr, i, heap_size)

left=2%+1

right = 2%{ + 2

largest =1

if left < heap_size and arr[left] > arr[largest]
largest = left

if right <heap_size and arr[right] > arr[largest]
largest = right

if largest =1
swap arr[i], arr[largest]

MAX HEAPIFY (arr, largest, heap size)

5, 19, 10, 7, 17, 16

Bottom-Up Heap Construction (Heapify)

This method builds the heap by calling heapify from the last non-leaf node up to the

root.

Step 1: Identify last non-leaf node

e For an array of length n, last non-leaf node index = floor(n/2) - 1

e Here,n = 6




e Lastnon-leafindex = floor(6/2) - 1 =

2

I[nitial array (index):

[15(8), 19(1), 10(2), 7(3), 17(4), 16

Step 2: Apply max-heapify from index 2 down to 0

Heapify process:

i =2 (value =10)

o Leftchildindex=2*2+1=5 — value=16

Compare 10 with 16:
Since 16 > 10, swap:

[New array:
[15, 19, 16, 7, 17, 10]

Heapify at index 5 (value = 10): no children — stop.

e Right child index = 2*2 + 2 = 6 — no child (out of range)

i=1 (value =19)
o leftchildindex=3—7

e Right child index=4 — 17

19 is already greater than both children — no change.

i =0 (value = 15)
e [Leftchildindex=1— 19

e Rightchildindex=2 — 16

(5)]




19 is largest among 15, 19, 16 — swap 15 and 19:

[New array:
[19, 15, 16, 7, 17, 10]

Heapify at index 1 (value = 15):
o [Leftchild=3—7

e Rightchild=4— 17

17> 15 — swap:

[New array:
[19, 17, 16, 7, 15, 10]

Heapify at index 4 (value = 15): no children — stop.

Final max-heap array:

[19, 17, 16, 7, 15, 10]

Visual representation of the heap:

19
/ \
17 16
/ 0\ /
7 15 10

' 0.6 I.!. ﬁ;:.s;i:g-!r.ilérslpéo-l’s_ Algorithm  for string matching _;\ppl}' Horspool [ 10| L3 | CO4
‘1 algorithm to find pattern BARBER in the test:

|JIM_SAW_ME_IN_A_BARBERSHOP.
|
b. | Define heap. Explain the properties of heap along with its representation. | 10| 1.2 | CO3




Horspool’s algorithm

Step 1 For a given pattern of length m and the alphabet used in both the
pattern and text, construct the shift table as described above.

Step 2 Align the pattern against the beginning of the text.

Step 3 Repeat the following until either a matching substring is found or the
pattern reaches beyond the last character of the text. Starting with the
last character in the pattern, compare the corresponding characters in
the pattern and text until either all m characters are matched (then

stop) or a mismatching pair is encountered. In the latter case, retrieve
the entry 7(c) from the ¢'s column of the shift table where ¢ is the text’s
character currently aligned against the last character of the pattern,
and shift the pattern by t(c) characters to the right along the text.

ALGORITHM  ShifiTable(P[0..m — 1])

//Fills the shilt table used by Horspool’s and Bover-Moore algorithms
{Input: Pattern P[0..m — 1] and an alphabet of possible characters
[lOutput: Table[0..size — 1] indexed by the alphabet’s characters and
] filled with shift sizes computed by formula (7.1)

fori «— Otosize — | do Table[i] < m

for j < Otom — 2 do Table| Plj]] < m—1—j

return Table

characterc |A|B |C|D|E|F R| ... | Z

shift ric) | 4

B
=]
=]
—
=]
=3l
L
=]
=]
=]

The actual search in a particular text proceeds as follows:

JIM_ W ME ARBERSHOP
BAREB

| m
== = R




6.b.

ALGORITHM HorspoolMatching( P|0..m — 1], T|0..n — 1])
fMmplements Horspool's algorithm for string matching
/Mnput: Pattern P[0..m — 1] and text T[0..n — 1]
AOutput: The index of the left end of the first matching substring

i or —1 if there are no matches
ShifiTable( P[0..m —1]) /lgenerate Table of shifts
i+—m-—1 /Iposition of the pattern’s right end
whilei =n — 1 do

k0 {fmumber of matched characters

while k <m — land Plm — 1 - k]=T[i — k] do

ko—k+1
ifk=m

refurni —m + 1
else | «— i + Tabh:[}"[f]]
return —1

A heap is a complete binary tree that satisfies the heap property.
Types of Heap:

Max-Heap: In a max-heap, the value of each parent node is greater than or equal to
the values of its children. -The largest element is at the root.

Min-Heap: In a min-heap, the value of each parent node is less than or equal to the
values of its children. The smallest element is at the root.

the array representation

index il 1 2 3 4 5 [ ] T B 9 10
wiso [ Ji[e 7 5]z ] s[5 ]1]

parents leaves

FIGURE 6.10 Heap and its array representation.

Properties of Heap:




1. There exists exactly one essentially complete binary tree with n nodes. Its

height is equal to [log, n].
2. The root of a heap always contains its largest element.
3. A node of a heap considered with all its descendants is also a heap.

4. A heap can be implemented as an array by recording its elements in the top-
down, left-to-right fashion. It is convenient to store the heap's elements in
positions 1 through n of such an array, leaving H[0] either unused or putting
there a sentinel whose value is greater than every element in the heap. In such

a representation,

a. the parental node keys will be in the first |n/2] positions of the array,

while the leal keys will occupy the last [n /2] positions;

b. the children of a key in the array’s parental position i (1 =i < [n/2]) will
be in positions 2i and 2i + 1, and. correspondingly, the parent of a key in

position i (2 =i < n) will be in position |i/2].

CO3| L3
7 S ‘Module — 4 _ A CO3| L2
Q.7 | a. | Construct minimum cost spanning tree using Kruskal’s algorithm for the | 10 | L3 | CO4
following graph.
f
|
Fig. 7{a)
| 'b.| What are Huffman trees? Construct the Huffman tree for the l_i.-uliowihg data | 10 | L3 | CO4
Character | A B C D _|
Probability 0.4 0.1 0.2 0.15 0135 |

i) Encode the text ABAC ABAD
11) Decode the code1 Q0010111001010

Kruskal’s Algorithm




7.b.

Tree edges

i

bc

be, ab

be, ab, ac

be, ab, ac, od

be, ab, ac, cd, be

be, ab, ac, cd, be, ae

be, ab, ac, cd, be, ae

Final MST edges:

bc, ab, ac, cd, be, ae

Total cost:

1+2+3+3+4+4=17

Sorted list of edges

be ab ac cd be ae de ad ce

bc ab ac cd be ae de ad ce

ab ac cd be ae de ad ce

ac cd be ae de ad ce

cd be ae de ad ce

be ae de ad ce

aedead ce

de ad ce

lllustration/Reason

Start with empty tree

Add bc (weight 1)

Add ab (weight 2)

Add ac (weight 3)

Add cd (weight 3)

Add be (weight 4)

Add ae (weight 4)

Skip de (6). ad (8). ce (9) - form cycles

0.1

0.15

0.15 0.2 04

0.15

A E
A

0.1 0.15




0.1 015 0.15 0.2

()
A

0.1 015 0.15 0.2

character I A B c D B
probability | 0.4 0.1 0.2 015 0.15
codeword 0 100 111 101 1110

b. The text ABACABAD will be encoded as 01000L1101000101.




Q.8 Appl}r_n_i_ jksira’s a]gdﬁiﬁmﬁﬂg single source 'si{nrlcsl"bq;.ﬁ: for the 'giw:n 10] L3 ] coq |
graph by considering A as the source verlex. |
- I
.i !
i I
Fig.8 () .
. | Define transitive closure of a gmbh. Apply Wamhnl]?ﬁgﬂrilhm to| 10| L3 | CO4
compute transitive closure of a directed graph.
, e (s
\‘\“‘«Mx
=
H""-\
)
-— ——’"_'_//
Fig.8 (b) I
Step-by-step walkthrough:
St Current Distances So Far Explanation
e Node (tentative)
p
In — A:0, B:oo, C:o, D:oo, Start at A (distance 0), rest infinity
it E:o0, F:00, G:ioo
1 A A:0, B:2, C:o, D:3, E:0,  Update neighbors B (2), D (3)
F:00, G:oo
2 B A:0, B:2, C:11, D:3, E:3, Update  neighbors:  C=2+9=11,
F:6, Gio E=2+1=3, F=2+4=6
3 D A:0, B:2, C:11, D:3, E:3, Update neighbors: E=3 (already 3),
F:6, G:10 G=3+7=10
4 E A:0, B:2, C:11, D:3, E:3, Update G: min(10, 3+4=7) =7

F:6, G:7




5 G A:0, B:2, C:11, D:3, E:3, Check neighbors, no better paths

F:6, G:7

6 F A:0, B:2, C:9, D:3, E:3, Update C: min(11, 6+3=9)=9
F:6, G:7

7 C A:0, B:2, C:9, D:3, E:3, No further updates
F:6, G:7

Final shortest distances from A:

No Distanc
de e

A 0

B 2

C 9

D 3

E 3

F 6

G 7

Transitive Closure Definition:

The transitive closure of a relation R on a set is the smallest transitive relation that
contains R.

For a directed graph G = (V, E), the transitive closure of G is a graph G" = (V, E’) such
that for every pair of vertices (u, v):

° (u, v) E E’ if and only if there is a path from u to v in G.




0 1 0 0

0 0 1 0
0 0 0 1
0 0 0 0
Module - 5 LI
lQo a. | Explain the following with examples. L - _lﬁ']l L2 | cos |
| 1) P problem

i1} NP problem
| i1} NP-Complete problem
I iv) NP — Hard problem
!

E_h“ What 15 backtracking? Apply backtracking to solve the below instance of | 10| L3 | CO6
sum of subset problem,

S={1,2,568 andd=9

| [F SO

i) P Problem (Polynomial time problem)

Definition: Problems that can be solved by an algorithm in polynomial time, i.e., the time
taken to solve the problem grows polynomially with the size of the input.
Example: Sorting a list of numbers using Merge Sort or Quick Sort (time complexity O(n|

log n)).

ii) NP Problem (Nondeterministic Polynomial time problem)

Definition: Problems for which a proposed solution can be verified in polynomial time, but
it is not necessarily known if they can be solved in polynomial time.

Example: The Subset Sum Problem: Given a set of integers, is there a subset that sums to
zero? Verifying a subset is quick, but finding it might be hard.

iii) NP-Complete Problem

Definition: Problems that are both in NP and as hard as any problem in NP. If any
INP-Complete problem can be solved in polynomial time, then all NP problems can be. They
are the hardest problems in NP.

Example: The Traveling Salesman Problem (TSP): Finding the shortest possible route
that visits each city exactly once and returns to the origin city.

iv) NP-Hard Problem




Definition: Problems that are at least as hard as NP-Complete problems but are not]
necessarily in NP themselves. They might not have solutions verifiable in polynomial time.

Example: The Halting Problem: Determining whether a program halts or runs forever is
undecidable, and thus NP-Hard.

10.b.

Q.10 | a. | HNlustrate N Queen’s prohlem usmg backuackmg o ‘solve 4 — Queens | 10| L2 | CO6
problem.
b. | Using Branch mdﬂund method solve the bclqw mstance of Knapsack | 10| L3 | CO6
Problem. 5 oy
Itemc- Weight Value
b 4 40
Al P2 7 &
o Ll 5 Nl 2s
‘2 T )
Capacity = 10
1 EEEEE




value

item weight value —
weight

1 4 S40 10

2 7 542 il

3 5 825 5

4 3 £12 4

0
w=0 v=0
ub =100
with 1 wifo 1
1 2
w=4d4 v=40 w=0v=0
wb=76 ub =60
with 2 X
inferior to
3 node 8
w=11
X A - il
not feasible with 3 wifo 3
5 3]
w=9, v=060 w=4, v=40
ub =69 ub = B4
with 4 wio 4 infarior to node 8
7 ]
w=12 w=19 v=658
value = 65
X
not feasible optimal solution
Cl CCl1 HOD
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