

DATABASE MANAGEMENT SYSTEMS – BCS403
FOURTH SEMESTER B.E. EXAMINATION, JUNE/ JULY 2025

VTU EXAM SOLUTION

Module-1

Q.1​
 a. Explain the types of attributes with example.​

Attribute Type Description Example

Simple (Atomic) Cannot be divided further Age, Name

Composite Can be divided into subparts Name → First, Last

Derived Computed from other attributes Age (from DOB)

Multi-valued Multiple values for a single entity Phone_Numbers,
Emails

Single-valued Only one value for each entity Roll_Number

Stored Physically stored in DB Date_of_Birth

Key Uniquely identifies each entity Student_ID, Emp_ID

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ (4 Marks)

b. Define database. Explain the main characteristics of the database approach.

Definition - 2Marks

Characteristics - 3Marks

​
Database is a collection of related data. By data, we mean known facts that can be recorded
andthat have implicit meaning. For example, consider the names, telephone numbers, and
addresses of the people you know.

A database has the following implicit properties:

▪ It represents some aspect of the real world, sometimes called the miniworldor the universe

of discourse (UoD). Changes to the miniworld are reflected in the database.

▪ It is a logically coherent collection of data, to which some meaning can be attached.

▪ It is designed, built, and populated with data for a specific purpose.It has an intended group

of users and some preconceived applications in which these users are interested.

 characteristics of the database approach

The main characteristics of the database approach versus the file-processing approach are the
following:

1. Self-describing nature of a database system

2. Insulation between programs and data

3. data abstraction

4. Support of multiple views of the data

5. Sharing of data and multiuser transaction processing

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ (4 Marks)

c. Show the ER diagram for an EMPLOYEE database by assuming your own entities (minimum
4) attributes and relationships, mention cardinality ratios wherever appropriate. ​ (8 Marks)

Q.2​
 a. Describe the three schema architecture. ​ (4 Marks) ​

​ ​ ​ ​ ​ ​ ​ ​ ​

b. Explain the component models of DBMS and their interaction with the help of diagram.​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ (4 Marks)

c. Design ER diagram for a university database by assuming your own entities (4). Mention
primary key constraints and relationships.​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ (8 Marks)

Module-2

Q.3

a. Explain relational model constraints.​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ (6 Marks)

b. Explain the characteristics of relations with suitable example for each.​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ (6 Marks)

c. Considering the following schema:​
 Sailors(sid, sname, rating, age)​
 Boats(bid, bname, color)​
 Reserves(sid, bid, day)

Write a relational algebra queries for the following:​
 i) Find the names of sailors, who have reserved red and a green boat​
 ii) Find the names of sailors who have reserved a red boat​
 iii) Find the names of sailors who have reserved a red or green boat​
 iv) Find the names of sailors who have reserved all boats​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ (8 Marks)

i)RedBoats ← π[bid](σ[color='red'](Boats))

GreenBoats ← π[bid](σ[color='green'](Boats))

RedSailors ← π[sid](Reserves ⨝ RedBoats)

GreenSailors ← π[sid](Reserves ⨝ GreenBoats)

Answer ← π[sname]((RedSailors ∩ GreenSailors) ⨝ Sailors)

ii)RedBoats ← σ[color='red'](Boats)

Answer ← π[sname]((Reserves ⨝ RedBoats) ⨝ Sailors)

iii)RedBoats ← σ[color='red'](Boats)

GreenBoats ← σ[color='green'](Boats)

RedGreenBoats ← RedBoats ∪ GreenBoats

Answer ← π[sname]((Reserves ⨝ RedGreenBoats) ⨝ Sailors)

iv)AllBoats ← π[bid](Boats)

SailorBoat ← π[sid, bid](Reserves)

Answer ← π[sname]((SailorBoat ÷ AllBoats) ⨝ Sailors)

OR

Q.4​
 a. Explain the steps to convert the basic ER model to relational Database schema.​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ (6 Marks)

b. Explain Unary relational operations with example.​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ (6 Marks)

c.​
 Consider the relation schema Employee database.

EMPLOYEE (Fname, Minit, Lname, SSN, Bdate, Address, Sex, Salary, Super_SSN, Dno)​

DEPARTMENT (Dname, Dnumber, Mgr_SSN, Mgr_start_date)​

PROJECT (Pname, Pnumber, Plocation, Dnum)​

WORKS_ON (Essn, Pno, Hours)​

DEPENDENT (Essn, Dependent_name, Sex, Bdate, Relationship)​

Write relational algebra queries for the following:​
 i) Retrieve the name and address of all employees who work for the ‘research’ department.​
 ii) List the names of all employees with 2 or more dependents.​
 iii) Find the names of employees who work on all the projects controlled by department number
iv) List the names of employees who have no dependents.​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ (8 Marks)

i)Result ← π Fname, Minit, Lname, Address (

 σ Dname='Research' (DEPARTMENT) ⨝ EMPLOYEE.Dno = DEPARTMENT.Dnumber
(EMPLOYEE)

)

ii)Dependent_Count ← γ Essn, COUNT(Dependent_name)→DepCount (DEPENDENT)

Result ← π Fname, Minit, Lname (

 (σ DepCount ≥ 2 (Dependent_Count)) ⨝ EMPLOYEE.SSN = Dependent_Count.Essn

)

iii)Proj_D ← π Pnumber (σ Dnum = 5 (PROJECT))

Emp_Proj ← π Essn, Pno (WORKS_ON)

Result ← π Fname, Minit, Lname (

 EMPLOYEE ⨝ SSN = Essn (

 (γ Essn (Emp_Proj ÷ Proj_D))

)

)

iv)Emp_No_Dep ← π SSN (EMPLOYEE) − π Essn (DEPENDENT)

Result ← π Fname, Minit, Lname (

 σ SSN ∈ Emp_No_Dep (EMPLOYEE)

)

Module – 3

Q.5​
 a. What is the need for normalization? Explain second and third normal form with
example.​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ (6 Marks)

Answer:

Normalization of data can be considered a process of analyzing the given relation
schemas based on their FDs and primary keys to achieve the desirable properties of (1)
minimizing redundancy and (2) minimizing the insertion, deletion, and update anomalies.

The normalization procedure provides database designers

•​ A formal framework for analyzing relation schemas based on their keys and on the
functional dependencies among their attributes

•​ A series of normal form tests that can be carried out on individual relation schemas
so that the relational database can be normalized to any desired degree

2NF:
•​ A second normal is a method of arranging attributes semantically (logically) based

on the constraints 1) a relation must be in first normal form and 2) relation should
not contain any partial dependency.

•​ No non-prime attribute (attribute which are not part of any candidate key) is
dependent on any proper subset of any candidate key of the table.

•​ The partial dependency - is the proper subset of candidate key determines
non-primary attribute in a relation.

•​ Every non-key attribute is fully functionally dependent on the primary key. Thus, no
non-key attributes are functionally dependent on the part (but not all) of the primary
key. That means, no partial dependency exists.

•​ Note: If a key is single attribute, then it is always in 2nd Normal form.
 2NF - Decomposition
1.​ If a data item is fully functionally dependent on only a part of the primary

key, move that data item and that part of the primary key to a new table.

2.​ If other data items are functionally dependent on the same part of the key,
place them in the new table also

3.​ Make the partial primary key copied from the original table the primary
key for the new table. Place all items that appear in the repeating group in
a new table

Example 1 (Not 2NF)

Scheme � {Title, PubId, AuId, Price, AuAddress}

1.​ Key � {Title, PubId, AuId}

2.​ {Title, PubId, AuID} � {Price}

3.​ {AuID} � {AuAddress}
4.​ AuAddress does not belong to a key

5.​ AuAddress functionally depends on AuId which is a subset of a key
 Example 1 (Convert to 2NF)

Old Scheme � {Title, PubId, AuId, Price, AuAddress}

New Scheme � {Title, PubId, AuId, Price}

New Scheme � {AuId, AuAddress}

3NF:
This form dictates that all non-key attributes of a table must be functionally

dependent on a candidate key i.e. there can be no interdependencies
among non-key attributes.

For a table to be in 3NF, there are two requirements

•​ The table should be second normal form
•​ No attribute is transitively dependent on the primary key

Example (Not in 3NF)

Scheme � {Title, PubID, PageCount, Price }

1.​ Key � {Title, PubId}

2.​ {Title, PubId} � {PageCount}

3.​ {PageCount} � {Price}
4.​ Both Price and PageCount

 depend on a key hence 2NF

5. Transitively {Title, PubID} � {Price} hence not in 3NF
Example 1 (Convert to 3NF)

Old Scheme � {Title, PubID, PageCount, Price }

New Scheme � {PubID, PageCount, Price}

New Scheme � {Title, PubID, PageCount}

b. Outline constraints in SQL.​
 ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ (6 Marks)

Answer:

SQL Create Constraints

Constraints can be specified when the table is created with the CREATE TABLE
statement, or after the table is created with the ALTER TABLE statement.

Syntax

CREATE TABLE table_name (

​ column1 datatype constraint,

​ column2 datatype constraint,

​ column3 datatype constraint,

​);

SQL Constraints

SQL constraints are used to specify rules for the data in a table.Constraints are
used to limit the type of data that can go into a table. This ensures the accuracy
and reliability of the data in the table. If there is any violation between the
constraint and the data action, the action is aborted.

Constraints can be column level or table level. Column level constraints apply to
a column, and table level constraints apply to the whole table.

The following constraints are commonly used in SQL:

●​ NOT NULL - Ensures that a column cannot have a NULL value
●​ UNIQUE - Ensures that all values in a column are different
●​ PRIMARY KEY - A combination of a NOT NULL and UNIQUE. Uniquely

identifies each row in a table
●​ FOREIGN KEY - Prevents actions that would destroy links between tables
●​ CHECK - Ensures that the values in a column satisfies a specific condition
●​ DEFAULT - Sets a default value for a column if no value is specified

https://www.w3schools.com/sql/sql_notnull.asp
https://www.w3schools.com/sql/sql_unique.asp
https://www.w3schools.com/sql/sql_primarykey.asp
https://www.w3schools.com/sql/sql_foreignkey.asp
https://www.w3schools.com/sql/sql_check.asp
https://www.w3schools.com/sql/sql_default.asp

c. Identify the given Relation R(ABCDE) and its instance, check whether FDS given hold
or not. Give reasons.​
 FDS:​
 i) A → B​
 ii) B → C​
 iii) D → E​
 iv) CD → E

Answer:

Proof:

Q.6​
 a. What is Multivalued dependency? Explain 4NF and 5NF with suitable example.​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ (6 Marks)

Answer:

 Multivalued dependency:

A table is said to have multi-valued dependency, if the following conditions are
true,

•​ For a dependency A → B, if for a single value of A, multiple value of B

exists, then the table may have multi-valued dependency.
•​ Also, a table should have at-least 3 columns for it to have a multi-valued

dependency.
•​ And, for a relation R(A,B,C), if there is a multi-valued dependency between,

A and B, then B and C should be independent of each other.

If all these conditions are true for any relation(table), it is said to have multi-valued
dependency

4NF:
A relation schema R is in 4NF with respect to a set D of functional and multivalued
dependencies if for all multivalued dependencies in D+ of the form α →→ β,
where α ⊆ R and β ⊆ R, at least one of the following hold:

​ – α →→ β is trivial (i.e., β ⊆ α or α ∪ β = R)
​ – α is a super key for schema R

• If a relation is in 4NF it is in BCNF
Example (Not in 4NF)

Scheme � {MovieName, ScreeningCity, Genre)

Primary Key: {MovieName, ScreeningCity, Genre)

1.​ All columns are a part of the only candidate key, hence BCNF

2.​ Many Movies can have the same Genre

3.​ Many Cities can have the same movie

4.​ Violates 4NF

1.​ the table should not have any Multi-valued Dependency (or), if so, Move
the two multi-valued relations to separate tables

2.​ It should be in the Boyce-Codd Normal Form

3.​ Identify a primary key for each of the new entity.

Example 1 (Convert to 4NF)

Old Scheme � {MovieName, ScreeningCity, Genre}

New Scheme � {MovieName, ScreeningCity}

New Scheme � {MovieName, Genre}

5NF:
•​ Join dependencies constrain the set of legal relations over a schema R to those

relations for which a given decomposition is a lossless-join decomposition.
•​ Let R be a relation schema and R1, R2, ...,Rn be a decomposition of R. If R =

R1 Ս R2 Ս ... Ս Rn, we say that a relation r(R) satisfies the join dependency
*(R1, R2, ...,Rn) if:

 r = ΠR1(r) ΠR2 (r) ….. ΠRn (r)

 A join dependency is trivial if one of the Ri is R itself.
•​ A join dependency *(R1, R2) is equivalent to the multivalued

dependency R1 ∩ R2 →→ R2. Conversely, α →→ β is equivalent

to *(α Ս (R - β), α Ս β)
•​ However, there are join dependencies that are not equivalent to any

multivalued dependency.

b. Outline the informal design guidelines for relational schema.​
​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ (6 Marks)

Answer:

c. Consider relation R with the following functional dependency:​
 EMPPROJ (SSN, Pnumber, Hours, Ename, Pname, Plocation)

SSN, Pnumber → Hours​

SSN → Ename​

Pnumber → Pname, Plocation​

Is it 2NF? Verify? If no, give reason.

​ ​ ​ ​ ​ ​ ​ ​ ​ ​ ​ (8 Marks)

Answer:

A relation is in Second Normal Form (2NF) if:

1.​ It is in 1NF (no multivalued attributes), AND​

2.​ No partial dependency exists, i.e., no non-prime attribute is functionally dependent on a
part of a candidate key.

Candidate Key = {SSN, Pnumber}

Prime attributes = SSN, Pnumber

Non-prime attributes = Hours, Ename, Pname, Plocation

1.SSN, Pnumber → Hours

●​ Full key → attribute ⇒ Allowed

2.SSN → Ename

SSN is part of candidate key

Ename is a non-prime attribute

⇒ Partial Dependency ⇒ Violates 2NF

3.Pnumber → Pname, Plocation

Pnumber is part of candidate key

Pname, Plocation are non-prime attributes

⇒ Partial Dependency ⇒ Violates 2NF

The relation is not in 2NF.There are partial dependencies:

●​ SSN → Ename

●​ Pnumber → Pname, Plocation

These cause non-prime attributes to be dependent on part of a candidate key, which violates
2NF rules.

Q.7​
 a. Consider the following schema for a company database:​
 Employee (FName, LName, SSN, Address, Sex, Salary, Dno, Super_SSN)​
 Department (Dname, Dnumber, Mgr_SSN, Mgr_start_date)​
 Project (Pname, Pnumber, Plocation, Dnum)​
 WORKS_on (Essn, Pno, Hours)​
 DEPENDENT (Essn, Dependent_name, Sex, Bdate, Relationship)

Write the SQL queries for the following:​
 i) List the names of managers who have at least one dependent (use correlated
nested).​
 ii) Retrieve the name of each employee who has a dependent with the same first name
and is the same sex as the employee.​
 iii) For each project, retrieve the project number, project name, and the number of
employees who work on that project.​
 iv) Retrieve the SSN of all employees who work on project number 1, 2, or 3 (Use IN).​
 v) Find the sum of the salaries of all employees of the ‘Research’ department as well
as maximum salary, minimum salary, average salary in this department.

Answer:

I. List the names of managers who have at least one dependent (use correlated nested)

SELECT E.FName, E.LName FROM Employee E

WHERE E.SSN IN (

 SELECT Mgr_SSN

 FROM Department D

 WHERE EXISTS (

 SELECT 1

 FROM Dependent Dep

 WHERE Dep.Essn = D.Mgr_SSN

));

ii) Retrieve the name of each employee who has a dependent with the same first name
and is the same sex as the employee.

SELECT E.FName, E.LName

FROM Employee E

JOIN Dependent D ON E.SSN = D.Essn

WHERE E.FName = D.Dependent_name AND E.Sex = D.Sex;

 iii) For each project, retrieve the project number, project name, and the number of
employees who work on that project.

SELECT P.Pnumber, P.Pname, COUNT(W.Essn) AS Num_Employees FROM Project P

LEFT JOIN WORKS_on W ON P.Pnumber = W.Pno

GROUP BY P.Pnumber, P.Pname;

 iv) Retrieve the SSN of all employees who work on project number 1, 2, or 3 (Use IN).

SELECT DISTINCT Essn

FROM WORKS_on WHERE Pno IN (1, 2, 3);

 v) Find the sum of the salaries of all employees of the ‘Research’ department as well as
maximum salary, minimum salary, average salary in this department.

SELECT

 SUM(E.Salary) AS Total_Salary,

 MAX(E.Salary) AS Max_Salary,

 MIN(E.Salary) AS Min_Salary,

 AVG(E.Salary) AS Avg_Salary

FROM Employee E

JOIN Department D ON E.Dno = D.Dnumber

WHERE D.Dname = 'Research';

7b.Why concurrency control is needed? Demondtrate with an example? 10 Marks

Answer:

​

8a.Consider the following schedule.The actions are listed in the order they are scheduled
and prefixed with the transaction name.

S1:T1:R(X),T2:R(X),T1:W(Y),T2:W(Y),T1:R(Y),T2:R(Y)

S2:T3:W(X),T1:R(X),T1:W(Y),T2:R(Z),T2:W(Z),T3:R(Z)

For each schedule answer the following:

i)What is the schedule precedence graph for the schedule?

ii)Is the schedule conflict serializable?If so what are all the conflicts equivalent serial
schedules?

iii)Is the schedule view serializable?If so what are all the view equivalent serial
schedules? 10 Marks

Answer:

For schedule S1, it is conflict serializable with equivalent serial schedules T1
followed by T2 (T1 -> T2) or T2 followed by T1 (T2 -> T1). For schedule S2, it
is not conflict serializable due to the cycle T1 -> T3 -> T2 -> T1. Both
schedules are view serializable.

Schedule S1

​​ Precedence Graph:
●​ The precedence graph for S1 has two transactions: T1 and T2.
●​ There is an edge from T1 to T2 because T1 reads X before T2 reads X (T1 -> T2).
●​ There is an edge from T1 to T2 because T1 writes Y before T2 reads Y (T1 ->

T2).
●​ There is an edge from T1 to T2 because T1 writes Y before T2 writes Y (T1 ->

T2).
●​ There is an edge from T2 to T1 because T2 reads X before T1 reads X.
●​ There is an edge from T2 to T1 because T2 writes Y before T1 writes Y.
●​ There is an edge from T2 to T1 because T2 reads Y before T1 reads Y.
●​ The precedence graph contains a cycle: T1 -> T2 -> T1.
●​ T1 -> T2 (and vice versa) is also present due to the conflicting R/W or W/R

operations on X and Y between the two transactions.
●​ Since there's a cycle, S1 is not conflict serializable.
●​ However, S1 is view serializable. The view equivalent serial schedules are T1 ->

T2 and T2 -> T1.
​​ Conflict Serializability:

●​ S1 is not conflict serializable because its precedence graph contains a
cycle.

●​ The equivalent serial schedules are T1 -> T2 or T2 -> T1.
​​ View Serializability:

●​ S1 is view serializable because it can be transformed into a serial
schedule without changing the final state of the data items. The two serial
schedules T1 -> T2 and T2 -> T1 would result in the same final values for
X and Y.

Schedule S2

​​ Precedence Graph:
●​ The precedence graph for S2 has three transactions: T1, T2 and T3.
●​ There is an edge from T3 to T1 because T3 writes X before T1 reads X

(T3 -> T1).
●​ There is an edge from T1 to T2 because T1 writes Y before T2 reads Z

(T1 -> T2).
●​ There is an edge from T2 to T3 because T2 writes Z before T3 reads Z

(T2 -> T3).
●​ There is a cycle: T1 -> T2 -> T3 -> T1.
●​ Since there's a cycle, S2 is not conflict serializable.

​​ Conflict Serializability:
●​ S2 is not conflict serializable because its precedence graph contains a

cycle.
​​ View Serializability:

●​ S2 is view serializable because it can be transformed into a serial
schedule. The view equivalent serial schedules can be any permutation of
T1, T2, and T3: T1 -> T2 -> T3, T1 -> T3 -> T2, T2 -> T1 -> T3, T2 -> T3
-> T1, T3 -> T1 -> T2, or T3 -> T2 -> T1.

b.Explain triggers with example write a trigger in SQL to call a procedure
“Inform_Supervisor” whenever an employees salary is greater than the salary if his or
her direct supervisor in the COMPANY database. 10Marks

Answer:

Whenever an employee’s salary is greater than their supervisor's salary, a procedure
Inform_Supervisor must be called.

Employee Table:

Employee(FName, LName, SSN, Address, Sex, Salary, Dno, Super_SSN)

SSN: Employee ID

Super_SSN: Supervisor's SSN

Salary: Employee’s salary

Procedure:

CREATE PROCEDURE Inform_Supervisor(empSSN CHAR(9))

BEGIN

 END;

Trigger Logic
●​ On UPDATE of an employee’s salary
●​ If NEW.Salary > Supervisor’s Salary, then call

Inform_Supervisor(NEW.SSN)

DELIMITER //

CREATE TRIGGER Check_Salary_Increase

AFTER UPDATE ON Employee

FOR EACH ROW

BEGIN

 DECLARE super_salary DECIMAL(10,2);

 -- Get supervisor's salary

 SELECT Salary INTO super_salary

 FROM Employee

 WHERE SSN = NEW.Super_SSN;

 -- If employee's salary is now greater than supervisor's,
call procedure

 IF NEW.Salary > super_salary THEN

 CALL Inform_Supervisor(NEW.SSN);

 END IF;

END;

//

DELIMITER ;

Q.9 a. Describe the two - phase locking protocol for concurrency control
provide example to illustrate how it ensures serializability in transaction
schedule

The Two-Phase Locking (2PL) Protocol is a key technique used in DBMS to manage how
multiple concurrent transactions access and modify data, with two phases: growing (where all
locks are acquired) and shrinking (where locks are released)

Two Phases:

1.​ Growing Phase (Expanding Phase):
○​ Transaction can acquire locks (shared or exclusive)
○​ Cannot release any locks
○​ Transaction grows by acquiring more locks

2.​ Shrinking Phase (Contracting Phase):
○​ Transaction can release locks
○​ Cannot acquire new locks
○​ Transaction shrinks by releasing locks

How 2PL Ensures Serializability:

The Two-Phase Locking Protocol ensures serializability by controlling when locks can be
acquired and released, ensuring that while one transaction is accessing a data item, other
transactions cannot modify that particular data item VaiaExploredatabase.

Example: Consider two transactions T1 and T2:

T1: Read(A), Write(A), Read(B), Write(B)

T2: Read(A), Write(A), Read(B), Write(B)

With 2PL:

T1: Lock-S(A), Read(A), Lock-X(A), Write(A), Lock-S(B), Read(B),

 Lock-X(B), Write(B), Unlock(A), Unlock(B)

T2: Must wait for T1 to release locks before proceeding

https://www.geeksforgeeks.org/dbms/two-phase-locking-protocol/
https://www.vaia.com/en-us/textbooks/computer-science/fundamentals-of-database-systems-4-edition/chapter-18/problem-1-what-is-the-two-phase-locking-protocol-how-does-it/
https://www.exploredatabase.com/2018/04/two-phase-locking-2pl-protocol-in-concurrency-control-dbms.html

This ensures conflict serializability by preventing concurrent access to shared data items during
critical operations.

b. Explain the characteristics of NOSQL system

Key Characteristics:

1.​ Schema Flexibility: NoSQL databases don't require a fixed schema, allowing dynamic
addition of fields

2.​ Horizontal Scalability: NoSQL databases like MongoDB are known for flexibility,
scalability, and high performance, widely used by companies like Adobe, Uber, IBM, and
Google for big data applications MongoDB CRUD Operations - GeeksforGeeks

3.​ High Performance: Optimized for specific data models and access patterns
4.​ Distributed Architecture: Built for distributed computing environments
5.​ CAP Theorem Trade-offs: Choose between Consistency, Availability, and Partition

tolerance
6.​ Types: Document stores, Key-value stores, Column-family, Graph databases
7.​ BASE Properties: Basically Available, Soft state, Eventually consistent (vs ACID)

OR

Q.10 a. Explain binary locks and shared lock with algorithm

Binary Locks:

●​ Simple locking mechanism with two states: LOCKED (1) or UNLOCKED
(0)

●​ Only one transaction can hold the lock at a time

Algorithm for Binary Locks:

LOCK(X):

 While Lock(X) = 1 do

 Wait

 Lock(X) = 1

UNLOCK(X):

https://www.geeksforgeeks.org/mongodb-crud-operations/

 Lock(X) = 0

Shared Locks:

●​ Multiple transactions can read simultaneously
●​ Exclusive access for write operations

Types:

1.​ Shared Lock (S-lock): For read operations
2.​ Exclusive Lock (X-lock): For write operations

Algorithm for Shared/Exclusive Locks:

LOCK-S(X):

 If Lock(X) = "unlocked" then

 Lock(X) = "read-locked"

 no_of_reads(X) = 1

 Else if Lock(X) = "read-locked" then

 no_of_reads(X) = no_of_reads(X) + 1

 Else wait

LOCK-X(X):

 If Lock(X) = "unlocked" then

 Lock(X) = "write-locked"

 Else wait

UNLOCK(X):

 If Lock(X) = "write-locked" then

 Lock(X) = "unlocked"

 Else if Lock(X) = "read-locked" then

 no_of_reads(X) = no_of_reads(X) - 1

 If no_of_reads(X) = 0 then

 Lock(X) = "unlocked"

b. Explain MongoDB data model, CRUD operations and distributed system
characteristics

Characteristics

MongoDB Data Model: MongoDB stores data in flexible, JSON-like documents rather than
traditional relational tables.

●​ Document-based: Data stored in BSON (Binary JSON) format
●​ Collections: Groups of documents (similar to tables)
●​ Flexible Schema: Documents in same collection can have different structures
●​ Embedded Documents: Support for nested data structures
●​ Arrays: Native support for array data types

CRUD Operations:

MongoDB supports four primary CRUD operations: Create (using insertOne() or
insertMany()), Read, Update, and Delete operations.

Create:​
 javascript​
db.collection.insertOne({name: "John", age: 30})

1.​ db.collection.insertMany([{...}, {...}])​

Read:​
 javascript​
db.collection.find({name: "John"})

2.​ db.collection.findOne({_id: ObjectId(...)})​

Update:​
 javascript​
db.collection.updateOne({name: "John"}, {$set: {age: 31}})

3.​ db.collection.updateMany({}, {$inc: {age: 1}})​

Delete:​
 javascript​
db.collection.deleteOne({name: "John"})

4.​ db.collection.deleteMany({age: {$lt: 18}})​

Distributed System Characteristics:

1.​ Horizontal Scaling (Sharding): Distributes data across multiple servers
2.​ Replication: Master-slave configuration for high availability
3.​ Auto-failover: Automatic switching to backup servers
4.​ Load Balancing: Distributes queries across replica sets
5.​ Consistency Models: Configurable read/write concerns
6.​ Partition Tolerance: Continues operation despite network failures
7.​ Geographic Distribution: Support for multi-region deployments

​

​

	SQL Create Constraints
	Syntax

	Trigger Logic
	Characteristics

