S -
)) QAAUULSIILE , BCS403
i BCS403
5 | c. Consider the relation schema Employee database. 8 | L3 | CO3
F ourtli emester B.E./B.Tech. Degree Examination, June/July 2025 3 EMPLOYEE éFﬂameS ;Minit, Lname , SSn , Bdates , Address , Sex , Salary
uper_SSn, Dno)
Database Management Systems DEPARTMENT (Dname , Dournber . Mgr SSn, Mgr_start_date)
_ ' PROJECT (Pname , PNumber . Plocation , Dnum}
Max. Marks: 100 ' WORKS_ON (Essn , Pno , Hours‘
D / ;pt n
e Note: 1. Answer any FIVE full questions, choosing ONE full question from each module. : £ L}:LMID ENT l(Llsqnb Dependent_name sex, Bdate , Relationship)
2. M : Maris , L: Bloom’s level , C: Course outcomes. ' i Mk m_“m”a algebra queries for t}}e following :
: ' 1) Retrieve the name and address of all emp}oy’cs who work for the
Module — 1 M|L| C j ‘Research’ department.
i ist i ¥ > .
Q.1 | a. | Explain the types of attributes with example. 4 | L2 | COl | 11}\ -ist the names of all employeer with 2 or more dependents. -
! | iif} Find the names of employees w ho work on all the projects controlled
b. | Define database. Explain the main characteristics of the database approach. | 8 | L2 | COl | . by department number 5. |
- 1v) List the names of employees who have no dependents.
c. | Show the ER diagram for an EMPLOYEE database by assuming your own | 8 | L3 | CO2 : N ‘ ;
entities (minimum 4) attributes and relationships, mention cardinality ratios : e . ._\1 (}-{dl{le = 3 .
wherever appropriate. Q5|4 | \W‘};]at IS thelneed for normalization? Explain second and third normal form | 6 | L2 | CO4
- with examples.
4 I
GR 58 : ;
Il 16 N e * 3
Q.2 |a. 5 Describe the three schema architecture. 4 | L2 | COt b. | Outline constraints in SQL. . 6 ’ L2 CO1
; . derri T vor Relion iAo 1 ' :
b. | Explain the component models of DBMS and their interaction with the help | 8 | L2 | CO1 : G :?v ity ﬂlf given Relation R(ABCDE) and its instance, check whether | 8 | L3 | CO4
| of didoriin s { FDS given hold or not. Give reasons. iy
| gram. |1) A= B i) B-»C #)i{B:>E iv) CD—-E B
| : | s i -
¢.-| Design ER dk agram for a university database by assuming your own entities | 8 | L3 | CO2 ! : : | 1 ; C I|) : k ~I -
| {4). Mention primary key , constraints and reiationships. e] ' ai 372 | 4| :i” L O :
| A ‘ G i e |d Cq
g | g S C O
Module — 2 | 4 | 19 Lo | da e o
- 3 - | ‘
Q.3 | a. | Explain relational model constraints. 6 | L2 | COl | a2 |0 [cs [da] “—“—J aft \,\B“P‘@‘l : %
S i - : l‘ﬁ nRE z o 3 ’(' ;
b. | Explain the characteristics of relations with suitable example for each. 6 | L2 | CO1 OR (,Pw o S : :
Q.6 | a. J What is Multivalued dependency? Explain 4‘\? and SNF with suitable | 6 | L2 | CO4
¢. | Considering the following schema : 8 | L3 | CO1 1 example.
Sailors (sid , sname , rating , age) ol ;
Boats (bid , bname , color) e b. | Outline the informal design guide Mes for reiational schema. 6 | L2 | CO4
Reserves (sid , bid , day) | '
Write a relational algebra queries for the following : - ¢. | Consider relation R with following function dependency : 8 | L3 | CO4
i) Find the names of sailors, who have reserved red and a green boat. EMPPRQOJ (SSn , Pnumber ., Hours , Ename , Pname |, Plocation)
ii) Find the names of sailors who have reserved a red boat. . 3SN |, Pnumber — Hours,
i11) Find the names of sailors who have reserved a red or green boat. SSN — Ename
iv) Find the names of sailors who have reserved all boats. ‘ : Pnumber — Pname , Plocation.
- Is it ZNF? Verify? If no give reasor:.
OR L e T
Q.4 | a. | Explain the steps to convert the basic ER model to relational Database | 6 | L2 | CO1
schema.
b. | Explain Unary relational operations with example. 6 | L2 | CO1
1 of3 20f3

BCS403

Moduie - 4

. | Consider the following schema for a cempany database :

Employee { {FName , LName , SSi1, Adderss , Sex , Salary ., Dno ,
Super_SSn)

Department (Dname ., Dnumber . ragr_SSn, mgr st _date)

Project (Pname , Pnuiber , Plocation, Dnurn)

WORKS on(Essn, Pno, Houm)

DEPENDENT (Essn, Dependent name , Sex , Bdate, relationship).

Write the SQL queries for the following :

1) List the names of managers who have atleast one dependent (use
correlated nested).

1) Retrieve the name of each employee who has a dependent with the
same first name and is the same sex as the employee.

i) Tor each project retrieve the project number , project name and thie
number of employees who work on that project.

iv) Retrieve the SSN of ali employees who work on preject number 1, 2
or 3. (Use IN).

v) Find the sum of the salaries of all employees of the “Research’
demm‘r‘e it as well as maximum salary , minimum salary , average
salary in this department.

110

L3

CO3

—
ot
o

Why concurrency control is needed? Demonstrate with an example.

I_J2

COs

OR

'k_

Consider the following schedule. The actions are listed in the order they are

scheduled and prefixed with the transaction name.

S1:Tl:R{X), Tz R(X) "I*l - W("{ o W("'-’) Tl R(Y) , T2 : R('H

S2:T3: W(X), T]:R(XK):k NM(Y), T2 REZ3 . P2 - W(Z) , T3 : R(B)

For each sciiedule answer d)e foi!o“ ing :

1) What is the precedence graph for the schedule?

ii) Is the schedule conflict_serializable? Ifso what are all the conflicts
equivalent serial schedules?

1) Is the schedule view serializable? [f so what are all the-view equivalent

serial schedules? CMRIT LIRRARY
BANGALORE - 560 Nz~

10

L3

COs

Explain triggers with example write a trigger in SQL to call a procedure
“Inform_Supervisor” whenever an employees salary is greater than the
salary of his or her direct supervisor in the CGMPANY database.

10

L3

COs5

Module -5

Q.9

Describe the two — phase locking protocol for concurrency control previde
example to iliustrate how it ensures serializability in transaction schedule.

10

L2

COsS

Explain the characteristics of NOSQL system.
§

10

L2

CO6

OR

. Q.10

Explain binary locks and shared lock with algorithm.

10

L2

Explain MecngoDB data model, CRUD opera—ﬁ(;ns and distributed system
characteristics. :

10

L2

Q.f 5

Lo

Q.1

DATABASE MANAGEMENT SYSTEMS - BCS403
FOURTH SEMESTER B.E. EXAMINATION, JUNE/ JULY 2025
VTU EXAM SOLUTION

Module-1

a. Explain the types of attributes with exampile.

Attribute Type

Simple (Atomic)

Composite

Derived

Multi-valued

Single-valued

Stored

Key

Description

Cannot be divided further

Can be divided into subparts

Computed from other attributes

Multiple values for a single entity

Only one value for each entity

Physically stored in DB

Uniquely identifies each entity

Example

Age, Name

Name — First, Last

Age (from DOB)

Phone_Numbers,
Emails

Roll_Number

Date_of Birth

Student_ID, Emp_ID

(4 Marks)

b. Define database. Explain the main characteristics of the database approach.
Definition - 2Marks

Characteristics - 3Marks

Database is a collection of related data. By data, we mean known facts that can be recorded
andthat have implicit meaning. For example, consider the names, telephone numbers, and
addresses of the people you know.

A database has the following implicit properties:

= It represents some aspect of the real world, sometimes called the miniworldor the universe
of discourse (UoD). Changes to the miniworld are reflected in the database.

= Itis a logically coherent collection of data, to which some meaning can be attached.

= It is designed, built, and populated with data for a specific purpose.lt has an intended group
of users and some preconceived applications in which these users are interested.
characteristics of the database approach

The main characteristics of the database approach versus the file-processing approach are the
following:

1. Self-describing nature of a database system
2. Insulation between programs and data

3. data abstraction

4. Support of multiple views of the data

5. Sharing of data and multiuser transaction processing

(4 Marks)

c. Show the ER diagram for an EMPLOYEE database by assuming your own entities (minimum
4) attributes and relationships, mention cardinality ratios wherever appropriate. (8 Marks)

i Fnama C_ﬁ_’) LnTuré:)
ErOEE e I L
(:__Edate Mame (:Adl:lreas Eﬂa.r_;.')

WORKS_FOR S

EMPLOVEE " Number_of_employees'—] DEPARTMENT |
\ i
\
CONTROLS
L
M N
WORKS_ON PROJECT |

Supervisor Supervises 1 -
1 &7 SUPERVISION > N (:T_ﬂ;j N

DEPENDENTS OF > & Numbx 1

M

DEPENDENT

N N
(oS Com> Caman> i

Q.2
a. Describe the three schema architecture. (4 Marks)

The Three-Schema Architecture

The goal of the three-schema architecture is to separate the user applications from the physical
database. In this architecture, schemas can be defined at the following three levels:

1. The internal level has an internal schema, which describes the physical storage strocture
of the database. The infernal schema uses a physical data model and describes the complete
details of data storage and access paths for the database.

2. The conceptual level has a conceptual schema, which describes the structure of the whole
database for a commmmity of users. The conceptual schema hides the details of physical
storage struchures and concentrates on describing entities, data types, relationships, user
operations, and constraints. Usually, a representational data model is used to describe the
conceptual schema when a database system 1s implemented.

3. The external or view level includes a mumber of extermal schemas or user views. Each
external schema describes the part of the database that a particular user group is interested in
and hides the rest of the database from that vser group. Each external schema is typically
implemented using a representational data model. possibly based on an external schema
design 1n a high-level data model

End Users
External Level e . External
View ew
External/Conceptual
Mapping
Conceptual Level Conceptual Schema
Conceptual/Internal
Mappin
PpIng Y
Internal Level | Internal Schema

8@

Stored Database

b. Explain the component models of DBMS and their interaction with the help of diagram.
(4 Marks)

Casual Users Parameatnic Users

l

Applhcaton
PF-DQI'EI.I‘I'II'I‘IEIFS

DIDL
Statemsants

|I'It-EirEl.E.‘tl'-l’E

|(.ﬁppllcatlnn
Programs

4. ¥ Host
DL Duer:,r . Lan
- Quage
Compilar Compiler Precompiler Cormpilor
T
: v |
'l .
i Cluery DML Compiled
Optimizer Compiler L Transactons
- —
- L E i
I "= -
i -
. -
1 - -
1 -
' - -
1 s - DBA Commands,
! . .- Cueriea, and Transactiona
¥ P = -
. - - L Rusnitirms Stored
System ’ - PR Eatabase MData
Catalogs - —— - n}n:asscur Concurrency Conbrolf ansger
Data — - —— - - — 1 Backup/Recovery]
Dhctionary L Subsystemsa

. Stored DatabaseJ
Execuliomn: S —

Input Chetpust

Cuery and Transaction from Databass

The DBMS svstem structure is divided into two component modules.
Upper module - different users of the database environment and their mterfaces.
Lower module - internals of the DBMS responsible for storage of data and processing of

transaction.
UPPER Maodule
DBA staff
s Defines the database and makes changes to its description using the DDL and other
privileged commands.
s The DBMS catalog stores the description of the schemas that are processed by the
DLL compilers.

s The catalog includes names and sizes of the files. data tvpes, storage defails of each
file, mapping information among schemas and constraints.
Casual users (persons with occasional need
s Tltilize menu based or form based query mterfaces.
s The query compiler parses the queries, analysis the data elements for its comreciness
and converts it mnto internal form
s The internal query is passed through the query optimizer for rearrangement of
operations and elimination of redundancies.
Application programmer
s Writes programs in host languages.
& The precompiler separates the DML command and the host program
s DML commands are submitted to the DML compiler and the rest of the program to the
host compiler.
s The outputs of DML compiler and host compiler are linked by the compiled
transaction to form the executable codes which inchudes the calls to the runtime
database processor.

e

Parametric users

Supply the parameters (eg. account mumber and amount for bank withdrawal) using the
compiled transactions.

The privileged commands, executable query plan and the compiled transactions with the
runtime parameters are executed by the nuntime database processor. It refers the data
dictionary for updations.

LOWER module
Stored data nanager carry out the input and output operations between the disk and mam

memory and provides support for database management incliding management of access
paths and indexes.
* The file manager deals with the data structure options for storing in the database and
mamtains the metadata as well as indexes for various files.
* The interfacing between the main memory and disk 15 handled by the tuffer manager.
s The transaction manager is responsible for concurrency and crash recovery by

maintaining a record of all changes to the database.

c. Design ER diagram for a university database by assuming your own entities (4). Mention
primary key constraints and relationships.
(8 Marks)

Module-2

Q.3

a. Explain relational model constraints.
(6 Marks)

Relational ModelConstraints on databases can generally be divided into three main categories:

1. Constraints that are inherent in the data model known as inherent model-based constraints or implicit
constraints.

2. Constraints that can be directly expressed in the schemas of the data model. typically by specifying them in
the DDL known as schema-based constraints or explicit constraints.

3. Constraints that cannot be directly expressed in the schemas of the data model. and hence must be expressed
and enforced by the application programs or m some other way known as application-based or semantic
constraints or business rules.

The schema-based constraints include domain constraints, key constraints, constraints on NULLs, entity
integrity constraints, and referential integrity constraints.

1. Domain Constraints
v' Domain constraints specify that within each tuple. the value of each attribute A must be an atomic value
from the domain dom(A).
v The data types associated with domains typically include standard numeric data types for integers and real
numbers. Characters, Booleans, fixed-length strings, and variable-length strings are also available. as are
date. time, timestamp, and other special data types.

2. Key Constraints and Constraints on NULL Values

¥ TIn the formal relational model. a relation is defined as a set of tuples.

v' By definition. all elements of a set are distinet: hence. all tuples in a relation must also be distinct.

v This means that no two tuples can have the same combination of values for all their attributes. Usually,
there are other subsets of attributes of a relation schema R with the property that no two tuples in any
relation state r of R should have the same combination of values for these attributes.

¥ Suppose that we denote one such subset of attributes by SK: then for any two distinet tuples t1 and t2 in a
relation state r of R, we have the constramt that:
t1[SK] # t2[SK]

3. Relational Databases and Relational Database Schemas
v" A relational database is a collection of many relations.

v A relational database schema S is a set of relation schemas S = {R1, R2. Rm} and a set of
mtegrity constraints IC.
v A relational database state DB of S is a set of relation states DB = {rl. r2.xm} such that each ri is

a state of Ri and such that the rirelation states satisfy the integrity constraints specified in IC.

v' A relational database schema that we call COMPANY = {EMPLOYEE. DEPARTMENT.
DEPT LOCATIONS. PROJECT. WORKS ON. DEPENDENT}.

v When we refer to a relational database, we implicitly include both its schema and its current state. A
database state that does not obey all the integrity constraints is called not valid, and a state that
satisfies all the constraints in the defined set of integrity constramts IC 1s called a valid state.

4, Entity Integrity, Referential Integrity, and Foreign Keys

v" The entity integrity constraint states that no primary key value can be NULL. This is because the
primary key value is used to identify individual tuples in a relation.

v Key constraints and entity integrity constraints are specified on individual relations.

v The referential integrity constraint i1s specified between two relations and is used to maintam the
consistency among tuples in the two relations.

v Informally, the referential integrity constraint states that a tuple in one relation that refers to
another relation must refer to an existing tuple in that relation.

v For example. the attribute Dno of EMPLOYEE gives the department number for which each
employee works: hence, its value in every EMPLOYEE tuple must match the Dnumber value of
some tuple in the DEPARTMENT relation.

¥ The conditions for a foreign key. given below. specify a referential integrity constraint between the

two relation schemas R1 and R2.

. r . 9

v The salary of an employee should not exceed the salary of the employee’s supervisor and the
maximum mumber of hours an employee can work on all projects per week is 56. Such constraints
can be specified and enforced within the application programs that update the database. or by using a
general-purpose constraint specification language. Sometimes called as Semantic Integrity
constraint.

b. Explain the characteristics of relations with suitable example for each.
(6 Marks)

Char istics of Relati

1. Ordering of Tuples in a Relation
v" A relation is defined as a set of tuples. Mathematically. elements of a set have no order among them:
hence. tuples in a relation do not have any particular order.
v" Similarly, when tuples are represented on a storage device, they must be organized in some fashion,
and it may be advantageous, from a performance standpoint. to organize them in a way that depends
upon their content.

2. Ordering of Values within a Tuple

v" The order of attributes and their values is not that important as long as the correspondence between
attributes and values is maintained.

v A tuple can be considered as a set of (<attribute™ <value>) pairs, where each pair gives the value of
the mapping from an attribute Ai to a value vi from dom(Ai). The ordering of attributes is not
important. because the attribute name appears with its value,

3. Values and NULL:s in the Tuples
v" Each value in a tuple is an atomic value: that is, if is not divisible into components.
v An important concept is NULL wvalues, which are used to represent the values of attributes that may
be unknown or may not apply to a tuple.
v NULL values has several meanings. such as value unknown, value exists but is not available. or
attributedoes not apply to this tuple.

4. Interpretation (Meaning) of a Relation
v" Each tuple in the relation can then be interpreted as a fact or a particular mstance of the assertion.
v Each relation can be viewed as a predicate and cach tuple in that relation can be viewed as an
assertion for which that predicate is satisfied (i.e.. has value true) for the combination of values in it.
v Example: There exists a student having name Benjamin Bayer, having SSN 305-61-2435, having age
19, ete

c. Considering the following schema:
Sailors(sid, sname, rating, age)
Boats(bid, bname, color)
Reserves(sid, bid, day)

Write a relational algebra queries for the following:
i) Find the names of sailors, who have reserved red and a green boat
ii) Find the names of sailors who have reserved a red boat
i) Find the names of sailors who have reserved a red or green boat
iv) Find the names of sailors who have reserved all boats
(8 Marks)

i)RedBoats « [bid](c[color="red'](Boats))

GreenBoats « T[bid](o[color='green'](Boats))

RedSailors < Tr[sid](Reserves x RedBoats)

GreenSailors < Tr[sid](Reserves x GreenBoats)

Answer «— TT[sname]((RedSailors N GreenSailors) x Sailors)

ii)RedBoats < o[color="red'](Boats)

Answer — T1[shame]((Reserves x RedBoats) x Sailors)

iiilRedBoats < o[color="red"](Boats)

GreenBoats < o[color='green’](Boats)

RedGreenBoats < RedBoats U GreenBoats

Answer «— 11[sname]((Reserves x RedGreenBoats) x Sailors)

iv)AllBoats « Tr{bid](Boats)

SailorBoat < Tr[sid, bid](Reserves)

Answer — Tr[sname]((SailorBoat + AllBoats) x Sailors)

OR

Q4
a. Explain the steps to convert the basic ER model to relational Database schema.

(6 Marks)
b. Explain Unary relational operations with example.

(6 Marks)

C.
Consider the relation schema Employee database.

EMPLOYEE (Fname, Minit, Lname, SSN, Bdate, Address, Sex, Salary, Super_SSN, Dno)

DEPARTMENT (Dname, Dnumber, Mgr_SSN, Mgr_start_date)

PROJECT (Pname, Pnumber, Plocation, Dnum)

WORKS_ON (Essn, Pno, Hours)

DEPENDENT (Essn, Dependent_name, Sex, Bdate, Relationship)

Write relational algebra queries for the following:
i) Retrieve the name and address of all employees who work for the ‘research’ department.
ii) List the names of all employees with 2 or more dependents.
i) Find the names of employees who work on all the projects controlled by department number
iv) List the names of employees who have no dependents.
(8 Marks)

i)Result < 1 Fname, Minit, Lname, Address (

o0 Dname='Research' (DEPARTMENT) x EMPLOYEE.Dno = DEPARTMENT.Dnumber
(EMPLOYEE)

)

ii)Dependent_Count «— y Essn, COUNT(Dependent_name)—DepCount (DEPENDENT)

Result < 1 Fname, Minit, Lname (

(0 DepCount = 2 (Dependent_Count)) x EMPLOYEE.SSN = Dependent_Count.Essn

iii)Proj_D « 1 Pnumber (o Dnum =5 (PROJECT))

Emp_Proj < 1 Essn, Pno (WORKS_ON)

Result < 1 Fname, Minit, Lname (

EMPLOYEE » SSN = Essn (

(y Essn (Emp_Proj + Proj_D))

iv)Emp_No_Dep « 1 SSN (EMPLOYEE) - 1 Essn (DEPENDENT)

Result < 1 Fname, Minit, Lname (

o SSN € Emp_No_Dep (EMPLOYEE)

Module — 3

Q.5
a. What is the need for normalization? Explain second and third normal form with
example.

(6 Marks)

Answer:

Normalization of data can be considered a process of analyzing the given relation
schemas based on their FDs and primary keys to achieve the desirable properties of (1)
minimizing redundancy and (2) minimizing the insertion, deletion, and update anomalies.

The normalization procedure provides database designers

* A formal framework for analyzing relation schemas based on their keys and on the
functional dependencies among their attributes

* A series of normal form tests that can be carried out on individual relation schemas
so that the relational database can be normalized to any desired degree

2NF:

* A second normal is a method of arranging attributes semantically (logically) based
on the constraints 1) a relation must be in first normal form and 2) relation should
not contain any partial dependency.

* No non-prime attribute (attribute which are not part of any candidate key) is
dependent on any proper subset of any candidate key of the table.

* The partial dependency - is the proper subset of candidate key determines
non-primary attribute in a relation.

* Every non-key attribute is fully functionally dependent on the primary key. Thus, no
non-key attributes are functionally dependent on the part (but not all) of the primary
key. That means, no partial dependency exists.

* Note: If a key is single attribute, then it is always in 2nd Normal form.

2NF - Decomposition

l. If a data item i1s fully functionally dependent on only a part of the primary
key, move that data item and that part of the primary key to a new table.

2. If other data items are functionally dependent on the same part of the key,
place them in the new table also

3. Make the partial primary key copied from the original table the primary
key for the new table. Place all items that appear in the repeating group in
a new table

Example 1 (Not 2NF)

Scheme [{Title, Publd, Auld, Price, AuAddress}

Key [{Title, Publd, Auld}

{Title, Publd, AulD} [{Price}
{AulD} [1 {AuAddress}
AuAddress does not belong to a key

AW N =

5. AuAddress functionally depends on Auld which is a subset of a key
Example 1 (Convert to 2NF)

Old Scheme [{Title, Publd. Auld, Price, AuAddress}

New Scheme [{Title, Publd, Auld, Price}

New Scheme [{Auld, AuAddress}

3NF:

This form dictates that all non-key attributes of a table must be functionally
dependent on a candidate key i.e. there can be no interdependencies
among non-key attributes.

For a table to be in 3NF, there are two requirements
. The table should be second normal form

. No attribute is transitively dependent on the primary key
Example (Not in 3NF)
Scheme [{Title, PubID, PageCount, Price }

1. Key [{Title, Publd}

2 {Title, Publd} [{PageCount}
3. {PageCount} [1 {Price}

4 Both Price and PageCount

depend on a key hence 2NF

5. Transitively {Title, PubID} [{Price} hence not in 3NF
Example 1 (Convert to 3NF)

Old Scheme [{Title, PubID, PageCount, Price }
New Scheme [{PubID, PageCount, Price}
New Scheme [{Title, PubID, PageCount}

b. Outline constraints in SQL.
(6 Marks)

Answer:
SQL Create Constraints

Constraints can be specified when the table is created with the CREATE TABLE
statement, or after the table is created with the ALTER TABLE statement.

Syntax

CREATE TABLE table name (
columnl datatype constraint,
column? datatype constraint,

column3 datatype constraint,

SQL Constraints

SQL constraints are used to specify rules for the data in a table.Constraints are
used to limit the type of data that can go into a table. This ensures the accuracy
and reliability of the data in the table. If there is any violation between the
constraint and the data action, the action is aborted.

Constraints can be column level or table level. Column level constraints apply to
a column, and table level constraints apply to the whole table.

The following constraints are commonly used in SQL.:

e NOT NULL - Ensures that a column cannot have a NULL value

e UNIQUE - Ensures that all values in a column are different

e PRIMARY KEY - A combination of a NOT NULL and UNIQUE. Uniquely
identifies each row in a table

e FOREIGN KEY - Prevents actions that would destroy links between tables

e CHECK - Ensures that the values in a column satisfies a specific condition

e DEFAULT - Sets a default value for a column if no value is specified

https://www.w3schools.com/sql/sql_notnull.asp
https://www.w3schools.com/sql/sql_unique.asp
https://www.w3schools.com/sql/sql_primarykey.asp
https://www.w3schools.com/sql/sql_foreignkey.asp
https://www.w3schools.com/sql/sql_check.asp
https://www.w3schools.com/sql/sql_default.asp

c. Identify the given Relation R(ABCDE) and its instance, check whether FDS given hold
or not. Give reasons.
FDS:

)A B
ii)B—C
iii)D - E
iv)CD — E

Answer:
FD Holds? Reason
A—B p 4 A = 3, maps to by and b; (not unigue)

m
l
]
< |

Each B value maps to exactly one C value

)
l
m
X

D = d; maps to e; and e; (not unique)

CD—E

<]

Each (C,D) pair maps to exactly one E value

Proof:

In a relation R, a functional dependency X — Y holds if and only if:

For any two tuples t; and t: in relation R,
if t.[X] = t2[X],
then t,[¥] = tz[Y].

In simpler terms:

= If two rows (tuples) have equal values for the attributes on the left side (X),

= Then they must also have equal values for the attributes on the right side (Y).

Q.6

a. What is Multivalued dependency? Explain 4NF and 5NF with suitable example.

Answer:

(6 Marks)

Multivalued dependency:

A table is said to have multi-valued dependency, if the following conditions are

true,

* For adependency A — B, if for a single value of A, multiple value of B
exists, then the table may have multi-valued dependency.

* Also, a table should have at-least 3 columns for it to have a multi-valued
dependency.

* And, for a relation R(A,B,C), if there is a multi-valued dependency between,
A and B, then B and C should be independent of each other.

If all these conditions are true for any relation(table), it is said to have multi-valued

dependency

4NF:

A relation schema R is in 4NF with respect to a set D of functional and multivalued
dependencies if for all multivalued dependencies in D+ of the form o0 —— 3,
where o & R and B & R, at least one of the following hold:

—a —— Pistrivial (i.e.,, p & aora U B=R)
— o is a super key for schema R

* If a relation is in 4NF it is in BCNF

Example (Not in 4NF)
Scheme [] {MovieName, ScreeningCity, Genre)
Primary Key: {MovieName, ScreeningCity, Genre)

L.

2.
3.
4

All columns are a part of the only candidate key, hence BCNF
Many Movies can have the same Genre
Many Cities can have the same movie

Violates 4NF

Movie ScreeningCity Genre

Hard Code Los Angles Comedy
Hard Code New York Comedy
Bill Durham Santa Cruz Drama
Bill Durham Durham Drama
The Code Warrier | New York Horror
l. the table should not have any Multi-valued Dependency (or), if so, Move
the two multi-valued relations to separate tables
2. It should be in the Boyce-Codd Normal Form
3. Identify a primary key for each of the new entity.

Example 1 (Convert to 4NF)
Old Scheme [{MovieName, ScreeningCity, Genre}
New Scheme [{MovieName, ScreeningCity }

New Scheme [{MovieName, Genre}

Movie Genre Movie ScreeningCity
] Hard Code Los Angles

H’_ﬁd Code Comedy Hard Code New York

Bill Durham Drama Bill Durham Santa Cruz

The Code Warrier Horror Bill Durham Durham

The Code Warner WNew York

SNF:
* Join dependencies constrain the set of legal relations over a schema R to those
relations for which a given decomposition is a lossless-join decomposition.
* Let R be a relation schema and R1, R2, ...,Rn be a decomposition of R. If R =
R1 U R2 U...U Rn, we say that a relation r(R) satisfies the join dependency
*(R1, R2, ...,Rn) if:

r=MNR«(r) Mr(r) ... [MRrn(I)

A join dependency is trivial if one of the Ri is R itself.
* A join dependency *(R1, R2) is equivalent to the multivalued
dependency R1 N R2 —— R2. Conversely, a —— B is equivalent

to*(alU (R-P),alp)
* However, there are join dependencies that are not equivalent to any
multivalued dependency.

Course Instructor TextBook_Author
Management X Churchil
Ma nagement Y Peters
Management Z Peters
Finance A Weston
Finance A Gilbert
Course Textbook_Author
[Coune — instructor | [Course TextBook Author |
Management X Management Churchil
Management ¥ Management Paters
Management Fi Finance Weston
Finance A Finance Gilbert

b. Outline the informal design guidelines for relational schema.
(6 Marks)

Answer:

Four informal guidelines that may be used as measures to determine the quality of
relation schema design;

1. Making sure that the semantics of the attributes is clear in the schema

2. Reducing the redundant information in tuples

3. Reducing the NULL values in tuples

4. Disallowing the possibility of generating spurious tuples

These measures are not always independent of one another

c. Consider relation R with the following functional dependency:
EMPPROJ (SSN, Pnumber, Hours, Ename, Pname, Plocation)

SSN, Pnumber — Hours

SSN — Ename

Pnumber — Pname, Plocation

Is it 2NF? Verify? If no, give reason.

(8 Marks)
Answer:
A relation is in Second Normal Form (2NF) if:

1. Itis in 1NF (no multivalued attributes), AND

2. No partial dependency exists, i.e., no non-prime attribute is functionally dependent on a
part of a candidate key.

Candidate Key = {SSN, Pnumber}
Prime attributes = SSN, Pnumber
Non-prime attributes = Hours, Ename, Pname, Plocation
1.SSN, Pnumber — Hours
e Full key — attribute = Allowed
2.SSN — Ename
SSN is part of candidate key
Ename is a non-prime attribute
= Partial Dependency = Violates 2NF
3.Pnumber — Pname, Plocation
Pnumber is part of candidate key
Pname, Plocation are non-prime attributes
= Partial Dependency = Violates 2NF
The relation is not in 2NF.There are partial dependencies:

e SSN — Ename

e Pnumber — Pname, Plocation

These cause non-prime attributes to be dependent on part of a candidate key, which violates
2NF rules.

Q.7
a. Consider the following schema for a company database:
Employee (FName, LName, SSN, Address, Sex, Salary, Dno, Super_SSN)
Department (Dname, Dnumber, Mgr_SSN, Mgr_start_date)
Project (Pname, Pnumber, Plocation, Dnum)
WORKS_on (Essn, Pno, Hours)
DEPENDENT (Essn, Dependent_name, Sex, Bdate, Relationship)

Write the SQL queries for the following:

i) List the names of managers who have at least one dependent (use correlated
nested).

ii) Retrieve the name of each employee who has a dependent with the same first name
and is the same sex as the employee.

iii) For each project, retrieve the project number, project name, and the number of
employees who work on that project.

iv) Retrieve the SSN of all employees who work on project number 1, 2, or 3 (Use IN).

v) Find the sum of the salaries of all employees of the ‘Research’ department as well
as maximum salary, minimum salary, average salary in this department.

Answer:
l. List the names of managers who have at least one dependent (use correlated nested)
SELECT E.FName, E.LName FROM Employee E
WHERE E.SSN IN (
SELECT Mgr_SSN
FROM Department D
WHERE EXISTS (
SELECT 1
FROM Dependent Dep

WHERE Dep.Essn = D.Mgr_SSN

)

ii) Retrieve the name of each employee who has a dependent with the same first name
and is the same sex as the employee.

SELECT E.FName, E.LName

FROM Employee E

JOIN Dependent D ON E.SSN = D.Essn

WHERE E.FName = D.Dependent_name AND E.Sex = D.Sex;

iii) For each project, retrieve the project number, project name, and the number of
employees who work on that project.

SELECT P.Pnumber, P.Pname, COUNT(W.Essn) AS Num_Employees FROM Project P
LEFT JOIN WORKS_on W ON P.Pnumber = W.Pno

GROUP BY P.Pnumber, P.Pname;

iv) Retrieve the SSN of all employees who work on project number 1, 2, or 3 (Use IN).
SELECT DISTINCT Essn

FROM WORKS_on WHERE Pno IN (1, 2, 3);

v) Find the sum of the salaries of all employees of the ‘Research’ department as well as
maximum salary, minimum salary, average salary in this department.

SELECT
SUM(E.Salary) AS Total_Salary,
MAX(E.Salary) AS Max_Salary,
MIN(E.Salary) AS Min_Salary,
AVG(E.Salary) AS Avg_Salary
FROM Employee E
JOIN Department D ON E.Dno = D.Dnumber
WHERE D.Dname = 'Research’;
7b.Why concurrency control is needed? Demondtrate with an example? 10 Marks

Answer:

» Several problems can occur when concurrent transactions execute in an uncontrolled

anneg
= Example:

* We consider an Airline reservation DB
« Each records is stored for an airline flight which includes Number of reserved seats

among other information.
* Types of problems we may encounter:

1. The Lost Update Problem

2. The Temporary Update (or Dirty Read) Problem
3. The Incorrect Summary Problem

4. The Unrepeatable Read Problem

T! T1
read_item(X); read_item(X);
X=X+ M, X=X-N,
write_item(X); write_item(X);

read_item(Y);
Y=Y+ N:
write_item(Y);

= Jransaction 11

- transfers N reservations from one flight whose number of reserved seats is stored
in the database item named X to another flight whose number of reserved seats is
stored in the database item named Y.

= Transaction T2

+ reserves M seats on the first flight (X)

8a.Consider the following schedule.The actions are listed in the order they are scheduled
and prefixed with the transaction name.

S1:T1:R(X), T2:R(X), T1:W(Y), T2:W(Y), T1:R(Y), T2:R(Y)
$2:T3:W(X),T1:R(X), T1:W(Y), T2:R(Z), T2:W(2Z),T3:R(2)

For each schedule answer the following:

i)What is the schedule precedence graph for the schedule?

ii)ls the schedule conflict serializable?lf so what are all the conflicts equivalent serial
schedules?

iii)ls the schedule view serializable?If so what are all the view equivalent serial
schedules? 10 Marks

Answer:

For schedule S1, it is conflict serializable with equivalent serial schedules T1
followed by T2 (T1 -> T2) or T2 followed by T1 (T2 -> T1). For schedule S2, it
is not conflict serializable due to the cycle T1 -> T3 -> T2 -> T1. Both
schedules are view serializable.

Schedule S1

Precedence Graph:
e The precedence graph for S1 has two transactions: T1 and T2.
e There is an edge from T1 to T2 because T1 reads X before T2 reads X (T1 -> T2).
e There is an edge from T1 to T2 because T1 writes Y before T2 reads Y (T1 ->
T2).
e There is an edge from T1 to T2 because T1 writes Y before T2 writes Y (T1 ->
T2).
e There is an edge from T2 to T1 because T2 reads X before T1 reads X.
e There is an edge from T2 to T1 because T2 writes Y before T1 writes Y.
e There is an edge from T2 to T1 because T2 reads Y before T1 reads Y.
e The precedence graph contains a cycle: T1 -> T2 -> T1.
e T1 ->T2 (and vice versa) is also present due to the conflicting R/W or W/R
operations on X and Y between the two transactions.
e Since there's a cycle, S1 is not conflict serializable.
e However, Sl is view serializable. The view equivalent serial schedules are T1 ->
T2 and T2 -> T1.
Conflict Serializability:
e S1is not conflict serializable because its precedence graph contains a
cycle.
e The equivalent serial schedules are T1 ->T2 or T2 -> T1.
View Serializability:

S1 is view serializable because it can be transformed into a serial
schedule without changing the final state of the data items. The two serial
schedules T1 -> T2 and T2 -> T1 would result in the same final values for
XandY.

Schedule S2

Precedence Graph:

The precedence graph for S2 has three transactions: T1, T2 and T3.
There is an edge from T3 to T1 because T3 writes X before T1 reads X
(T3->T1).

There is an edge from T1 to T2 because T1 writes Y before T2 reads Z
(T1->T2).

There is an edge from T2 to T3 because T2 writes Z before T3 reads Z
(T2 ->T3).

Thereisacycle: T1->T2->T3->T1.

Since there's a cycle, S2 is not conflict serializable.

Conflict Serializability:

S2 is not conflict serializable because its precedence graph contains a
cycle.

View Serializability:

S2 is view serializable because it can be transformed into a serial
schedule. The view equivalent serial schedules can be any permutation of
T1,T2,and T3: T1->T2->T3, T1->T3->T2, T2->T1->T3, T2->T3
>T1,T3->T1->T2,or T3->T2->T1.

b.Explain triggers with example write a trigger in SQL to call a procedure
“Inform_Supervisor” whenever an employees salary is greater than the salary if his or
her direct supervisor in the COMPANY database. 10Marks

Answer:

Whenever an employee’s salary is greater than their supervisor's salary, a procedure
Inform_Supervisor must be called.

Employee Table:

Employee(FName, LName, SSN, Address, Sex, Salary, Dno, Super_SSN)
SSN: Employee ID

Super_SSN: Supervisor's SSN

Salary: Employee’s salary

Procedure:
CREATE PROCEDURE Inform_Supervisor(empSSN CHAR(9))
BEGIN

END;

Trigger Logic

e On UPDATE of an employee’s salary
e IfNEW.Salary > Supervisor'’s Salary, then call
Inform_Supervisor(NEW.SSN)

DELIMITER //
CREATE TRIGGER Check_Salary_Increase
AFTER UPDATE ON Employee
FOR EACH ROW
BEGIN
DECLARE super_salary DECIMAL(10,2);
-- Get supervisor's salary
SELECT Salary INTO super_salary
FROM Employee
WHERE SSN = NEW.Super_SSN;

-- If employee's salary is now greater than supervisor's,
call procedure

IF NEW.Salary > super_salary THEN
CALL Inform_Supervisor(NEW.SSN);
END IF;

END;

/1

DELIMITER ;

]

Q.9 a. Describe the two - phase locking protocol for concurrency control
provide example to illustrate how it ensures serializability in transaction
schedule

The Two-Phase Locking (2PL) Protocol is a key technique used in DBMS to manage how
multiple concurrent transactions access and modify data, with two phases: growing (where all
locks are acquired) and shrinking (where locks are released)

Two Phases:

1. Growing Phase (Expanding Phase):
o Transaction can acquire locks (shared or exclusive)
o Cannot release any locks
o Transaction grows by acquiring more locks
2. Shrinking Phase (Contracting Phase):
o Transaction can release locks
o Cannot acquire new locks
o Transaction shrinks by releasing locks

How 2PL Ensures Serializability:

The Two-Phase Locking Protocol ensures serializability by controlling when locks can be
acquired and released, ensuring that while one transaction is accessing a data item, other
transactions cannot modify that particular data item VaiaExploredatabase.

Example: Consider two transactions T1 and T2:

T1: Read(A), Write(A), Read(B), Write(B)

T2: Read(A), Write(A), Read(B), Write(B)

With 2PL:

T1: Lock-S(A), Read(A), Lock-X(A), Write(A), Lock-S(B), Read(B),
Lock-X(B), Write(B), Unlock(A), Unlock(B)

T2: Must wait for T1 to release locks before proceeding

https://www.geeksforgeeks.org/dbms/two-phase-locking-protocol/
https://www.vaia.com/en-us/textbooks/computer-science/fundamentals-of-database-systems-4-edition/chapter-18/problem-1-what-is-the-two-phase-locking-protocol-how-does-it/
https://www.exploredatabase.com/2018/04/two-phase-locking-2pl-protocol-in-concurrency-control-dbms.html

This ensures conflict serializability by preventing concurrent access to shared data items during
critical operations.

b. Explain the characteristics of NOSQL system

Key Characteristics:

1. Schema Flexibility: NoSQL databases don't require a fixed schema, allowing dynamic
addition of fields

2. Horizontal Scalability: NoSQL databases like MongoDB are known for flexibility,
scalability, and high performance, widely used by companies like Adobe, Uber, IBM, and
Google for big data applications MongoDB CRUD Operations - GeeksforGeeks

3. High Performance: Optimized for specific data models and access patterns

4. Distributed Architecture: Built for distributed computing environments

5. CAP Theorem Trade-offs: Choose between Consistency, Availability, and Partition
tolerance

6. Types: Document stores, Key-value stores, Column-family, Graph databases

7. BASE Properties: Basically Available, Soft state, Eventually consistent (vs ACID)

OR
Q.10 a. Explain binary locks and shared lock with algorithm

Binary Locks:

e Simple locking mechanism with two states: LOCKED (1) or UNLOCKED
(0)

e Only one transaction can hold the lock at a time
Algorithm for Binary Locks:
LOCK(X):
While Lock(X) =1 do
Wait

Lock(X) =1

UNLOCK(X):

https://www.geeksforgeeks.org/mongodb-crud-operations/

Lock(X)=0

Shared Locks:

e Multiple transactions can read simultaneously
e Exclusive access for write operations

Types:

1. Shared Lock (S-lock): For read operations
2. Exclusive Lock (X-lock): For write operations

Algorithm for Shared/Exclusive Locks:
LOCK-S(X):
If Lock(X) = "unlocked" then
Lock(X) = "read-locked"
no_of reads(X)=1
Else if Lock(X) = "read-locked" then
no_of reads(X)=no_of reads(X)+1

Else wait

LOCK-X(X):
If Lock(X) = "unlocked" then
Lock(X) = "write-locked"

Else wait

UNLOCK(X):

If Lock(X) = "write-locked" then
Lock(X) = "unlocked"

Else if Lock(X) = "read-locked' then
no_of reads(X)=no_of reads(X)-1
If no_of_reads(X) =0 then

Lock(X) = "unlocked"

b. Explain MongoDB data model, CRUD operations and distributed system
characteristics

Characteristics

MongoDB Data Model: MongoDB stores data in flexible, JSON-like documents rather than
traditional relational tables.

Document-based: Data stored in BSON (Binary JSON) format

Collections: Groups of documents (similar to tables)

Flexible Schema: Documents in same collection can have different structures
Embedded Documents: Support for nested data structures

Arrays: Native support for array data types

CRUD Operations:

MongoDB supports four primary CRUD operations: Create (using insertOne() or
insertMany()), Read, Update, and Delete operations.

Create:
javascript
db.collection.insertOne({name: "John', age: 30})

1. db.collection.insertMany([{...}, {...}])

Read:
javascript
db.collection.find({name: "John'"})

2. db.collection.findOne({ id: Objectld(...)})

Update:
javascript
db.collection.updateOne({name: "John'"}, {$set: {age: 31}})

3. db.collection.updateMany({}, {Sinc: {age: 1}})

Delete:
javascript
db.collection.deleteOne({name: "John'})

4. db.collection.deleteMany({age: {$lt: 18}})

Distributed System Characteristics:

Horizontal Scaling (Sharding): Distributes data across multiple servers
Replication: Master-slave configuration for high availability
Auto-failover: Automatic switching to backup servers

Load Balancing: Distributes queries across replica sets

Consistency Models: Configurable read/write concerns

Partition Tolerance: Continues operation despite network failures
Geographic Distribution: Support for multi-region deployments

A o

	SQL Create Constraints
	Syntax

	Trigger Logic
	Characteristics

