

Q1. a. Define algorithm. Explain asymptotic notations Big Oh, Big Omega and Big Theta

notations.

An algorithm is a finite set of well-defined instructions for solving a problem or performing a

computation.

Asymptotic notations describe the running time of an algorithm as a function of the input

size:

- Big O (O): Upper bound. Worst-case time complexity.

- Big Omega (Ω): Lower bound. Best-case time complexity.

- Big Theta (Θ): Tight bound. Describes both upper and lower bounds.

These notations are essential for analysing algorithm efficiency.

Q1. b. Explain the general plan for analysing the efficiency of a recursive algorithm. Suggest a

recursive algorithm to find factorial of number. Derive its efficiency.

To analyse a recursive algorithm:

1. Identify the base case and recursive case.

2. Write the recurrence relation.

3. Solve the recurrence.

Example: Factorial(n)

Factorial(n):

 if n == 0 or n == 1:

 return 1

 else:

 return n * Factorial(n-1)

Time Complexity: T(n) = T(n-1) + O(1) → O(n)

Q1. c. If t₁(n) ∈ Θ(g₁(n)) and t₂(n) ∈ O(g₂(n)), then show that t₁(n) + t₂(n) ∈ O(max{g₁(n), g₂(n)})

Let t₁(n) ∈ Θ(g₁(n)) ∈ ∈ c₁, c₂, n₀ such that c₁·g₁(n) ≤ t₁(n) ≤ c₂·g₁(n) for all n ≥ n₀

Let t₂(n) ∈ O(g₂(n)) ∈ ∈ c₃, n₁ such that t₂(n) ≤ c₃·g₂(n) for all n ≥ n₁

Let n₂ = max(n₀, n₁)

Then for n ≥ n₂: t₁(n) + t₂(n) ≤ c₂·g₁(n) + c₃·g₂(n) ≤ (c₂ + c₃)·max{g₁(n), g₂(n)}

Hence, t₁(n) + t₂(n) ∈ O(max{g₁(n), g₂(n)})

Q2. a. With a neat diagram explains different steps in designing and analysing algorithm.

Steps in designing and analysing algorithms:

1. Problem Definition

2. Algorithm Design

3. Algorithm Specification

4. Algorithm Analysis (Time and Space Complexity)

5. Coding

6. Testing and Debugging

Diagram: A flowchart showing these steps sequentially from problem to analysis and coding.

Q2. b. Write an algorithm to find the max element in an array of n elements. Give the

mathematical analysis of this non-recursive algorithm.

Algorithm:

MaxElement(A[1..n]):

 max ← A[1]

 for i = 2 to n do:

 if A[i] > max then

 max ← A[i]

 return max

Time Complexity: O(n)

Space Complexity: O(1)

Q2. c. With the algorithm derive the worst case efficiency for selection sort.

SelectionSort(A[1..n]):

 for i = 1 to n-1:

 minIndex ← i

 for j = i+1 to n:

 if A[j] < A[minIndex]:

 minIndex ← j

 Swap A[i] with A[minIndex]

Time Complexity: O(n²)

Space Complexity: O(1)

Q3. a. Explain the concept of divide and conquer. Design an algorithm for merge sort and

derive its time complexity.

Divide and Conquer involves breaking a problem into sub-problems, solving them

recursively, and combining the results.

MergeSort(A):

 if len(A) > 1:

 mid ← len(A)//2

 L ← A[:mid]; R ← A[mid:]

 MergeSort(L); MergeSort(R)

 Merge L and R into A

Time Complexity: O(n log n)

Q3. b. Design an algorithm for insertion sort and obtain its time complexity.

InsertionSort(A[1..n]):

 for i = 2 to n:

 key ← A[i]

 j ← i - 1

 while j > 0 and A[j] > key:

 A[j+1] ← A[j]

 j ← j - 1

 A[j+1] ← key

Time Complexity: O(n²) in worst case, O(n) in best case

Solution

Algorithm: - [5 Marks]

Analysis step by step: - [5 Marks]

Algorithm

QUICKSORT(arr, low, high):

1. If low < high:

 a. pivotIndex = PARTITION(arr, low, high)

 b. QUICKSORT(arr, low, pivotIndex - 1)

 c. QUICKSORT(arr, pivotIndex + 1, high)

PARTITION(arr, low, high):

1. Set pivot = arr[high]

2. i = low - 1

3. For j from low to high - 1:

 if arr[j] <= pivot:

 i = i + 1

 swap arr[i] and arr[j]

4. swap arr[i+1] and arr[high]

5. return i + 1

Apply Quick Sort on:

Input: 5, 2, 1, 9, 8, 2, 4, 7

Let’s sort it using the Quick Sort process step-by-step.

Initial array:

[5, 2, 1, 9, 8, 2, 4, 7]

Apply quicksort on low=0, high=7 → pivot = 7

Partitioning:

 Elements ≤ 7: [5, 2, 1, 2, 4]

 Elements > 7: [9, 8]

 Pivot 7 goes to correct position → index 5

Array becomes:

[5, 2, 1, 2, 4, 7, 8, 9]

Now recursively quicksort on [5, 2, 1, 2, 4] and [8, 9]

Continue Sorting [5, 2, 1, 2, 4] (low=0, high=4)

 Pivot = 4

Partition:

 Elements ≤ 4: [2, 1, 2]

 Pivot 4 at correct position index 3

Array becomes:

[2, 1, 2, 4, 5, 7, 8, 9]

Now sort [2, 1, 2] and [5]

Sort [2, 1, 2] (low=0, high=2)

 Pivot = 2

Partition:

 Elements ≤ 2: [2, 1, 2] (in-place adjustments)

After partitioning:

[1, 2, 2, 4, 5, 7, 8, 9]

Solution

Algorithm: - [5 Marks]

Analysis step by step: - [5 Marks]

Strassen’s algorithm is an efficient divide-and-conquer algorithm for matrix multiplication. It

was proposed by Volker Strassen in 1969 and reduces the number of multiplications

compared to the standard method.

Traditional Matrix Multiplication

Given two n × n matrices A and B, the standard algorithm computes matrix C = A × B using:

C[i][j] = ∑ A[i][k] × B[k][j] (for k = 1 to n)

Number of scalar multiplications: n³

Time complexity: O(n³)

Idea Behind Strassen’s Algorithm

Instead of computing 8 multiplications of submatrices (as in standard divide-and-conquer),

Strassen reduces this to 7 multiplications and a few additions/subtractions.

Divide Step

Let A and B be n × n matrices, where n is a power of 2. Split them into four n/2 × n/2

submatrices:

A = [[A11, A12], [A21, A22]]

B = [[B11, B12], [B21, B22]]

Strassen's 7 Recursive Multiplications

• M1 = (A11 + A22)(B11 + B22)

• M2 = (A21 + A22)B11

• M3 = A11(B12 - B22)

• M4 = A22(B21 - B11)

• M5 = (A11 + A12)B22

• M6 = (A21 - A11)(B11 + B12)

• M7 = (A12 - A22)(B21 + B22)

Result Computation

• C11 = M1 + M4 - M5 + M7

• C12 = M3 + M5

• C21 = M2 + M4

• C22 = M1 - M2 + M3 + M6

Time Complexity Derivation

Let T(n) be the time to multiply two n × n matrices.

Strassen performs:

- 7 recursive multiplications of size n/2 × n/2: 7T(n/2)

- 18 matrix additions/subtractions, each costing O(n²)

So: T(n) = 7T(n/2) + O(n²)

Using the Master Theorem:

- a = 7, b = 2, f(n) = O(n²)

- log₂7 ≈ 2.807

⇒ T(n) = O(n^2.807)

Solution

Definition - [2 Marks]

Explanation: - [4Marks]

Example: - [1 Marks]

Definition of AVL Tree

An AVL tree (named after inventors Adelson-Velsky and Landis) is a type of self-balancing

binary search tree (BST). In an AVL tree, the heights of the two child subtrees of any node

differ by at most one. If at any time they differ by more than one, rebalancing is done using

tree rotations. This guarantees that AVL trees maintain O(log n) time complexity for

insertion, deletion, and search operations.

Types of Rotations in AVL Trees

Rotations are used to restore balance when the AVL tree becomes unbalanced after insertions

or deletions. There are four types of rotations:

1. Left-Left (LL) Rotation

This rotation is used when a node is inserted into the left subtree of the left child of the

unbalanced node. It involves a single right rotation.

Example: Insert into left of left child

2. Right-Right (RR) Rotation

This rotation is used when a node is inserted into the right subtree of the right child of the

unbalanced node. It involves a single left rotation.

Example: Insert into right of right child

3. Left-Right (LR) Rotation

This is a double rotation used when a node is inserted into the right subtree of the left child. It

involves a left rotation followed by a right rotation.

Example: Insert into right of left child

4. Right-Left (RL) Rotation

This is a double rotation used when a node is inserted into the left subtree of the right child. It

involves a right rotation followed by a left rotation.

Example: Insert into left of right child

Solution

Algorithm: - [5 Marks]

Analysis step by step: - [5 Marks]

Heap Sort Algorithm

Heap Sort is a comparison-based sorting algorithm that uses a binary heap data structure. It

works by first building a max heap from the input list and then repeatedly removing the

maximum element and adjusting the heap.

1. Algorithm Steps:

HEAPSORT(arr):

1. BUILD_MAX_HEAP(arr)

2. for i = n−1 down to 1:

 swap arr[0] and arr[i]

 heap_size = heap_size - 1

 MAX_HEAPIFY(arr, 0)

BUILD_MAX_HEAP(arr):

1. for i = floor(n/2) down to 0:

 MAX_HEAPIFY(arr, i)

MAX_HEAPIFY(arr, i):

1. left = 2i + 1

2. right = 2i + 2

3. largest = i

4. if left < heap_size and arr[left] > arr[largest]:

 largest = left

5. if right < heap_size and arr[right] > arr[largest]:

 largest = right

6. if largest ≠ i:

 swap arr[i] and arr[largest]

 MAX_HEAPIFY(arr, largest)

Bottom-Up Heap Construction

Given List: [15, 19, 10, 7, 17, 16]

Step 1: Represent as Binary Tree (Index-based)

Index: 0 1 2 3 4 5

Value: 15 19 10 7 17 16

Binary Tree:

 15

 / \

 19 10

 / \ /

 7 17 16

Step 2: Apply Bottom-Up Heap Construction (BUILD_MAX_HEAP)

Start from last non-leaf node: index = floor(n/2) - 1 = 2

i = 2 → node = 10

Children: 16

→ 16 > 10 ⇒ swap → [15, 19, 16, 7, 17, 10]

i = 1 → node = 19

Children: 7, 17

→ 19 is already largest ⇒ no change

i = 0 → node = 15

Children: 19, 16

→ 19 > 15 ⇒ swap → [19, 15, 16, 7, 17, 10]

Now MAX_HEAPIFY(1): Children: 7, 17

→ 17 > 15 ⇒ swap → [19, 17, 16, 7, 15, 10]

Final Max Heap

Index: 0 1 2 3 4 5

Value: 19 17 16 7 15 10

Binary Tree:

 19

 / \

 17 16

 / \ /

 7 15 10

Solution

Algorithm: - [5 Marks]

Analysis step by step: - [5 Marks]

Horspool’s Algorithm for String Matching

Horspool’s algorithm is an efficient algorithm for exact string matching. It is a simplified

version of the Boyer-Moore algorithm that uses only the bad character heuristic to shift the

pattern efficiently when mismatches occur.

Algorithm Design (Horspool’s Algorithm)

Input:

 Text TT of length nn

 Pattern PP of length mm

Output:

 All positions where pattern PP occurs in text TT

🔧 Steps of the Algorithm

1. Preprocessing: Create Shift Table

o For each character in the alphabet:

Shift[c]=m(default value)\text{Shift}[c] = m \quad \text{(default value)}

o For each character in the pattern except the last:

Shift[P[i]]=m−i−1\text{Shift}[P[i]] = m - i - 1

2. Matching: Slide pattern over text

o Start comparing from the end of the pattern.

o If a mismatch occurs, shift the pattern by the value in the shift table for the

mismatched character.

o If a match is found, report the position and shift.

Apply Horspool’s Algorithm to Find BARBER in the Text

Pattern (P): "BARBER" (length = 6)

Text (T): "JIM_SAW_ME_IN_A_BARBERSHOP." (length = 28)

Step 1: Build the Shift Table

Pattern: B A R B E R

(only first 5 characters used for shift table)

Character Position Shift = m - i - 1

B 0 5

A 1 4

R 2 3

B 3 2 (overwrite previous B)

E 4 1

Final Shift Table:

 B → 2

 A → 4

 R → 3

 E → 1

 All other characters → 6 (pattern length)

Step 2: Matching Phase

We compare pattern with substrings in the text, aligning from right to left.

 Start with text index = 0

 Pattern aligns from index 0 to 5 in text, then slide

Let’s go through important alignment positions:

Alignment at index 17:

Text substring = "BARBER"

Compare from right → left:

 R == R ✔

 E == E ✔

 B == B ✔

 R == R ✔

 A == A ✔

 B == B ✔

Pattern found at index 17

Next alignment would go beyond the length of text, so algorithm stops.

Output:

Pattern BARBER found at position 17 in the text.

Solution

Definition: - [2 Marks]

Explanation & Example: - [4+4 Marks]

Definition of Heap

A Heap is a specialized tree-based data structure that satisfies the heap property. It is a

complete binary tree, meaning all levels are fully filled except possibly the last, which is

filled from left to right.

There are two types of heaps:

- Max-Heap: The value of each node is greater than or equal to its children.

- Min-Heap: The value of each node is less than or equal to its children.

Properties of Heap

1. Shape Property:

 - Heap is always a complete binary tree ensuring efficient storage and minimal height.

2. Heap Order Property:

 - In Max-Heap, the parent node has a value greater than or equal to its children.

 - In Min-Heap, the parent node has a value less than or equal to its children.

3. Efficient Operations:

 - Insertion, deletion, and access to the root element (max or min) are done in O(log n) time.

Representation of Heap

Heaps are commonly implemented using arrays. The relationships between parent and child

nodes can be defined as:

- Parent(i) = (i - 1) // 2

- Left Child(i) = 2 * i + 1

- Right Child(i) = 2 * i + 2

Example (Max-Heap)

Array Representation: [50, 30, 40, 10, 5, 20, 30]

Tree Representation:

 50

 / \

 30 40

 / \ / \

 10 5 20 30

Q7

 (a). Construct the Minimum Cost Spanning Tree using Kruskal’s algorithm

Given Graph:

Vertices: A, B, C, D, E, F, G, H

Edges (with weights):

Edge Weight

A-B 3

A-D 5

B-C 2

B-E 6

C-F 7

D-E 7

E-F 3

E-G 8

F-H 4

G-H 9

 Kruskal’s Algorithm Steps:

Sort edges by increasing weight.

Add edge if it doesn’t form a cycle.

Stop when n–1 edges are included (where n = number of vertices = 8, so we need 7 edges).

✅ Step-by-step Execution:

Sorted Edges:

Step Edge Weight Added? Reason

1 B–C 2 ✅ No cycle

2 A–B 3 ✅ No cycle

3 E–F 3 ✅ No cycle

4 F–H 4 ✅ No cycle

5 A–D 5 ✅ No cycle

6 B–E 6 ✅ No cycle

7 C–F 7 ❌ Forms a cycle

8 D–E 7 ❌ Forms a cycle

9 G–H 9 ✅ No cycle

✅ Minimum Cost Spanning Tree (Selected Edges):

B–C (2)

A–B (3)

E–F (3)

F–H (4)

A–D (5)

B–E (6)

G–H (9)

Total Cost = 2 + 3 + 3 + 4 + 5 + 6 + 9 = 32

7.b – Huffman Tree Construction and Encoding/Decoding

Given:

Character A B C D

Probability 0.4 0.1 0.2 0.15

Step 1: Build Huffman Tree

1. List all probabilities (ascending):

o B (0.1), D (0.15), C (0.2), A (0.4)

2. Combine lowest two nodes:

o B (0.1) + D (0.15) → Node1 (0.25)

3. New list:

o Node1 (0.25), C (0.2), A (0.4)

4. Combine lowest two:

o C (0.2) + Node1 (0.25) → Node2 (0.45)

5. New list:

o Node2 (0.45), A (0.4)

6. Combine remaining:

o A (0.4) + Node2 (0.45) → Root (0.85)

Step 2: Assign Binary Codes

 Root

o Left: A → 0

o Right: Node2

 Left: C → 10

 Right: Node1

 Left: B → 110

 Right: D → 111

Final Codes:

Character Huffman Code

A 0

B 110

C 10

D 111

Step 3: Encode ABAC ABAD

Text: ABAC ABAD

Encoding:

 A → 0

 B → 110

 A → 0

 C → 10

(space is ignored or handled separately)

 A → 0

 B → 110

 A → 0

 D → 111

Encoded String:

0110010010011001111

Step 4: Decode 1000101111001010

Encoded: 1000101111001010

Using tree:

 1 → next is 0 → 10 = C

 0 = A

 0 = A

 1 → next 0 → 10 = C

 1 → next 1 → next 1 = 111 = D

 0 = A

 1 → next 1 → 0 = 110 = B

Decoded String: CAACDAB

Solution :

Graph Vertices: A, B, C, D, E, F

Edges and Weights: A→B=2, A→D=3, A→E=5, B→C=9, B→E=1, C→F=3, D→F=7,

E→F=4

Initialize distances from A: A=0, B=∞, C=∞, D=∞, E=∞, F=∞; Visited = ∅

Iteration 1 (Current = A): Update B=2, D=3, E=5

Iteration 2 (Current = B): Update C=11, E=3 (better path via B)

Iteration 3 (Current = D): Update F=10

Iteration 4 (Current = E): Update F=7 (better path via E)

Iteration 5 (Current = F): Update C=10 (better path via F)

Iteration 6 (Current = C): All neighbours visited. Done.

Solution :

Definition: The transitive closure of a directed graph G = (V, E) is a graph G = (V, E) such

that for every pair of vertices (u, v), there is an edge (u, v) in E if and only if there is a path

from u to v in G.

Warshall’s Algorithm:

For an adjacency matrix A of size n × n:

for k from 1 to n:

for i from 1 to n:

for j from 1 to n:

A[i][j] = A[i][j] OR (A[i][k] AND A[k][j])

Solution :

i) P Problem (Polynomial-Time Problems)

A problem is in P if it can be solved by a deterministic Turing machine in polynomial time.

Examples: Sorting a list using merge sort → Time: O(n log n)

Finding the shortest path using Dijkstra’s algorithm → Time: O(V²)

Matrix multiplication

ii) NP Problem (Nondeterministic Polynomial Time)

A problem is in NP if a proposed solution can be verified in polynomial time.

 Examples: Sudoku puzzle: Hard to solve, easy to verify.

Hamiltonian Path: Is there a path that visits each vertex exactly once?

iii) NP-Complete Problem

A problem is NP-Complete if: 1. It is in NP. 2. Every problem in NP can be reduced to it in

polynomial time.

Examples: Travelling Salesman Problem (Decision version)

3-SAT Problem,Subset Sum Problem

iv) NP-Hard Problem

A problem is NP-Hard if every problem in NP can be reduced to it in polynomial time, but it

may not be in NP.

Examples: Halting Problem (undecidable)

Optimization version of Travelling Salesman Problem

Solution :

Backtracking is a problem-solving technique where we build a solution incrementally, and

if we find that the current path cannot lead to a solution, we backtrack and try a different

path.

We will explore each element (Include or Exclude it):

Step Current Subset Sum Decision

1 {} 0 Start

2 {1} 1 Include 1

3 {1, 2} 3 Include 2

4 {1, 2, 5} 8 Include 5

5 {1, 2, 5, 6} 14 > 9 → Backtrack

6 {1, 2, 5, 8} 16 > 9 → Backtrack

7 {1, 2, 6} 9 Valid Subset

8 {1, 5} 6 Continue

9 {1, 5, 6} 12 > 9 → Backtrack

10 {1, 8} 9 Valid Subset

11 {2} 2 Try this path

12 {2, 5} 7 Try more

13 {2, 5, 6} 13 > 9 → Backtrack

14 {2, 5, 8} 15 > 9 → Backtrack

15 {2, 6} 8 Continue

16 {2, 6, 8} 16 > 9 → Backtrack

17 {2, 8} 10 > 9 → Backtrack

18 {5, 6} 11 > 9 → Backtrack

19 {5, 8} 13 > 9 → Backtrack

20 {6, 8} 14 > 9 → Backtrack

Valid Subsets Found:

{1, 2, 6}

{1, 8}

Solution :

N - Queens problem is to place n - queens in such a manner on an n x n chessboard that no

queens attack each other by being in the same row, column or diagonal.

It can be seen that for n =1, the problem has a trivial solution, and no solution exists for n =2

and n =3. So first we will consider the 4 queens problem and then generate it to n - queens

problem.

Given a 4 x 4 chessboard and number the rows and column of the chessboard 1 through 4

The implicit tree for 4 - queen problem for a solution (2, 4, 1, 3) is as follows:

Solution :

Here’s a step-by-step solution for the 0/1 Knapsack Problem using the Branch and Bound

method based on the given instance:

 Problem Statement

Item Weight Value

1 4 40

2 7 42

3 5 25

4 3 12

 Capacity of Knapsack = 10

 Step 1: Calculate Value/Weight Ratio

To prioritize items in bounding, sort them by value-to-weight ratio (v/w):

Item Weight Value v/w (Value/Weight)

1 4 40 10.00

2 7 42 6.00

3 5 25 5.00

4 3 12 4.00

So we reorder as: Item 1, Item 2, Item 3, Item 4

 Step 2: Branch and Bound (Best-First Search Approach)

Each node includes:

Level (item number)

Current profit

Current weight

Bound (maximum possible profit from that node)

 Bounding Function:

Used to compute upper bound of maximum profit in subtree rooted at current node:

Include items greedily until capacity is full or fractionally if needed.

 Step 3: Execution Table

Node Level Profit Weight Bound Action

N0 -1 0 0 94 Root Node

N1 0 40 4 85 Include I1

N2 0 0 0 85 Exclude I1

N3 1 40 4 85 From N1

N4 1 82 11 - Invalid (wt>10)

N5 1 40 4 85 Exclude I2

N6 2 65 9 77 Include I3 Best Feasible

N7 2 40 4 64 Exclude I3

N8 3 52 7 - Include I4

N9 3 40 4 - Exclude I4

Optimal Solution:

Maximum profit = 65

Selected Items:

 Item 1 (weight 4, value 40)

 Item 3 (weight 5, value 25)

Total weight = 9, which is within capacity.

