


Q1. a. Define algorithm. Explain asymptotic notations Big Oh, Big Omega and Big Theta 

notations. 

An algorithm is a finite set of well-defined instructions for solving a problem or performing a 

computation. 

Asymptotic notations describe the running time of an algorithm as a function of the input 

size: 

- Big O (O): Upper bound. Worst-case time complexity. 

- Big Omega (Ω): Lower bound. Best-case time complexity. 

- Big Theta (Θ): Tight bound. Describes both upper and lower bounds. 

These notations are essential for analysing algorithm efficiency. 

Q1. b. Explain the general plan for analysing the efficiency of a recursive algorithm. Suggest a 

recursive algorithm to find factorial of number. Derive its efficiency. 

To analyse a recursive algorithm: 

1. Identify the base case and recursive case. 

2. Write the recurrence relation. 

3. Solve the recurrence. 

 

Example: Factorial(n) 

Factorial(n): 

  if n == 0 or n == 1: 

    return 1 

  else: 

    return n * Factorial(n-1) 

 

Time Complexity: T(n) = T(n-1) + O(1) → O(n) 

Q1. c. If t₁(n) ∈ Θ(g₁(n)) and t₂(n) ∈ O(g₂(n)), then show that t₁(n) + t₂(n) ∈ O(max{g₁(n), g₂(n)}) 

Let t₁(n) ∈ Θ(g₁(n)) ∈ ∈ c₁, c₂, n₀ such that c₁·g₁(n) ≤ t₁(n) ≤ c₂·g₁(n) for all n ≥ n₀ 

Let t₂(n) ∈ O(g₂(n)) ∈ ∈ c₃, n₁ such that t₂(n) ≤ c₃·g₂(n) for all n ≥ n₁ 

Let n₂ = max(n₀, n₁) 

Then for n ≥ n₂: t₁(n) + t₂(n) ≤ c₂·g₁(n) + c₃·g₂(n) ≤ (c₂ + c₃)·max{g₁(n), g₂(n)} 

Hence, t₁(n) + t₂(n) ∈ O(max{g₁(n), g₂(n)}) 

Q2. a. With a neat diagram explains different steps in designing and analysing algorithm. 



 

 

Steps in designing and analysing algorithms: 

1. Problem Definition 

2. Algorithm Design 

3. Algorithm Specification 

4. Algorithm Analysis (Time and Space Complexity) 

5. Coding 

6. Testing and Debugging 

Diagram: A flowchart showing these steps sequentially from problem to analysis and coding. 

Q2. b. Write an algorithm to find the max element in an array of n elements. Give the 

mathematical analysis of this non-recursive algorithm. 

Algorithm: 

MaxElement(A[1..n]): 

  max ← A[1] 

  for i = 2 to n do: 

    if A[i] > max then 

      max ← A[i] 

  return max 

 



Time Complexity: O(n) 

Space Complexity: O(1) 

Q2. c. With the algorithm derive the worst case efficiency for selection sort. 

SelectionSort(A[1..n]): 

  for i = 1 to n-1: 

    minIndex ← i 

    for j = i+1 to n: 

      if A[j] < A[minIndex]: 

        minIndex ← j 

    Swap A[i] with A[minIndex] 

 

 
Time Complexity: O(n²) 

Space Complexity: O(1) 

Q3. a. Explain the concept of divide and conquer. Design an algorithm for merge sort and 

derive its time complexity. 

Divide and Conquer involves breaking a problem into sub-problems, solving them 

recursively, and combining the results. 

MergeSort(A): 

  if len(A) > 1: 

    mid ← len(A)//2 

    L ← A[:mid]; R ← A[mid:] 

    MergeSort(L); MergeSort(R) 

    Merge L and R into A 

 
Time Complexity: O(n log n) 

Q3. b. Design an algorithm for insertion sort and obtain its time complexity. 



InsertionSort(A[1..n]): 

  for i = 2 to n: 

    key ← A[i] 

    j ← i - 1 

    while j > 0 and A[j] > key: 

      A[j+1] ← A[j] 

      j ← j - 1 

    A[j+1] ← key 

 

Time Complexity: O(n²) in worst case, O(n) in best case 

 

Solution 

Algorithm: - [5 Marks]  

Analysis step by step: - [5 Marks] 

Algorithm 

QUICKSORT(arr, low, high): 

1. If low < high: 

    a. pivotIndex = PARTITION(arr, low, high) 

    b. QUICKSORT(arr, low, pivotIndex - 1) 

    c. QUICKSORT(arr, pivotIndex + 1, high) 

 

PARTITION(arr, low, high): 

1. Set pivot = arr[high] 

2. i = low - 1 

3. For j from low to high - 1: 

      if arr[j] <= pivot: 

          i = i + 1 

          swap arr[i] and arr[j] 

4. swap arr[i+1] and arr[high] 

5. return i + 1 

 

Apply Quick Sort on: 



Input: 5, 2, 1, 9, 8, 2, 4, 7 

Let’s sort it using the Quick Sort process step-by-step. 

Initial array: 

[5, 2, 1, 9, 8, 2, 4, 7] 

Apply quicksort on low=0, high=7 → pivot = 7 

Partitioning: 

 Elements ≤ 7: [5, 2, 1, 2, 4] 

 Elements > 7: [9, 8] 

 Pivot 7 goes to correct position → index 5 

Array becomes: 

[5, 2, 1, 2, 4, 7, 8, 9] 

Now recursively quicksort on [5, 2, 1, 2, 4] and [8, 9] 

 

Continue Sorting [5, 2, 1, 2, 4] (low=0, high=4) 

 Pivot = 4 

Partition: 

 Elements ≤ 4: [2, 1, 2] 

 Pivot 4 at correct position index 3 

Array becomes: 

[2, 1, 2, 4, 5, 7, 8, 9] 

Now sort [2, 1, 2] and [5] 

 

Sort [2, 1, 2] (low=0, high=2) 

 Pivot = 2 

Partition: 

 Elements ≤ 2: [2, 1, 2] (in-place adjustments) 

After partitioning: 

[1, 2, 2, 4, 5, 7, 8, 9] 

 

Solution 

Algorithm: - [5 Marks]  

Analysis step by step: - [5 Marks] 



Strassen’s algorithm is an efficient divide-and-conquer algorithm for matrix multiplication. It 

was proposed by Volker Strassen in 1969 and reduces the number of multiplications 

compared to the standard method. 

Traditional Matrix Multiplication 

Given two n × n matrices A and B, the standard algorithm computes matrix C = A × B using: 

C[i][j] = ∑ A[i][k] × B[k][j] (for k = 1 to n) 

Number of scalar multiplications: n³ 

Time complexity: O(n³) 

Idea Behind Strassen’s Algorithm 

Instead of computing 8 multiplications of submatrices (as in standard divide-and-conquer), 

Strassen reduces this to 7 multiplications and a few additions/subtractions. 

Divide Step 

Let A and B be n × n matrices, where n is a power of 2. Split them into four n/2 × n/2 

submatrices: 

A = [[A11, A12], [A21, A22]] 

B = [[B11, B12], [B21, B22]] 

Strassen's 7 Recursive Multiplications 

• M1 = (A11 + A22)(B11 + B22) 

• M2 = (A21 + A22)B11 

• M3 = A11(B12 - B22) 

• M4 = A22(B21 - B11) 

• M5 = (A11 + A12)B22 

• M6 = (A21 - A11)(B11 + B12) 

• M7 = (A12 - A22)(B21 + B22) 

Result Computation 

• C11 = M1 + M4 - M5 + M7 

• C12 = M3 + M5 

• C21 = M2 + M4 

• C22 = M1 - M2 + M3 + M6 

Time Complexity Derivation 

Let T(n) be the time to multiply two n × n matrices. 

Strassen performs: 



- 7 recursive multiplications of size n/2 × n/2: 7T(n/2) 

- 18 matrix additions/subtractions, each costing O(n²) 

So: T(n) = 7T(n/2) + O(n²) 

Using the Master Theorem: 

- a = 7, b = 2, f(n) = O(n²) 

- log₂7 ≈ 2.807 

⇒ T(n) = O(n^2.807) 

 

Solution 

Definition - [2 Marks]  

Explanation: - [ 4Marks] 

Example: - [1 Marks] 

Definition of AVL Tree 

An AVL tree (named after inventors Adelson-Velsky and Landis) is a type of self-balancing 

binary search tree (BST). In an AVL tree, the heights of the two child subtrees of any node 

differ by at most one. If at any time they differ by more than one, rebalancing is done using 

tree rotations. This guarantees that AVL trees maintain O(log n) time complexity for 

insertion, deletion, and search operations. 

Types of Rotations in AVL Trees 

Rotations are used to restore balance when the AVL tree becomes unbalanced after insertions 

or deletions. There are four types of rotations: 

1. Left-Left (LL) Rotation 

This rotation is used when a node is inserted into the left subtree of the left child of the 

unbalanced node. It involves a single right rotation. 

Example: Insert into left of left child 

2. Right-Right (RR) Rotation 

This rotation is used when a node is inserted into the right subtree of the right child of the 

unbalanced node. It involves a single left rotation. 

Example: Insert into right of right child 

3. Left-Right (LR) Rotation 

This is a double rotation used when a node is inserted into the right subtree of the left child. It 

involves a left rotation followed by a right rotation. 

Example: Insert into right of left child 



4. Right-Left (RL) Rotation 

This is a double rotation used when a node is inserted into the left subtree of the right child. It 

involves a right rotation followed by a left rotation. 

Example: Insert into left of right child 

 

 

Solution 

Algorithm: - [5 Marks]  

Analysis step by step: - [5 Marks] 

Heap Sort Algorithm 

Heap Sort is a comparison-based sorting algorithm that uses a binary heap data structure. It 

works by first building a max heap from the input list and then repeatedly removing the 

maximum element and adjusting the heap. 

1. Algorithm Steps: 

HEAPSORT(arr): 

1. BUILD_MAX_HEAP(arr) 

2. for i = n−1 down to 1: 

     swap arr[0] and arr[i] 

     heap_size = heap_size - 1 

     MAX_HEAPIFY(arr, 0) 

BUILD_MAX_HEAP(arr): 

1. for i = floor(n/2) down to 0: 

     MAX_HEAPIFY(arr, i) 

MAX_HEAPIFY(arr, i): 

1. left = 2i + 1 

2. right = 2i + 2 

3. largest = i 

4. if left < heap_size and arr[left] > arr[largest]: 

       largest = left 

5. if right < heap_size and arr[right] > arr[largest]: 



       largest = right 

6. if largest ≠ i: 

       swap arr[i] and arr[largest] 

       MAX_HEAPIFY(arr, largest) 

Bottom-Up Heap Construction 

Given List: [15, 19, 10, 7, 17, 16] 

Step 1: Represent as Binary Tree (Index-based) 

Index:  0   1   2   3   4   5 

Value: 15  19  10   7  17  16 

Binary Tree: 

         15 

       /    \ 

     19      10 

    /  \    / 

   7   17  16 

Step 2: Apply Bottom-Up Heap Construction (BUILD_MAX_HEAP) 

Start from last non-leaf node: index = floor(n/2) - 1 = 2 

i = 2 → node = 10 

Children: 16 

→ 16 > 10 ⇒ swap → [15, 19, 16, 7, 17, 10] 

i = 1 → node = 19 

Children: 7, 17 

→ 19 is already largest ⇒ no change 

i = 0 → node = 15 

Children: 19, 16 

→ 19 > 15 ⇒ swap → [19, 15, 16, 7, 17, 10] 

Now MAX_HEAPIFY(1): Children: 7, 17 

→ 17 > 15 ⇒ swap → [19, 17, 16, 7, 15, 10] 

Final Max Heap 

Index:  0   1   2   3   4   5 



Value: 19  17  16   7  15  10 

Binary Tree: 

         19 

       /    \ 

     17      16 

    /  \    / 

   7   15  10 

 

Solution 

Algorithm: - [5 Marks]  

Analysis step by step: - [5 Marks] 

Horspool’s Algorithm for String Matching 

Horspool’s algorithm is an efficient algorithm for exact string matching. It is a simplified 

version of the Boyer-Moore algorithm that uses only the bad character heuristic to shift the 

pattern efficiently when mismatches occur. 

Algorithm Design (Horspool’s Algorithm) 

Input: 

 Text TT of length nn 

 Pattern PP of length mm 

Output: 

 All positions where pattern PP occurs in text TT 

🔧 Steps of the Algorithm 

1. Preprocessing: Create Shift Table 

o For each character in the alphabet: 

Shift[c]=m(default value)\text{Shift}[c] = m \quad \text{(default value)}  

o For each character in the pattern except the last: 

Shift[P[i]]=m−i−1\text{Shift}[P[i]] = m - i - 1  

2. Matching: Slide pattern over text 

o Start comparing from the end of the pattern. 



o If a mismatch occurs, shift the pattern by the value in the shift table for the 

mismatched character. 

o If a match is found, report the position and shift. 

Apply Horspool’s Algorithm to Find BARBER in the Text 

Pattern (P): "BARBER" (length = 6) 

Text (T): "JIM_SAW_ME_IN_A_BARBERSHOP." (length = 28) 

Step 1: Build the Shift Table 

Pattern: B A R B E R 

(only first 5 characters used for shift table) 

Character Position Shift = m - i - 1 

B 0 5 

A 1 4 

R 2 3 

B 3 2 (overwrite previous B) 

E 4 1 

Final Shift Table: 

 B → 2 

 A → 4 

 R → 3 

 E → 1 

 All other characters → 6 (pattern length) 

Step 2: Matching Phase 

We compare pattern with substrings in the text, aligning from right to left. 

 Start with text index = 0 

 Pattern aligns from index 0 to 5 in text, then slide 

Let’s go through important alignment positions: 

Alignment at index 17: 

Text substring = "BARBER" 

Compare from right → left: 

 R == R ✔ 

 E == E ✔ 



 B == B ✔ 

 R == R ✔ 

 A == A ✔ 

 B == B ✔ 

Pattern found at index 17 

Next alignment would go beyond the length of text, so algorithm stops. 

Output: 

Pattern BARBER found at position 17 in the text. 

 

Solution 

Definition: - [2 Marks]  

Explanation & Example: - [4+4 Marks] 

Definition of Heap 

A Heap is a specialized tree-based data structure that satisfies the heap property. It is a 

complete binary tree, meaning all levels are fully filled except possibly the last, which is 

filled from left to right. 

There are two types of heaps: 

- Max-Heap: The value of each node is greater than or equal to its children. 

- Min-Heap: The value of each node is less than or equal to its children. 

Properties of Heap 

1. Shape Property: 

   - Heap is always a complete binary tree ensuring efficient storage and minimal height. 

2. Heap Order Property: 

   - In Max-Heap, the parent node has a value greater than or equal to its children. 

   - In Min-Heap, the parent node has a value less than or equal to its children. 

3. Efficient Operations: 

   - Insertion, deletion, and access to the root element (max or min) are done in O(log n) time. 

Representation of Heap 

Heaps are commonly implemented using arrays. The relationships between parent and child 

nodes can be defined as: 

- Parent(i) = (i - 1) // 2 

- Left Child(i) = 2 * i + 1 

- Right Child(i) = 2 * i + 2 

Example (Max-Heap) 



Array Representation: [50, 30, 40, 10, 5, 20, 30] 

Tree Representation: 

          50 

        /    \ 

      30      40 

     /  \    /  \ 

   10    5  20   30 

 

Q7 

 

 

 (a). Construct the Minimum Cost Spanning Tree using Kruskal’s algorithm 

Given Graph: 

 

Vertices: A, B, C, D, E, F, G, H 

Edges (with weights): 

Edge Weight 

A-B 3 

A-D 5 

B-C 2 

B-E 6 

C-F 7 

D-E 7 

E-F 3 

E-G 8 



F-H 4 

G-H 9 

 Kruskal’s Algorithm Steps: 

Sort edges by increasing weight. 

Add edge if it doesn’t form a cycle. 

Stop when n–1 edges are included (where n = number of vertices = 8, so we need 7 edges). 

✅ Step-by-step Execution: 

Sorted Edges: 

Step Edge Weight Added? Reason 

1 B–C 2 ✅ No cycle 

2 A–B 3 ✅ No cycle 

3 E–F 3 ✅ No cycle 

4 F–H 4 ✅ No cycle 

5 A–D 5 ✅ No cycle 

6 B–E 6 ✅ No cycle 

7 C–F 7 ❌ Forms a cycle 

8 D–E 7 ❌ Forms a cycle 

9 G–H 9 ✅ No cycle 

 

✅ Minimum Cost Spanning Tree (Selected Edges): 

B–C (2) 

A–B (3) 

E–F (3) 

F–H (4) 

A–D (5) 

B–E (6) 

G–H (9) 

Total Cost = 2 + 3 + 3 + 4 + 5 + 6 + 9 = 32 



 

7.b – Huffman Tree Construction and Encoding/Decoding 

Given: 

Character A B C D 

Probability 0.4 0.1 0.2 0.15 

 

Step 1: Build Huffman Tree 

1. List all probabilities (ascending): 

o B (0.1), D (0.15), C (0.2), A (0.4) 

2. Combine lowest two nodes: 

o B (0.1) + D (0.15) → Node1 (0.25) 

3. New list: 

o Node1 (0.25), C (0.2), A (0.4) 

4. Combine lowest two: 

o C (0.2) + Node1 (0.25) → Node2 (0.45) 

5. New list: 

o Node2 (0.45), A (0.4) 

6. Combine remaining: 

o A (0.4) + Node2 (0.45) → Root (0.85) 

 

Step 2: Assign Binary Codes 

 Root 

o Left: A → 0 

o Right: Node2 



 Left: C → 10 

 Right: Node1 

 Left: B → 110 

 Right: D → 111 

Final Codes: 

Character Huffman Code 

A 0 

B 110 

C 10 

D 111 

 

Step 3: Encode ABAC ABAD 

Text: ABAC ABAD 

Encoding: 

 A → 0 

 B → 110 

 A → 0 

 C → 10 

(space is ignored or handled separately) 

 A → 0 

 B → 110 

 A → 0 

 D → 111 

Encoded String: 

0110010010011001111 

 

Step 4: Decode 1000101111001010 

Encoded: 1000101111001010 

Using tree: 



 1 → next is 0 → 10 = C 

 0 = A 

 0 = A 

 1 → next 0 → 10 = C 

 1 → next 1 → next 1 = 111 = D 

 0 = A 

 1 → next 1 → 0 = 110 = B 

Decoded String: CAACDAB 

 

 

 

Solution :  

Graph Vertices: A, B, C, D, E, F 

Edges and Weights: A→B=2, A→D=3, A→E=5, B→C=9, B→E=1, C→F=3, D→F=7, 

E→F=4 

Initialize distances from A: A=0, B=∞, C=∞, D=∞, E=∞, F=∞; Visited = ∅ 

Iteration 1 (Current = A): Update B=2, D=3, E=5 

Iteration 2 (Current = B): Update C=11, E=3 (better path via B) 

Iteration 3 (Current = D): Update F=10 

Iteration 4 (Current = E): Update F=7 (better path via E) 

Iteration 5 (Current = F): Update C=10 (better path via F) 

Iteration 6 (Current = C): All neighbours visited. Done. 



 

 

 

Solution : 

Definition: The transitive closure of a directed graph G = (V, E) is a graph G = (V, E) such 

that for every pair of vertices (u, v), there is an edge (u, v) in E if and only if there is a path 

from u to v in G. 

Warshall’s Algorithm: 

For an adjacency matrix A of size n × n: 

for k from 1 to n: 

for i from 1 to n: 

for j from 1 to n: 

A[i][j] = A[i][j] OR (A[i][k] AND A[k][j]) 



 

 

Solution : 

i) P Problem (Polynomial-Time Problems) 

A problem is in P if it can be solved by a deterministic Turing machine in polynomial time. 

Examples: Sorting a list using merge sort → Time: O(n log n)  

Finding the shortest path using Dijkstra’s algorithm → Time: O(V²) 

Matrix multiplication 

ii) NP Problem (Nondeterministic Polynomial Time) 

A problem is in NP if a proposed solution can be verified in polynomial time.  

  Examples: Sudoku puzzle: Hard to solve, easy to verify.  

Hamiltonian Path: Is there a path that visits each vertex exactly once? 

iii) NP-Complete Problem 

A problem is NP-Complete if: 1. It is in NP. 2. Every problem in NP can be reduced to it in 

polynomial time.  

Examples: Travelling Salesman Problem (Decision version)  

3-SAT Problem,Subset Sum Problem 



iv) NP-Hard Problem 

A problem is NP-Hard if every problem in NP can be reduced to it in polynomial time, but it 

may not be in NP.  

Examples:  Halting Problem (undecidable)   

Optimization version of Travelling Salesman Problem 

 
Solution :  

Backtracking is a problem-solving technique where we build a solution incrementally, and 

if we find that the current path cannot lead to a solution, we backtrack and try a different 

path. 

 

We will explore each element (Include or Exclude it): 

Step Current Subset  Sum  Decision 

1 {}     0     Start 

2 {1}   1 Include 1 

3 {1, 2}   3 Include 2 

4 {1, 2, 5}  8 Include 5 

5 {1, 2, 5, 6}  14 > 9 → Backtrack 

6 {1, 2, 5, 8}  16 > 9 → Backtrack 

7 {1, 2, 6}  9  Valid Subset 

8 {1, 5}   6 Continue 

9 {1, 5, 6}  12 > 9 → Backtrack 

10 {1, 8}   9  Valid Subset 

11 {2}   2 Try this path 

12 {2, 5}   7 Try more 

13 {2, 5, 6}  13 > 9 → Backtrack 

14 {2, 5, 8}  15 > 9 → Backtrack 

15 {2, 6}   8 Continue 

16 {2, 6, 8}  16 > 9 → Backtrack 

17 {2, 8} 10  > 9        → Backtrack 

18 {5, 6} 11  > 9  → Backtrack 

19 {5, 8} 13  > 9    → Backtrack 

20 {6, 8} 14  > 9  → Backtrack 

Valid Subsets Found: 

{1, 2, 6} 

{1, 8} 

 

 

Solution :  



N - Queens problem is to place n - queens in such a manner on an n x n chessboard that no 

queens attack each other by being in the same row, column or diagonal. 

It can be seen that for n =1, the problem has a trivial solution, and no solution exists for n =2 

and n =3. So first we will consider the 4 queens problem and then generate it to n - queens 

problem. 

Given a 4 x 4 chessboard and number the rows and column of the chessboard 1 through 4 

 

 

The implicit tree for 4 - queen problem for a solution (2, 4, 1, 3) is as follows: 

 

 



 

Solution :  

Here’s a step-by-step solution for the 0/1 Knapsack Problem using the Branch and Bound 

method based on the given instance: 

 Problem Statement 

Item Weight         Value 

1   4             40 

2   7             42 

3   5             25 

4  3            12 

 Capacity of Knapsack = 10 

 Step 1: Calculate Value/Weight Ratio 

To prioritize items in bounding, sort them by value-to-weight ratio (v/w): 

Item Weight Value v/w (Value/Weight) 

1 4 40 10.00 

2 7 42 6.00 

3 5 25 5.00 

4 3 12 4.00 

So we reorder as: Item 1, Item 2, Item 3, Item 4 

 Step 2: Branch and Bound (Best-First Search Approach) 

Each node includes: 

Level (item number) 

Current profit 

Current weight 

Bound (maximum possible profit from that node) 

 Bounding Function: 

Used to compute upper bound of maximum profit in subtree rooted at current node: 

Include items greedily until capacity is full or fractionally if needed. 

 Step 3: Execution Table 

Node Level Profit Weight Bound Action 



N0 -1 0 0 94 Root Node 

N1 0 40 4 85 Include I1 

N2 0 0 0 85 Exclude I1 

N3 1 40 4 85 From N1 

N4 1 82 11 - Invalid (wt>10) 

N5 1 40 4 85 Exclude I2 

N6 2 65 9 77 Include I3  Best Feasible 

N7 2 40 4 64 Exclude I3 

N8 3 52 7 - Include I4 

N9 3 40 4 - Exclude I4 

Optimal Solution: 

Maximum profit = 65 

Selected Items: 

  Item 1 (weight 4, value 40) 

  Item 3 (weight 5, value 25) 

Total weight = 9, which is within capacity. 

 


