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Solutions: 

Definition】An algorithm is a finite set of instructions that, if followed, accomplishes a 
particular task.   In addition,  all algorithms must satisfy the following criteria: 
(1)   Input    There are zero or more quantities that are externally supplied. 
(2)   Output    At least one quantity is produced. 
(3)   Definiteness    Each instruction is clear and unambiguous. 
(4)   Finiteness    If we trace out the instructions of an algorithm, then for all cases, the 
algorithm terminates after finite number of steps. 
(5)   Effectiveness    Every instruction must be basic enough to be carried out, in 
principle, by a person using only pencil and paper.  It is not enough that each 
operation be definite as in(3); it also must be feasible. 
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_________________________________________________________________________ 
 
General plan for Analyzing Time Efficiency of Recursive Algorithms 
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2.a. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



 
 
 
 

 



 



 



 



2.c.

 

 

 



 
 
 
 
 
 
 
 
 

3.a    

 

●​ Divide-and-conquer strategy splits the inputs into k distinct subsets,1< k < n, 
yielding k sub-problems. 

●​ These sub-problems must be solved,  
●​ Then a method must be found to combine sub-solutions into a solution of the 

whole.  
●​ If the sub-problems are still relatively large, then the divide-and-conquer 

strategy can be reapplied.  
●​ The Sub-problems are of the same type as the original problem.  
●​ A recursive algorithm is used to solve the problem. 

________________________ 

Merge Sort: 

   

 



 

3.b Insertion Sort 

Insertion Sort Steps: 

We start from the second element (index 1) and compare it backwards. 

Step 1: 

Compare 45 with 89 → 45 < 89 → Swap​
 → 45 89 68 90 29 34 17 

Step 2: 

Compare 68 with 89 → 68 < 89 → Swap​
 Then compare 68 with 45 → 68 > 45 → Stop​
 → 45 68 89 90 29 34 17 

Step 3: 

Compare 90 with 89 → 90 > 89 → No change​
 → 45 68 89 90 29 34 17 

Step 4: 

Compare 29 with 90 → Swap​
 Compare 29 with 89 → Swap​
 Compare 29 with 68 → Swap​

 



 Compare 29 with 45 → Swap​
 → 29 45 68 89 90 34 17 

Step 5: 

Compare 34 with 90 → Swap​
 34 with 89 → Swap​
 34 with 68 → Swap​
 34 with 45 → Swap​
 34 with 29 → 34 > 29 → Stop​
 → 29 34 45 68 89 90 17 

Step 6: 

Compare 17 with 90 → Swap​
 17 with 89 → Swap​
 17 with 68 → Swap​
 17 with 45 → Swap​
 17 with 34 → Swap​
 17 with 29 → Swap​
 → 17 29 34 45 68 89 90 

 

Algorithm for Insertion sort 

for i from 1 to length(array) - 1: 

    key = array[i] 

    j = i - 1 

    while j >= 0 and array[j] > key: 

        array[j + 1] = array[j] 

        j = j - 1 

    array[j + 1] = key 

 

 

 

 

 

 



 
 
 
 
 
 
 

4.a. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Applying Quick Sort to the list: 5, 3, 1, 9, 8, 2, 4, 7 
 

Step Array State Explanation 

Initial 5, 3, 1, 9, 8, 2, 4, 7 Choose pivot = 7 (last element) 

Partition 5, 3, 1, 2, 4, 7, 9, 8 Elements < 7 to left, > 7 to right 

Left side 5, 3, 1, 2, 4 Apply quick sort recursively 

Right side 9, 8 Apply quick sort recursively 

 
 
 
 
 

  

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4.b. 

 

Sorting left side 5, 3, 1, 2, 4 (pivot = 4) 

Step Array State Explanation 

Partition 3, 1, 2, 4, 5 Elements < 4 to left, > 4 to right 

Left side 3, 1, 2 Apply quick sort recursively 

Right side 5 One element, already sorted 

 

Sorting 3, 1, 2 (pivot = 2) 

Step Array State Explanation 

Partition 1, 2, 3 Elements < 2 to left, > 2 to right 

Left side 1 One element, already sorted 

Right side 3 One element, already sorted 

 

Sorting right side 9, 8 (pivot = 8) 

Step Array State Explanation 

Partition 8, 9 Elements < 8 to left, > 8 to right 

Left side Empty No elements 

Right side 9 One element, already sorted 

 

Final Sorted Array: 

1, 2, 3, 4, 5, 7, 8, 9 

 

 



 
 
 
 
 
 

5(a) Define AVL tree. Construct an AVL tree of the list of keys: 3, 6, 5, 1, 2, 4 indicating each 
step of key insertion and rotation.  

5 CO3 L2 

 



An AVL tree is a self-balancing binary search tree (BST) where the difference in height 
between the left and right subtrees (called the balance factor) of any node is at most 1. 

Key Properties: 

●​ For every node in the tree:​
Balance Factor = Height of Left Subtree - Height of Right Subtree​
and it must be -1, 0, or +1. 

●​ Whenever an insertion or deletion operation causes the balance factor to go outside 
this range, the tree performs rotations (single or double) to restore balance. 

 

5B,HEAPSORT(arr) 

    BUILD_MAX_HEAP(arr) 

    for i from length(arr) - 1 down to 1 

        swap arr[0] and arr[i] 

        heap_size = heap_size - 1 

        MAX_HEAPIFY(arr, 0, heap_size) 

 



 

BUILD_MAX_HEAP(arr) 

    heap_size = length(arr) 

    for i from floor(length(arr)/2) down to 0 

        MAX_HEAPIFY(arr, i, heap_size) 

 

MAX_HEAPIFY(arr, i, heap_size) 

    left = 2*i + 1 

    right = 2*i + 2 

    largest = i 

    if left < heap_size and arr[left] > arr[largest] 

        largest = left 

    if right < heap_size and arr[right] > arr[largest] 

        largest = right 

    if largest != i 

        swap arr[i], arr[largest] 

        MAX_HEAPIFY(arr, largest, heap_size) 

 

5, 19, 10, 7, 17, 16 

 

Bottom-Up Heap Construction (Heapify) 

This method builds the heap by calling heapify from the last non-leaf node up to the 
root. 

 

Step 1: Identify last non-leaf node 

●​ For an array of length n, last non-leaf node index = floor(n/2) - 1​
 

●​ Here, n = 6​
 

 



●​ Last non-leaf index = floor(6/2) - 1 = 2​
 

 

Step 2: Apply max-heapify from index 2 down to 0 

Initial array (index):​
 [15(0), 19(1), 10(2), 7(3), 17(4), 16(5)] 

 

Heapify process: 
 

i = 2 (value = 10) 

●​ Left child index = 2*2 + 1 = 5 → value = 16​
 

●​ Right child index = 2*2 + 2 = 6 → no child (out of range)​
 

Compare 10 with 16:​
 Since 16 > 10, swap: 

New array:​
 [15, 19, 16, 7, 17, 10] 

Heapify at index 5 (value = 10): no children → stop. 

 

i = 1 (value = 19) 

●​ Left child index = 3 → 7​
 

●​ Right child index = 4 → 17​
 

19 is already greater than both children → no change. 

 

i = 0 (value = 15) 

●​ Left child index = 1 → 19​
 

●​ Right child index = 2 → 16​
 

 



19 is largest among 15, 19, 16 → swap 15 and 19: 

New array:​
 [19, 15, 16, 7, 17, 10] 

Heapify at index 1 (value = 15): 

●​ Left child = 3 → 7​
 

●​ Right child = 4 → 17​
 

17 > 15 → swap: 

New array:​
 [19, 17, 16, 7, 15, 10] 

Heapify at index 4 (value = 15): no children → stop. 

 

Final max-heap array: 

[19, 17, 16, 7, 15, 10] 

 

Visual representation of the heap: 
        19 

       /    \ 

     17      16 

    /  \     / 

   7   15  10 

 

 

 
 
 
 
 

6.a. 
 
 
 
 
 

   

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 



 
 
 

6.b. 

 

—----------------------------------- 

A heap is a complete binary tree that satisfies the heap property. 

Types of Heap: 

Max-Heap: In a max-heap, the value of each parent node is greater than or equal to 
the values of its children. -The largest element is at the root. 

Min-Heap: In a min-heap, the value of each parent node is less than or equal to the 
values of its children. The smallest element is at the root. 

 

Properties of Heap: 
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7.a. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Kruskal’s Algorithm 

5 CO3 L2 

 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

7.b. 

Final MST edges: 

bc, ab, ac, cd, be, ae 

Total cost: 

1 + 2 + 3 + 3 + 4 + 4 = 17 

—---------------------------------------------------------------------------------------------------------- 

 

 



 

 

 



 

 

Step-by-step walkthrough: 

St
e
p 

Current 
Node 

Distances So Far 
(tentative) 

Explanation 

In
it 

— A:0, B:∞, C:∞, D:∞, 
E:∞, F:∞, G:∞ 

Start at A (distance 0), rest infinity 

1 A A:0, B:2, C:∞, D:3, E:∞, 
F:∞, G:∞ 

Update neighbors B (2), D (3) 

2 B A:0, B:2, C:11, D:3, E:3, 
F:6, G:∞ 

Update neighbors: C=2+9=11, 
E=2+1=3, F=2+4=6 

3 D A:0, B:2, C:11, D:3, E:3, 
F:6, G:10 

Update neighbors: E=3 (already 3), 
G=3+7=10 

4 E A:0, B:2, C:11, D:3, E:3, 
F:6, G:7 

Update G: min(10, 3+4=7) = 7 

   

 



5 G A:0, B:2, C:11, D:3, E:3, 
F:6, G:7 

Check neighbors, no better paths 

6 F A:0, B:2, C:9, D:3, E:3, 
F:6, G:7 

Update C: min(11, 6+3=9) = 9 

7 C A:0, B:2, C:9, D:3, E:3, 
F:6, G:7 

No further updates 

 

Final shortest distances from A: 

No
de 

Distanc
e 

A 0 

B 2 

C 9 

D 3 

E 3 

F 6 

G 7 

 

 

 

Transitive Closure Definition: 

The transitive closure of a relation R on a set is the smallest transitive relation that 
contains R. 

For a directed graph G = (V, E), the transitive closure of G is a graph G⁺ = (V, E⁺) such 
that for every pair of vertices (u, v): 

●​ (u, v) ∈ E⁺ if and only if there is a path from u to v in G. 

 

 



 

 

 
 
 
 
 
 
 
 
 
 

9.a. 
i) P Problem (Polynomial time problem) 

Definition: Problems that can be solved by an algorithm in polynomial time, i.e., the time 
taken to solve the problem grows polynomially with the size of the input.​
 Example: Sorting a list of numbers using Merge Sort or Quick Sort (time complexity O(n 
log n)). 

 

ii) NP Problem (Nondeterministic Polynomial time problem) 

Definition: Problems for which a proposed solution can be verified in polynomial time, but 
it is not necessarily known if they can be solved in polynomial time.​
 Example: The Subset Sum Problem: Given a set of integers, is there a subset that sums to 
zero? Verifying a subset is quick, but finding it might be hard. 

 

iii) NP-Complete Problem 

Definition: Problems that are both in NP and as hard as any problem in NP. If any 
NP-Complete problem can be solved in polynomial time, then all NP problems can be. They 
are the hardest problems in NP.​
 Example: The Traveling Salesman Problem (TSP): Finding the shortest possible route 
that visits each city exactly once and returns to the origin city. 

 

iv) NP-Hard Problem 

   

 



Definition: Problems that are at least as hard as NP-Complete problems but are not 
necessarily in NP themselves. They might not have solutions verifiable in polynomial time.​
 Example: The Halting Problem: Determining whether a program halts or runs forever is 
undecidable, and thus NP-Hard. 

 

 

 
 
 
 
 
 
 
 
 
 
 

10.a. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

10.b. 
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