Compiler Phases

A compiler translates a high-level language program into machine code (or
intermediate code) in several phases. Each phase has a specific role.

1. Lexical Analysis (Scanner)

Purpose: Break the input source code into tokens (smallest meaningful units).
Input: Source program as a stream of characters.
Output: Tokens (keywords, identifiers, literals, operators, punctuations).
Tasks:

o Remove whitespaces and comments.

o Detectinvalid characters.
Tools/Example: Lex/Flex.
Example:

inta=b + 5;

Tokens: int, a, =, b, +, 5, ;

2. Syntax Analysis (Parser)

Purpose: Check syntactic correctness of the token sequence according to
grammar.

Input: Tokens from lexical analysis.
Output: Parse tree or Concrete Syntax Tree (CST).
Tasks:

o Detect syntax errors.

o Apply context-free grammar rules.
Example: For a + b * ¢, builds a tree:

E
/\
E *



. JAVA!

. a+boc

3. Semantic Analysis
o Purpose: Check meaning of statements.
e Input: Parse tree from syntax analysis.
e Output: Annotated syntax tree or symbol table updates.
o Tasks:
o Type checking (int vs float).
o Scope checking (undeclared variables).
o Function parameter checking.

e Example: a =b + "hello" — type error.

4. Intermediate Code Generation

o Purpose: Generate intermediate representation (IR) that is independent of the
machine.

« Examples:
o Three-Address Code (TAC)
o Quadruples / Triples
o Advantages: Makes optimization easier and portable.

e Example:x=a+b*c—

e t1=b*c
o t2=a+1t1
e XxX=12

5. Code Optimization

e Purpose: Improve IR for efficiency without changing meaning.



Tasks:
o Peephole optimization: optimize small instruction sequences.
o Common subexpression elimination: reuse repeated calculations.
o Constant folding: precompute constants.

o Dead code elimination: remove unused code.

Example:
t1=a*b
t2=a*b

Optimized — reuse t1 instead of computing twice.

6. Code Generation

Purpose: Translate optimized IR to target machine code.
Tasks:

o Allocate registers.

o Generate assembly instructions.

o Map temporaries and variables to memory/registers.
Example:
t1=b*c - MULR1,b,c
t2=a+t1 - ADDR2, a, R1
x=t2 — MOVx, R2

7. Symbol Table Management

Maintained throughout compilation.
Stores:
o ldentifier names, types, scope
o Memory locations

o Function info, parameters



8. Error Handling
e Donein all phases.
e Examples:
o Lexical: illegal characters.
o Syntax: missing semicolon.
o Semantic: type mismatch.

e Compiler may recover and continue or halt with errors.

Summary Table

Phase Input Output Task

Lexical Analysis Source code Tokens Break into meaningful units
Syntax Analysis Tokens Parse tree Grammar checking
Semantic Analysis Parse tree Annotated tree Type & scope checking

Intermediate Code Gen Annotated tree IR (TAC, quads) Machine-independent code

Code Optimization IR Optimized IR Efficiency improvement
Code Generation Optimized IR Machine code Target-specific translation
Symbol Table Throughout  Symbol table  Manage identifiers & types
Error Handling Throughout  Error messages Detect & report errors

In short:

e Front-end: Lexical, Syntax, Semantic — checks correctness.
e Middle-end: Intermediate code + Optimization — improves efficiency.
« Back-end:

Evaluation of Compilers



A compiler can be evaluated based on several criteria, generally divided into
efficiency, quality, and reliability.

1. Correctness

o Acompiler is correct if it generates code that behaves exactly like the source
program.

o Test: Run programs on both source language specification and target machine
— results should match.

2. Efficiency
a) Compiler Efficiency
o Measures how fast the compiler runs.
o Afast compiler improves developer productivity.
b) Generated Code Efficiency
e Measures quality of machine code produced:
o Speed of execution
o Memory usage

« Example: Optimized loops, minimized instructions, reduced memory access.

3. Code Optimization

o Compiler should reduce execution time and memory usage without changing
program semantics.

e Techniques:
o Common sub-expression elimination
o Loop unrolling

o Constant folding

4. Compiler Reliability



o Compiler should handle errors gracefully and report meaningful messages.
e Errors can occur during:

o Lexical analysis (illegal characters)

o Syntax analysis (missing tokens)

o Semantic analysis (type mismatches)

5. Portability
o Ability to run the compiler on different machines.

o Useful if the compiler itself needs to target different architectures.

6. Error Detection and Recovery

e Agood compiler detects errors accurately and recovers to continue parsing,
instead of stopping at the first error.

7. Maintenance and Extensibility
o Easy to modify and extend for new language features.
e Modular design of compiler phases helps maintainability.
Applications of a Compiler

A compiler is not just for translating programs—it has several practical applications in
computer science and software development.

1. Translation of High-Level Programs

e Primary use of a compiler is to translate source code in high-level languages
(like C, Java, Python) into machine code or intermediate code.

e« Example: C code — Assembly/Machine code.

2. Cross-Platform Development



e« Compilers allow source code written in one platform to be compiled on
another platform.

« Example: A Java compiler generates bytecode, which can run on any machine
with a JVM.

3. Optimization of Code
o Compilers can improve the efficiency of programs automatically through:
o Loop unrolling
o Dead code elimination
o Constant folding

o This helps reduce execution time and memory usage.

4. Debugging Support

o Compilers provide error detection and reporting, which helps in debugging
programs:

o Syntax errors
o Type mismatches
o Undefined variables or functions

e Many compilers also provide line numbers and suggestions for faster
debugging.

5. Development of IDEs

e« Compilers are a core component of Integrated Development Environments
(IDEs).

e |IDEs use compilers for:
o Syntax highlighting
o Code completion
o Refactoring tools

o Real-time error checking



6. Intermediate Code Generation
o Compilers generate intermediate code, which is platform-independent.
o This intermediate code can be:
o Interpreted (like Python bytecode)
o Further compiled for multiple target machines

e Example: C — LLVM IR — machine code for multiple architectures.

7. Teaching and Research
o Compilers are widely used in computer science education:
o Understanding programming language design
o Studying parsing techniques (LL, LR parsers)
o Experimenting with optimizations and code generation
1. Static Scope (Lexical Scope)
Definition

e The scope of a variable is determined at compile time based on the program
text.

e The compiler decides which variable a name refers to by looking at the blocks
in which it is defined.

« Most modern languages (C, Java, Python) use static scoping.
Characteristics

e Scope is fixed lexically, i.e., by the location of the variable declaration in the
source code.

e Functions/blocks see variables in outer scopes if not redefined locally.
Example

int x = 10; // Global variable

void func() {



int x =15; // Local variable

printf("%d", x); // prints 5 (local x)

e The compiler knows at compile time which x is being referred to.
Advantages
o Easier to understand and debug.

o Compiler can generate efficient code because the variable’s location is known.

2. Block Scope

Definition
o Avariable declared inside a block { ... } is visible only inside that block.
e Also called local scope or inner scope.

Characteristics
» The variable ceases to exist once the block ends.

o Nested blocks can have variables with same names as outer blocks (inner
variable shadows outer variable).

Example
int main() {
int x =10; // outer block
{
intx=5; //inner block
printf("%d", x); // prints 5 (inner x)
}
printf("%d", x);  // prints 10 (outer x)

e The inner x exists only within the inner block.

e This is block scope.



Comparison: Static Scope vs Block Scope

Feature Static Scope (Lexical Scope) Block Scope
aDtetermlned Compile time Compile time

Depends on program text, can see outer

Visibility variables Only inside the block
Lifetime Global/static depends on declaration Exists lonIy during block
execution
Shadowing Outer ve?rlable can be shadowed by inner Allowed in nested blocks
declaration
x inside function refers to nearest x declared in { } is visible only
Example . o
declaration in text inside { }

Parameter Passing Mechanisms

When a function is called, arguments are passed to parameters. The mechanism of
transferring values from the caller to the callee determines the behavior.

1. Pass by Value
o Copy of the actual parameter is passed to the function.
e Changes inside the function do not affect the original variable.
e Used in: C, Java (primitive types).

Example:

void func(int x) {

X=X+5;



int main() {
inta=10;
func(a);

printf("%d", a); // prints 10, original value unchanged

2. Pass by Reference
o Address of the actual parameter is passed.
o Changes inside the function affect the original variable.
o Used in: C++ (with references), languages like Fortran, Pascal.
Example:
void func(int &x) {
X=X+5;
}
int main() {
inta=10;
func(a);

printf("%d", a); // prints 15, original variable changed

3. Pass by Value-Result (Copy-In Copy-Out)
e A copy of the argument is passed to the function.
o Atthe end, the copy is written back to the original variable.
e Acts like a combination of pass by value and pass by reference.
e Used in: Ada, some Fortran compilers.
Behavior:

e Changes inside function appear in the caller after function ends.



o Conflicts can occur if same variable is passed multiple times.
Input Buffering in Lexical Analysis
Purpose
o Lexical analyzers (scanners) read the source program character by character.

e Input buffering is used to efficiently read characters from the source file,
minimizing disk 1/O.

Why Input Buffering?
o Reading one character at a time from disk is slow.
e Using a buffer reduces the number of I/O operations.

« Helps handle lookahead characters efficiently (needed in some tokens, e.g., <=
Vs <).

Common Strategies
1. Single Buffer
o Use one array as a buffer (size N) to store characters.
o« Two pointers:
o lexemeBegin — start of current lexeme
o forward — current scanning position

¢ When forward reaches the end of buffer — read next block of characters from
file.

Drawbacks:

e Hard to handle lexemes split across buffer boundaries.

2. Double Buffering (Two-Buffer Scheme)
« Two buffers of size N each: Buffer 1 and Buffer 2.
o Fill one buffer while scanning the other.

« Pointers:



o lexemeBegin — start of current token
o forward — current scanning position
« EOF handling:
o Special sentinel character at end of each buffer to mark boundary.
o Efficient and commonly used.
Operation:
[Buffer1][Buffer2]
lexemeBegin — start of token
forward — moves through buffer
if forward reaches sentinel — load next buffer
Advantages:
« Handles long tokens across buffer boundaries.

e Minimizes I/O operations.

3. Sentinel Technique
o Add a special character (EOF or $) at the end of buffer.

o Helps detect end-of-buffer without checking every time.

Example
e Source: intx =10;
e Lexical analyzer reads in chunks:
o Buffer1:intx =
« Buffer2: 10;

« Pointers move through buffers to identify tokens: int, x, =, 10, ;

Summary of Input Buffering Strategies



Strategy Description Pros Cons

Hard to handle tokens

Single Buffer One buffer for input Simple across boundaries

Two buffers alternately Efficient, handles

Double Buffer Slightly complex

filled long tokens
Sentinel Add special character Easy EOF Needs careful placement
Technique at buffer end detection P

1. Prefix

o Aprefix of a string S is a sequence of characters that occurs at the start of the
string.

e Includes empty string (¢) and can include the full string itself.

Example:
String: S = "abc"

o Prefixes: g, "a", "ab", "abc"

2. Suffix

o Asuffix of a string S is a sequence of characters that occurs at the end of the
string.

e Includes empty string and full string.

Example:
String: S = "abc"

« Suffixes: €, "c", "bc", "abc"

3. Substring
o Asubstring is any contiguous sequence of characters within the string.
e Can start and end anywhere in the string.

Example:
String: S = "abc"

. Substrlngs €, uau’ "b", "C", "ab", "bC", uabcu



4. Proper Prefix / Proper Suffix / Proper Substring
o Proper Prefix: Any prefix except the string itself
o "a","ab" are proper prefixes of "abc"
o Proper Suffix: Any suffix except the string itself
"c", "bc" are proper suffixes of "abc"
e Proper Substring: Any substring except the string itself

"a", "b", "ab", "bc" are proper substrings of "abc"

Summary Table

Term Definition Example for "abc"

Prefix Starts at beginning g, "a", "ab", "abc"

Proper Prefix Prefix excluding full string "a", "ab"

Suffix Ends at end g, "c", "bc", "abc"

Proper Suffix Suffix excluding full string "c", "bc"

Substring Any contiguous sequence g, "a", "b", "c", "ab", "bc", "abc"

Proper Substring Substring excluding full string "a", "b", "c", "ab", "bc"

Algebraic Laws of Regular Expressions

Let @ = empty set, € = empty string, and + = union (OR), - = concatenation, * = Kleene
star.

1. Identity Laws
e R+p=R
e R-e=R
e £€-R=R



2. Null Laws
e R+ @ =R (already covered in identity)
e R 0=0
e 0-R=90

3. Idempotent Law

e R+R=R

4. Commutative Law (for union)

¢ R+S=S+R

5. Associative Laws
e Union: (R+S)+T=R+(S+T)
e« Concatenation: (R-S)-T=R-(S-T)

6. Distributive Laws
e R-(S+T)=(R-S)+(R-T)

e R+S) T=(R-T)+(S-T)

7. Closure Laws (Kleene Star)

e £ =E
° (D*=£
° (R*)*=R*



8. Other Useful Laws
e R-e=¢-R=R
e R+ R:S=R"S*(sometimes useful in simplification)

e (R+S8)"=(R*- S*)* (under certain conditions)

Summary Table

Law Type Expression Example
Identity R+p=R,R-¢=R
Null R-0=0,0-R=0
I[dempotent R+ R =R

Commutative R+ S=S +R
Associative (R+S)+T=R+(S+T)
Distributve R-(S+T)=R:S+R-T

Closure R*=¢+ RR*, (R*)*=R*

1. Identifier
Rules
o Begins with a letter (a-z or A-Z).
o Followed by letters or digits (0-9).

« Examples: x, var1, temp123

Regular Expression (RE)

Let:
o letter = (alb|...|z|A|B]...|Z)
o digit = (0[1]2]...]9)

Then identifier:



identifier = letter (letter | digit)*
o Explanation:
o First character = letter

o Remaining characters = zero or more letters/digits

Transition Diagram (Finite Automaton)
States:
e (0 = start
e 1 = accepting state (identifier recognized)
q0
I

letter

letter|digit |
I |

+ +

Explanation:
e« FromqO, ifinputis a letter, go to q1.
« From q1, on letter or digit, stay in q1 (loop).

e Accept when end of input is reached in q1.

2. Unsigned Number
Rules
e Sequence of digits (0-9)

e Can include optional decimal point for real numbers (unsigned float)



Examples:
e Integers: 0, 123, 4567
e Decimals: 0.5, 12.34, 123.0

Regular Expression (RE)
unsigned_integer = digit+
unsigned_real = digit+ . digit+
unsigned_number = digit+ (. digit+ )?
o Explanation:
o digit+ = one or more digits

o Optional decimal part (. digit+)?

Transition Diagram (Finite Automaton)
States:
e (0 =start

g1 = integer part recognized (accepting state)

g2 = decimal point read

e 3 = fractional part recognized (accepting state)

q0
I
digit
I
ql ---- "> Qg2
I |
digit digit



Explanation:
e From qO, first digit — q1 (integer part).

e In g1, more digits — stay in q1.

If . occurs — go to 2.

From g2, digits — q3.

Accept in q1 (integer) or q3 (decimal).

Summary Table
Token RE Accepting State(s)
Identifier “letter (letter  digit)*

Unsigned Number digit+ (. digit+)? g1 (int), q3 (real)

Consider the classic expression grammar:
E->TE

E'—>+TE'|¢

T->FT

T—>*FT|¢

F —>(E)|id

Step 1: Construct FIRST sets

Rules for FIRST(X):
1. If Xis a terminal — FIRST(X) = {X}
2. fX—>¢g—adde

3. If X — Y1Y2 ... - add FIRST(Y1), if ¢ € FIRST(Y1), also add FIRST(Y2), and
SO on



Compute FIRST sets
1. FIRST(F)={(,id}
o F>(E)—(
o F—id—id
2. FIRST(T)={* ¢}
o T>*FT' —>*
o T">e—c¢
3. FIRST(T)={(,id}
o T>FT —FIRST(F)={(,id}
4. FIRST(E')={+,¢}
o EE5+TE -+
o EE—>eg—ce
5. FIRST(E)={(,id}
o E-STE - FIRST(T)={(,id}
Summary of FIRST sets

Non-terminal FIRST

E {(,id}
E {+ ¢}
T {(,id}
T "¢}
F {(,id}

Step 2: Construct FOLLOW sets
Rules for FOLLOW(A):
1. Start symbol — $ (end of input)
2. IfA— aB B — everything in FIRST(B) except € is in FOLLOW(B)



3. If £ € FIRST(B) or B at end — add FOLLOW(A) to FOLLOW(B)

Compute FOLLOW sets
1. FOLLOW(E)={§$,)}
o Eis start symbol — $
o AppearsinF —(E)—)
2. FOLLOW(E")={%$,)}
o E—-TE'"— FOLLOW(E) € FOLLOW(E')
3. FOLLOW(T)={+,8%,)}
o E—>TE' — FIRST(E') excepte — +
o Also, € € FIRST(E') — FOLLOW(E) — $,)
4. FOLLOW(T)={+$,)}
o T—FT —FOLLOW(T)—+,$,)
5. FOLLOW(F)={*+,$,)}
o T—>FT — FIRST(T') excepte — *
o €€ FIRST(T') - FOLLOW(T) — +, $,)
Summary of FOLLOW sets

Non-terminal FOLLOW

E {$,)}

E' {$,)}

T {+.$,)}
T {+.$,)}
F {*+8%))}

Step 3: Construct Predictive Parsing Table

¢ Rows = Non-terminals



« Columns = Terminals (id, +, *, (, ), $)

o Fill entries using FIRST and FOLLOW rules

Parsing Table

NT id + * ( ) $

E E-TE E-TE

E E—+TE E—eE —¢
T THFT TFT

T T—e To*FT T el ¢
F F—id F—(E)

Empty cells mean error entries.

Step 4: Predictive Parsing of id + id * id

Stack: E$
Input: id+id*id $

Steps:
Stack Input Action
ES$ id+id*d$SE—-TE'

TE'S id+id*id$T—>FT
FT'E'$S id+id*id$F —id
idT' E'S$ id+id *id $ Match id
TE'S$S +id*id$ T —oc¢
E'S +id*id$ E' —-+TFE
+TE'$ +id*id$ Match+

TE'$S id*id$ ToFT



Stack Input Action
FTES$ id*id$ F—id

dT'E'S id*id$ Match id

TE'S *id$ T—>*FT
*FT'E'$*id$ Match *
FTES$ id$ F—id
dT'E'$ id$ Match id
TE'S$ $ T —>¢
E'S$ $ E'—¢

$ $ Accept

Define the Grammar

Let’s use a simple grammar suitable for arithmetic expressions with only a and +, *
operators:

E—-E+E
E—-E*E
E—a
e Terminals: a, +, *

¢ Non-terminal: E

Step 1: Input String
Input:aaa*aa++$

o We'll parse aaa*aa++ assuming a as operand and $ as end marker.

Step 2: Initialize Stack

o Stack starts empty.



e Input: aaa*aa++$

Step 3: Shift-Reduce Parsing Table (conceptual)
o Shift: Push next input symbol onto stack.
e Reduce: Apply grammar rightmost derivation in reverse:
1. a—E
2. E*YE—E
3. E+E—>E

Step 4: Parsing Steps

Step Stack Input Action

1 aaa*aa++9$ Initial
2 a aa*aa++$ Shift a
3 E aa*aa++$ Reducea — E

4 Ea a*aa++$ Shifta
5 EE *aa++$ Reduce a —» E

6 EE* aa++$ Shift *

7 E*E at++$ Shift a

8 E*EE++$ Reducea — E

9 EE ++$ Reduce E*E — E
10 EE+ +% Shift +

1M1 E+E $ Shift E

12 E $ ReduceE+E - E

13 E $ Accept



Step 5: Notes
1. Shift: Move next input to stack.
2. Reduce: Replace RHS of a production with LHS E.

3. Accept: Input consumed and stack has single E.

1. Shift-Reduce Parsing Overview
o Shift-Reduce Parsing is a bottom-up parsing technique.

e lttries to reduce a string to the start symbol by reversing rightmost
derivation.

o Actions:
1. Shift: Push the next input symbol onto the stack.

2. Reduce: Replace a handle (RHS of a production) on the stack with its
LHS.

3. Accept: When stack contains start symbol and input is empty.

4. Error: If no action possible.

Sample Grammar
We will use this classic arithmetic grammar:
E >E+E
E->E*E
E —id
e« Terminals:id, +, *

¢ Non-terminal: E

2. Types of Shift-Reduce Parsers

There are three main types of shift-reduce parsers:

(A) Operator-Precedence Parser



Key Idea
e Uses precedence relations between operators to decide shift or reduce.
e Relations: <. (less), =. (equal), ">.' (greater)

e Works only for operator-precedence grammars (no ambiguity, no €-
productions, no two adjacent non-terminals).

Parsing Steps (Example: id + id * id)
1. Assign precedence: * > +
2. Start with stack $ and input: id +id *id $
3. Shift id — reduce immediately to E.
4. Compare stack top operator and next input operator:
o Stack top <input — Shift
o Stack top > input — Reduce

5. Continue until input exhausted and stack = E.

Produces correct parse using operator precedence rules.

(B) SLR(1) (Simple LR) Parser
Key Idea

e Uses LR(0) items + FOLLOW sets to construct parsing table.

« Table contains shift, reduce, accept, and error actions.

« Handles a larger class of grammars than operator-precedence.
Parsing Steps

1. Build canonical collection of LR(0) items.

2. Compute ACTION and GOTO table.

3. Stack stores state numbers, not just symbols.

4. Input:id +id *id $

5. At each step:

o Check ACTION[state, input] — shift or reduce



o GOTO updates state after reduction.
6. Accept when stack = start symbol and input = $.

More general and robust than operator-precedence parsing.

(C) LALR(1) Parser (Lookahead LR)
Key Idea
e Lookahead version of LR parser with fewer states.

o Combines states in SLR to reduce table size while keeping 1-symbol
lookahead.

e« Commonly used in tools like YACC, Bison.
Steps
1. Construct LR(1) items with 1 lookahead symbol.
2. Merge compatible states to reduce size — LALR(1) table.

3. Parse input using shift, reduce, accept rules similar to SLR.

More space-efficient than full LR(1) parser.

3. Comparison Table

Table

Parser Type Lookahead Size Grammar Supported Notes

Operator- 1 Smal Operator-precedence Simple, fast, limited

Precedence only

SLR(1) 1 Medium Simple LR(1) General, robust
grammars

LALR(1) 1 Small Same as SLR(1) Efficient, widely used

LR(1) 1 Large All LR(1) grammars Most powerful, but big

table

Step 1: Choose Grammar



We will use a simple arithmetic expression grammar suitable for recursive descent
parsing:

E->TE
E'—>+TE'|¢
T->FT
T->*FT|¢
F —->(E)|id
e Terminals:id, +, *, (,)
e« Non-terminals: E,E', T, T', F

Note: Grammar must be LL(1) (no left recursion) to use recursive descent.

Step 2: Construct FIRST and FOLLOW sets (already done in previous discussion)
o FIRST(E) = {id, (}
o FIRST(E)={+ ¢}
o FIRST(T)={id, (}
o FIRST(T)={* ¢}
o FIRST(F)={id, (}
o FOLLOW(E)={$,)}
o FOLLOW(E')={S$,)}
o FOLLOW(T)={+9,)}
o FOLLOW(T)={+8,)}
o FOLLOW(F)={*+,8,)}

Step 3: Write Recursive Descent Procedures
Each non-terminal corresponds to a function:

/l Assume 'token' is the current input token



void E_prime() {

if (token =="+') {
match('+');
T0):;
E_prime();

} else if (token =="'$' || token ==")") {
/I epsilon, do nothing

} else {

error();

void T() {

FO);
T prime();

void T_prime() {
if (token =="*") {
match(™');

F();
T _prime();



} else if (token =="+" || token =="$' || token ==")') {
/I epsilon, do nothing
} else {

error();

void F() {

if (token =="id") {
match('id');

} else if (token =="(') {
match('(");
E();
match(')');

} else {

error();

/l Match function moves to next token if current matches
void match(string expected) {
if (token == expected) {
token = nextToken();
} else {

error();



Step 4: Parsing Input Example
Input: id +id *id $

Parsing sequence:

1.

© N o O Bk 0 Db

E() calls T() —» F() — matches id

T'() — epsilon (next token +)

E'() — matches +, calls T()

T() — F() — matches id

T'() — matches *, calls F() — matches id
T'() — epsilon, return

E'() — epsilon, return

E() — done, stack empty — accept

Step 5: Notes

Each non-terminal — function
Each terminal — match() function
Epsilon — just return

Works top-down, parsing LL(1) grammar

Summary Table

Non-terminal Function

E

E() calls T(); E_prime();
E_prime() handles "+ T E'
T() calls F(); T_prime();
T prime() handles **F T

F() handles "( E)



Step 1: Choose Grammar
Consider the classic grammar for arithmetic expressions:
1.E—-E+T
2E-T
3.T->T*F
4.T—>F
5.F > (E)
6.F —id
Augmented Grammar
e Add a new start symbol E":
0.E'—>E
e Terminals:id, +, * (,)

¢ Non-terminals: E, T, F

Step 2: LR(1) Item Definition

An LR(1) item is:

[A—a-B, a]
« +indicates the position of parser in the production
o ais the lookahead symbol (terminal or §)

o Represents: “we have seen a, expect 3, and next input should be a”

Step 3: Closure Operation
Closure(l):

1. Start with a set of items I.



2. For eachitem [A— a B [, a] where B is non-terminal,
add [B — ¢ v, b] for each production B — y and for each b € FIRST(a).

3. Repeat until no more items can be added.

Step 4: GOTO Operation

GOTO(l, X):
e Move * over symbol X in items of |
o Take closure of the resulting set

GOTO(I, X) = CLOSURE({[A > a X *B,a] |[[A—a+XB,a] €1}

Step 5: Construct Canonical Collection of LR(1) Iltems
Step 5.1: Start with augmented start item
|0 = CLOSURE({[E' — * E, $]})

e [E'—><E, 9]

e ESE+T—add[E—<E+T,$]

e E->T—add[E—"-T,39$]

e TH>T*F—>add[T—+T*F, +] (because lookahead is FIRST of rest of
production +)

e THF—oadd[T—-F 4]
e Fo(E)>add[F—«(E),+
e F—id—add[F— -id, 4]

10 now contains all items with ¢ at beginning and appropriate lookahead

Step 5.2: Compute GOTO sets from 10
e For each symbol X after « in 10, compute:
1. GOTO(I0, E) — I1
2. GOTO(I0, T) — 12
3. GOTO(I0,F) — 13



4. GOTO(IO, id) — 14
5. GOTO(l0,'(") — 15
o Repeat closure for each new set

e Continue computing GOTO for all new sets until no new sets appear

Step 5.3: Continue until Canonical Collection Complete
o After iterating, you will get a collection of sets:

10, 11,12, 13, 14, 15, ...
o Each set = state of the LR(1) parser

Step 6: Build LR(1) Parsing Table
« Rows: States (10, I1, ...)
e Columns: Terminals + Non-terminals
e Actions: Shift, Reduce, Accept

e LR(1) parser uses lookahead symbol to decide which reduction to apply —
avoids conflicts of SLR(1)

Step 7: Notes
1. LR(1) items = LR(0) item + 1 lookahead symbol
2. Closure operation = key step
3. GOTO determines state transitions

4. Canonical collection can be large; LALR(1) reduces table size

e Thisis a synthesized attribute SDD (bottom-up computation).
e Semantic rules propagate values upward in the parse tree.

e Can be implemented in a recursive-descent parser by evaluating val during
parsing.



8.a) Consider the classic arithmetic grammar:
1.E-E+T
2E-T
3.T->T*F
4.T—>F
5.F > (E)
6.F —id
Augmented Grammar
e Add new start symbol E":
0.E'—-E
e« Terminals:id, +, * (,)

¢ Non-terminals: E, T, F

Step 2: LR(0) Item Definition
An LR(0) item is:
[A—a-B]
e <indicates the position in the production

e Unlike LR(1), there is no lookahead symbol in LR(0)

Step 3: Closure Operation
Closure(l):
1. Start with a set of items |.

2. For eachitem [A — a * B 3] where B is non-terminal,
add [B — ¢ y] for every production B — y

3. Repeat until no new items can be added



Step 4: GOTO Operation

GOTO(l, X):

GOTO(l, X) =CLOSURE({[A—a X*B]|[A—a*XB]€I})
e Move * over symbol X in items of |

o Take closure of resulting set

Step 5: Construct Canonical Collection
Step 5.1: Start with augmented start item
|10 = CLOSURE({[E' — < E] })
e [E'—*E]
e Add items for E:
[E -« E+T]
[E—+T]
o Additems for T:
[T—><T*F]
[T—-Fl
o Add items for F:
[F—-<(E)]
[F - «id]

10 now contains all items with * at beginning

Step 5.2: Compute GOTO sets from 10
e For each symbol X after « in 10, compute GOTO:
1. GOTO(I0, E) — I1

GOTO(10, T) — 12

BN

(
GOTO(I0, F) — I3
GOTO(I0, id) — 14



5. GOTO(I0, '() — I5

e Apply closure for each new set

Step 5.3: Continue GOTO for all new sets

e« Compute GOTO for every symbol after « in new sets

e Continue until no new sets are produced

e Resulting sets form the canonical collection of LR(0) items:
10, 11,12, 13, 14, 15, ...

Each set corresponds to a state of the LR(0) parser

Step 6: Build SLR(1) Table (Optional Next Step)
« Rows: States (10, I1, ...)
e Columns: Terminals + Non-terminals

e Actions: Shift, Reduce, Accept

Step 7: Notes
1. LR(0) item = LR(1) item without lookahead
2. Closure operation is the key
3. GOTO determines state transitions

4. Canonical collection forms the state machine for LR(0) parsing

8b. 1. Synthesized Attributes
Definition

o Asynthesized attribute of a non-terminal is computed from its children (or
subtrees) in the parse tree.

e Information flows upward from the leaves toward the root.

Characteristics



o Often used to compute values of expressions, types, or any property derived
from subcomponents.

o [Easy to implement in bottom-up parsing.
Example
Grammar:
E—-E1+T
E->T
T->T1*F
T->F
F — num
o Attribute: val (value of expression)
e Semantic rules:
E.val = E1.val + T.val
T.val = T1.val * F.val
F.val = num.lexval
Explanation:
o E.val depends on child nodes E1 and T.
e Sovalis a synthesized attribute.

Flow: Leaf — Root

2. Inherited Attributes
Definition

e An inherited attribute of a non-terminal is computed from its parent or
siblings in the parse tree.

e Information flows downward or sideways from parent/sibling toward the node.
Characteristics
o Often used to pass types, symbol table info, or context.

« Implemented in top-down or recursive descent parsing.



Example
Grammar:
S—L=R
L —id
R — expr
e Suppose L.type depends on parent or right-hand side:
L.inh = S.type

o Another example: passing inherited attributes for operator precedence or
offsets in arrays.

Flow: Parent/Sibling — Child

3. Summary Table
Attribute Type Computed From Flow Direction Typical Use
Synthesized  Children/Subtrees Upward (bottom-up) Expression value, type, code

Inherited Parent/Siblings  Downward/Sideways Type info, symbol table, offsets

4. Notes
« SDDs may use only synthesized, only inherited, or both.

o L-attributed SDDs: Only allow inherited attributes from parent or left siblings
(suitable for top-down parsing).

o S-attributed SDDs: Only synthesized attributes (suitable for bottom-up
parsing).






