

BCS602

Sixth Semester B.E./B.Tech. Degree Examination, June/July 2025 **Machine Learning**

Max. Marks: 100

Time: 3 hrs/
BANGALON one: 1. Answer any FIVE full questions, choosing ONE full question from each module.

2. M: Marks, L: Bloom's level, C: Course outcomes.

				Module	e – 1	- ATTA		M	L	C
Q.1	a.		m Mitchell's defi es of machine lear		chine learning. Lis	st and exp	lain the	7	L1	CO
	b.		explain the visua mple for each.	lization aids a	available for univa	riate data a	nalysis	7	L2	CO
	c.	For the p	oatients age list {1	2, 14, 19, 22,	24, 26, 28, 31, 34	}. Find the	IQR.	6	L3	CO
				OR						
Q.2	a.	Explain	in detail the mach	ine learning p	process with a neat	diagram.		7	L2	COI
	b.	Explain data.	data preprocessin	g with meast	ires to solve the pi	roblem of	missing	7	L2	COI
	c.	Find the plot for t		of the list {1	3, 11, 2, 3, 4, 8, 9	} and plot	the box	6	L3	COI
				Modul	e – 2	a di har				
Q.3	a.	Let the data points be $\binom{2}{6}$ and $\binom{1}{7}$. Apply Principal Component Analysis (PCA) and find the transformed data.							L3	COI
	b.	to obtain the complete version space.							L3	CO
	D.	A A .			0.3(b)					
	D.	A A .		Table Q Practical	.3(b) Communication	Logical	Job			C 0 2
	D.	to obtain	the complete ver	Table Q		Logical thinking	Job offer			
	D.	to obtain	the complete ver	Table Q Practical	Communication		offer YES			
	D.	to obtain	Interactiveness	Table Q Practical knowledge	Communication skills	thinking	offer YES YES			
	D.	to obtain CGPA ≥ 9	Interactiveness Yes	Table Q Practical knowledge Excellent	Communication skills Good	thinking Fast	offer YES YES NO			
	D.	to obtain $ \begin{array}{c} CGPA \\ $	Interactiveness Yes Yes	Table Q Practical knowledge Excellent Good	Communication skills Good Good	thinking Fast Fast	offer YES YES			
	D.	to obtain $ \begin{array}{c} CGPA \\ $	Interactiveness Yes Yes No	Table Q Practical knowledge Excellent Good Good	Communication skills Good Good Good	thinking Fast Fast Fast	offer YES YES NO		L3	CO

	b.	Write Fin	d-S algorit	hm. Apply	the algor	rithm to	obtain the	hypothesis for	10	L3	CO2
				he Table Q.							
				Т	Table Q.4	(b)					
		Sky	Air temp	Humidity	Wind	Water	Forecast	Enjoy sport			
		Sunny	Warm	Normal	Strong	Warm	Same	YES			
		Sunny	Warm	High	Strong	Warm	Same	YES			
		Rainy	Cold	High	Strong	Warm	Change	NO			
		Sunny	Warm	High	Strong	Cool	Change	YES			
					Module -			- Land			
5	a.	Apply K-	nearest nei	ghbor algor	ithm, for	the data	set given i	n Table Q.5(a).	6	L3	CO3
					5), use the	he traini	ng set to c	classify the test			
		instance.	Choose K =		F 11 O 5	(-)					
			CCDA		Table Q.5		ttad Dag	,14			
			CGPA	Assessme	nt Proje	ect submi	itted Resu PAS				
			9.2	85 80		7	PAS				
			8	81		8	PAS				1 1 10
			8.5	45		5	FAI				
			6.5	50		4	FAI		L'AL		
		- 1	5.8	38	- 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1	5	FAI				
			3.0	30							
	b.	Explain to	ypes of regi	ession meth	nods and	limitatio	ns of regre	ssion methods.	7	L2	CO3
	c.	Explain th	ne structure	of a decisi	on tree ar	nd write	the proced	ure to construct	7	L2	CO3
		a decision	the using	ID3 algorith	ım.	Page	-	4			
								<u> </u>		i sa ja	
		1	- A		OR	-1	1 41 -	- todit	7	1.2	COL
6	a.							same to predict	7	L3	CO3
				en test instar	ice (6, 5)	using in	e training	dataset given in			
		Table Q.6)(a).	\[\frac{1}{2}\]	YC	lass					
				3		A				40-6	
				4		A					
				4		A					
		A STATE OF THE STA				В					
				6		В					
				8	2 5	R					
					Γable Q.6	(a)	art				
						TORA	037				
	b.	Distingui	sh between		CMARIA BANGA	ORE 50			6	L2	CO3
		i) Reg	ression and	correlation	CHANGA	TO.					
			ression and								
		iii) Line	earity and n	on-linearity	relations	ships.					
				Žev.	. 1		1	177.14. 41	7	1.0	COA
							dontaton	rree Write the	17	1 1 7	
	c.		the advant			ages of	decision	tree. Write the	1	L2	CO3
	c.			ages and c r decision tr		ages of	decision	aree. Write the		112	COS

	T. C. L. C.			Module -	1					
Q.7	a.	Heing Naïve hay	ves classifie			ata (Red	SUV, Domestic)	10	L3	CO4
Q. /	a.	using the training				ata (Itou,	y , Bomeste,	10	Lo	
		dsing the training	g dataset gr	Table Q.7(. 6
			Color		gin	Stolen				
			Red		estic	YES				
			Red	1	estic	NO				
			Red	A	estic	YES				
			Yellow	Sports Dom	estic	NO				
			Yellow	Sports Impo	orted	YES				
			Yellow	SUV Impo	orted	NO				
	100		Yellow	SUV Impo	orted	YES				
			Yellow	SUV Dom	estic	NO				
			Red	SUV Impo	orted	NO			7 - 7	
			Red	Sports Imp	orted	YES				
	b.	Explain the sim	ple model	of an artificial	neuro	n along v	vith the artificial	10	L2	CO4
		neural network s								
		A								4.4
				OR	25/0					
Q.8	a.						10	L2	CO4	
	04	Maximum Likelihood (ML) hypothesis in detail.								
	b.	Explain differen	t activation	functions used	in arti	ificial neur	ral network.	10	L2	CO4
	1-110									
					_					
				Module –		1 00()	Ol de la constant	140	1.2	005
Q.9	a.			of data given	in Tab		Cluster it using	10	L3	CO5
Q.9	a.	K-means algorit	thm with ini	of data given itial value of ol	in Tab		Cluster it using the the coordinate	10	L3	CO5
Q.9	a.		thm with ini	of data given itial value of ob initial seeds.	in Tab			10	L3	CO5
Q.9	a.	K-means algorit	thm with inid (12, 4) as i	of data given itial value of ob- initial seeds. Table Q.9(in Tab ojects 2 a)	2 and 5 wi		10	L3	CO5
Q.9	a.	K-means algorit	thm with ini	of data given itial value of obtainitial seeds. Table Q.9(X-coordinate	in Tab ojects 2 a)	2 and 5 wi		10	L3	CO5
Q.9	a.	K-means algorit	Chm with initial (12, 4) as in Objects	of data given itial value of obtainitial seeds. Table Q.9(X-coordinate	in Tab ojects 2 a)	2 and 5 wi		10	L3	CO5
Q.9	a.	K-means algorit	Objects 1 2	of data given itial value of obtainitial seeds. Table Q.9(X-coordinate 2 4	in Tab ojects 2 a)	2 and 5 wi		10	L3	CO5
Q.9	a.	K-means algorit	Objects 1 2 3	of data given itial value of obtainitial seeds. Table Q.9(X-coordinate 2 4 6	in Tab ojects 2 a)	ordinate 4 6 8	th the coordinate		L3	CO5
Q.9	a.	K-means algorit	Objects 1 2 3 4	of data given itial value of obtainitial seeds. Table Q.9(X-coordinate 2 4 6 10	in Tab ojects 2 a)	ordinate 4 6 8	th the coordinate		L3	COS
Q.9	a.	K-means algorit	Objects 1 2 3	of data given itial value of obtainitial seeds. Table Q.9(X-coordinate 2 4 6	in Tab ojects 2 a)	ordinate 4 6 8	th the coordinate		L3	CO5
Q.9		K-means algorit values (4, 6) and	Objects Objects	of data given itial value of obtainitial seeds. Table Q.9(X-coordinate 2 4 6 10 12	in Tak pjects 2 a) Y-co	ordinate 4 6 8	th the coordinate			
Q.9	a. b.	K-means algorit	Objects Objects	of data given itial value of obtainitial seeds. Table Q.9(X-coordinate 2 4 6 10 12	in Tak pjects 2 a) Y-co	ordinate 4 6 8	th the coordinate		L3	
Q.9		K-means algorit values (4, 6) and	Objects Objects	of data given itial value of obtainitial seeds. Table Q.9(X-coordinate 2 4 6 10 12	in Tak pjects 2 a) Y-co	ordinate 4 6 8	th the coordinate			
	b.	K-means algorit values (4, 6) and Explain the varie	Objects Obj	of data given itial value of obtainitial seeds. Table Q.9(X-coordinate 2 4 6 10 12 nents of reinform	in Tab	ordinate 4 6 8 4 4 t learning.	chiliti Life And Color	10		CO5
		K-means algorit values (4, 6) and Explain the varie	Objects Objects 1 2 3 4 5 ous componentation and of	of data given itial value of obtainitial seeds. Table Q.9(X-coordinate 2 4 6 10 12 ments of reinform OR Chebyshev dis	in Tab	ordinate 4 6 8 4 4 t learning.	th the coordinate	10	L2	CO5
	b.	K-means algorit values (4, 6) and Explain the varie	Objects Objects 1 2 3 4 5 ous componentation and of	of data given itial value of obtainitial seeds. Table Q.9(X-coordinate 2 4 6 10 12 ments of reinform OR Chebyshev dis	in Tab	ordinate 4 6 8 4 4 t learning.	chiliti Life And Color	10	L2	CO5
	b.	Explain the varied Find the Manh objects are (0, 3)	Objects Objects Objects Objects Objects Objects Objects Output Automatical and Output	of data given itial value of obtinitial seeds. Table Q.9(X-coordinate 2 4 6 10 12 hents of reinform OR Chebyshev dis	a) Y-co cemen	ordinate 4 6 8 4 4 t learning.	chiliti Life And Color	10	L2	CO5
	b.	K-means algorit values (4, 6) and Explain the varie	Objects Objects Objects Objects Objects Objects Objects Output Automatical and Output	of data given itial value of obtinitial seeds. Table Q.9(X-coordinate 2 4 6 10 12 hents of reinform OR Chebyshev dis	a) Y-co cemen	ordinate 4 6 8 4 4 t learning.	chiliti Life And Color	10	L2	CO5
	b.	Explain the varied Find the Manh objects are (0, 3)	Objects Objects 1 2 3 4 5 ous comportant and (5, 8).	of data given itial value of obtinitial seeds. Table Q.9(X-coordinate 2 4 6 10 12 hents of reinform OR Chebyshev dis	a) Y-co cemen	ordinate 4 6 8 4 4 t learning.	chiliti Life And Color	10	L2	CO5 CO5 CO5
	b.	Explain the varied Find the Manh objects are (0, 3) Explain the mean List and explain	Objects Object	of data given itial value of obtinitial seeds. Table Q.9(X-coordinate 2 4 6 10 12 hents of reinform OR Chebyshev dis	a) Y-co cemen stance	ordinate 4 6 8 4 4 t learning.	chiliti Life And Color	10	L2	CO5
Q.90 Q.10	b.	Explain the varied Find the Manh objects are (0, 3) Explain the mean that and explain i) Characteris	Objects Objects 1 2 3 4 5 ous componentation and (5, 8). In shift clust	of data given itial value of obtinitial seeds. Table Q.9(X-coordinate 2 4 6 10 12 hents of reinfort OR Chebyshev distering algorithm	a) Y-co cemen stance	ordinate 4 6 8 4 4 t learning.	chiliti Life And Color	10	L2	CO5

***** 3 of 3

VTUEXAMINATION June-2025/July-2025 SCHEME OF EVALUATION

	I		SCHE	WIE OF EVA	LUA						
Sub:	Machine Le	arning				Sub Code:	BCS602		Bran ch:	ISE	
Exam Date:	01/07/2025	Duration:	3 Hrs	MaxMarks:	100	Sem/Sec:	VI/ A	A ,B&	C	OBE	
		A	inswer any	FIVE FULL	Ques	tions			MARK S	СО	RBT
			So	olutions							
1.a	perform E." The perform CHALLENGES Problems tha Problems — complete and 2. Huge data is a challeng A quality da data or incor 3. High con requirement Systems wit required to e 4.Complexit application of become nece 5. Bias/Varia variance trad • A mode generali • The rev	puter programance measure e important nance measure e important nance measure e important de can be deal Machine learned available. This is a present data. Inputation power has also increated a putation power has also increated a putation power has also increated a programma of the graphics of the algorithms of the	m is said to let P, if its perfectomponents re P. INE LEARNITE WITH Machinary requires should be larger wer — With the eased. Processing Unne learning algorithms — The to solve machine learning deed overfitting.	earn from experiformance on T m of this definit. ING The Learning with the 'well-potent of machine ge and should not be availability of the experiment of the experiment of the selection of hine learning tast or data scientists for of the mode that a correctly but the formance of the mode that the experiment of the ex	e learn of have Big I en Ter algoritisk, and s now I. This	roblems where ing. Availability e data problem Data, the composor Processing thms, describing comparison of a leads to a profer test data,	es with experie E, task T, a specifications of a quality of a such as miss utational resource Unit (TPU) g the algorithms hablem called be in general la	are data sing are are are as ave ave sias/	7 M	CO1	L1
1b.	 It helps univaria The adv data, ex Bar Chart A Bar chart Bar char 	rstand data, g to present info te data analys antages of the ploration of do hart (or Bar go	ormation and sis are bar cha e graphs are prata, and to ma raph) is used to illustrate disc	ation is must. Dat data to customers arts, histograms resentation of data accomparisons of the display the free crete data. The charing the frequent student marks	s. Som , frequ ta, sum of data quency narts ca	ne of the graphs nemery polygons nemerization of control distribution for an also help to e	that are used in and pie chard lata, description or variables.	n ts. n of	7M	CO1	L2

Pie Chart These are equally helpful in illustrating the univariate data. The percentage frequency distribution of students' marks {22, 22, 40, 40, 70, 70, 70, 85, 90, 90} is below in Figure 2.4.

Figure 2.4: Pie Chart

It can be observed that the number of students with 22 marks are 2. The total number of students are 10. So, $2/10 \times 100 = 20\%$ space in a pie of 100% is allotted for marks 22 in Figure 2.4.

Histogram It plays an important role in data mining for showing frequency distributions. The histogram for students' marks {45, 60, 60, 80, 85} in the group range of 0–25, 26–50, 51–75, 76–100 is given below in Figure 2.5. One can visually inspect from Figure 2.5 that the number of students in the range 76–100 is 2.

Figure 2.5: Sample Histogram of English Marks

Histogram conveys useful information like nature of data and its mode. Mode indicates the peak of dataset. In other words, histograms can be used as charts to show frequency, skewness present in the data, and shape.

Dot Plots These are similar to bar charts. They are less clustered as compared to bar charts, as they illustrate the bars only with single points. The dot plot of English marks for five students with ID as $\{1, 2, 3, 4, 5\}$ and marks $\{45, 60, 60, 80, 85\}$ is given in Figure 2.6. The advantage is that by visual inspection one can find out who got more marks.

1.c	$median = 24 \qquad 26 + 28 + 31 + 34 = 29.5$	6M	CO1	L3
	$Q_{0.25} = 16.5$ $Q_{0.75} = 29.5$ $12+14+19+22 = 16.5$			
	IQR = 00.75 - Q0.25			
	29.5 - 16.5 TQR = 13			

2c

6M

CO1

L3

- 1. Understanding the business This step involves understanding the objectives and requirements of the business organization. Generally, a single data mining algorithm is enough for giving the solution. This step also involves the formulation of the problem statement for the data mining process.
- 2. Understanding the data It involves the steps like data collection, study of the characteristics of the data, formulation of hypothesis, and matching of patterns to the selected hypothesis.
- 3. Preparation of data This step involves producing the final dataset by cleaning the raw data and preparation of data for the data mining process. The missing values may cause problems during both training and testing phases. Missing data forces classifiers to produce inaccurate results. This is a perennial problem for the classification models. Hence, suitable strategies should be adopted to handle the missing data
- 4. Modelling This step plays a role in the application of data mining algorithm for the data to obtain a model or pattern.
- 5. Evaluate This step involves the evaluation of the data mining results using statistical analysis and visualization methods. The performance of the classifier is determined by evaluating the accuracy of the classifier. The process of classification is a fuzzy issue. For example, classification of emails requires extensive domain knowledge and requires domain experts. Hence, performance of the classifier is very crucial.
- 6. Deployment This step involves the deployment of results of the data mining algorithm to improve the existing process or for a new situation.

Let the data points be $\begin{pmatrix} 2 \\ 6 \end{pmatrix}$ and $\begin{pmatrix} 1 \\ 7 \end{pmatrix}$. Apply PCA and find the transformed data.

10M CO1 L3

solution:

The mean vector can be calculated as,

$$M = \frac{X_1 + X_2}{2}, \quad M = \begin{pmatrix} \frac{2+1}{2} \\ \frac{6+7}{2} \end{pmatrix} = \begin{pmatrix} 1.5 \\ 6.5 \end{pmatrix}$$

centering the Bata:

mean must subtracted from the data to get the adjusted data,

$$x_{1} = X_{1} - H = \begin{pmatrix} 2 - 1.5 \\ 6 - 6.5 \end{pmatrix} = \begin{pmatrix} 0.5 \\ -0.5 \end{pmatrix}$$

$$x_{2} = X_{2} - H = \begin{pmatrix} 1 - 1.5 \\ 7 - 6.5 \end{pmatrix} = \begin{pmatrix} -0.5 \\ 0.5 \end{pmatrix}$$

solving don A, c.

case 1: $0.5 - \lambda = 0.5$

$$\lambda = 0.5 - 0.5 = 0$$

case 2: 0.5- 1=-0.5

$$\lambda = 0.5 + 0.5$$
.

Eigen values $\lambda_1 = 1, \lambda_2 = 0$

 $||v|| = \sqrt{(-1)^2 + (1)^2} = \sqrt{1+1} = \sqrt{2}$ Nonmalize the vectors, V divide each component by the magnitude,

$$AA^{T} = \begin{pmatrix} -\frac{1}{12} & \frac{1}{12} \\ -\frac{1}{12} & \frac{1}{12} \end{pmatrix} \begin{pmatrix} -\frac{1}{12} & \frac{1}{12} \\ -\frac{1}{12} & -\frac{1}{12} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I$$

$$= \begin{pmatrix} -\frac{1}{2} + \frac{1}{2} & -\frac{1}{2} + \frac{1}{2} \\ -\frac{1}{2} + \frac{1}{2} & -\frac{1}{2} + \frac{1}{2} \end{pmatrix} \Rightarrow \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I$$

The transformation of the madrix wing the equation,

$$y = A(x-m) = \begin{pmatrix} -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix} \begin{pmatrix} 0.5 & -0.5 \\ -0.5 & 0.5 \end{pmatrix}$$

$$= \left(-\frac{1}{12} + \frac{1}{12}\right) \left(-\frac{1}{2} - \frac{1}{2}\right) \left(-\frac{1}{2} - \frac{1}{2}\right) \left(-\frac{1}{2} - \frac{1}{2}\right) \left(-\frac{1}{2} - \frac{1}{2}\right) \left(-\frac{1}{2} - \frac{1}{2}\right)$$

$$= \left(-\frac{1}{12} + \frac{1}{12}\right) \left(-\frac{1}{2} - \frac{1}{2}\right) \left(-\frac{1}{2}$$

$$y = \begin{pmatrix} -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ 0 & 0 \end{pmatrix}$$

		1		
4a	①. Find SVD of the matrix $A = \begin{pmatrix} 1 & 2 \\ 4 & 9 \end{pmatrix}$ The first step is to compute $AAT = \begin{pmatrix} 1 & 2 \\ 4 & 9 \end{pmatrix} \begin{pmatrix} 1 & 4 \\ 2 & 9 \end{pmatrix} = \begin{pmatrix} 5 & 22 \\ 22 & 97 \end{pmatrix}$ Elgon Values:			
	subtract λI from AA^{T} $AA^{T} = \lambda \implies \begin{pmatrix} 5 - \lambda & 22 \\ 22 & 97 - \lambda \end{pmatrix}$			
	The determinant is $5-\lambda$ 22 = 0 22 97- λ = 0 using the determinant Johnwald for 2×2 matrix	10M	CO2	L3
	$(5-\lambda)(97-\lambda) - (92x22) = 0$ $5x97 - 5\lambda - 97\lambda + \lambda^{2} - 484 = 0$ $485 - 5\lambda - 97\lambda + \lambda^{2} - 484 = 0$			
	$\lambda^{2} - 102\lambda + 1 = 6$ using quadratic formula, $3 = -(-102) \pm \sqrt{(-102)^{2} - 4(1)(1)}$			
	compute eigenvalues,			
	$\lambda_1 = \frac{102 + 101.99}{2} = \frac{203.97}{2} = 101.9702$ $\lambda_2 = \frac{102 - 101.99}{2} = \frac{0.01}{2} = 0.0098$			
	Eigen vector don λ_1 is $u_1 = \begin{bmatrix} 0.2268 \\ 1 \end{bmatrix}$			

Malaix U can be obtained by concederating.

the above vectors

$$U = [u_1, u_2] = \begin{pmatrix} 0.22|2 & -0.9752 \\ -0.9752 & 0.22|2 \end{pmatrix}$$

V is obtained by concaterating the

zed eigen vectors
$$V = [v_1 v_2] = \begin{pmatrix} 0.4082 & -0.9129 \\ 0.9129 & 0.4082 \end{pmatrix}$$

The eigen values one

Taking square noot,

The diagonal Matrix S is

$$S = \begin{pmatrix} 10.099 & 0 \\ 0 & 0.099 \end{pmatrix}$$

. The Matorial decomposition $A = USV^T$ is done.

l.b		10M	CO2 L
	Algorithm steps 4m		
	h3 = <sunny, ?="" ?,="" strong,="" worm,=""></sunny,>		
ı	Griven the test instance (6.1,40,5)	6M	CO3 L
	Griven K=3, Compute the Eculidean distance blw test instance and each of the training instance		
	CGIPA A8S. Proj Result Euclidean Distance 9.2 85 8 Pass $[(9.2-6.1)^2+(85-40)^2+(8.5)^2$		
	= 45.2063 8 80 7 Pars 40.095 8.5 81 8 Pars 41.179 6 45 5 Fail 5.001 6.5 50 4 Fail 10.057 5.8 38 5 Fail 2022 Prediction: Fail		

5b	e e e e e e e e e e e e e e e e e e e		CO3	L2
	Limitation of Regression Methods	3M		
	Decision tree is a concept tree which summarizes the information contained in the training dataset in the form of a tree structure. Once the concept model is built, test data can be easily classified	7M	CO3	L2

Figure 6.1: Nodes in a Decision Tree

Let P be the probability distribution of data instances from 1 to n as shown in Eq. (6.2).

So,
$$P = P_1 \dots P_n$$
 (6.2)

Entropy of P is the information measure of this probability distribution given in Eq. (6.3),

Entropy_Info(P) = Entropy_Info(
$$P_1 P_n$$
)
= $-(P_1 \log_2(P_1) + P_2 \log_2(P_2) + + P_n \log_2(P_n))$ (6.3)

where, P_1 is the probability of data instances classified as class 1 and P_2 is the probability of data instances classified as class 2 and so on.

 P_1 = | No of data instances belonging to class 1 | / | Total no of data instances in the training dataset |

Entropy_Info(P) can be computed as shown in Eq. (6.4).

Thus

Entropy_Info(6, 4) is calculated as
$$-\left[\frac{6}{10}\log_2\frac{6}{10} + \frac{4}{10}\log_2\frac{4}{10}\right]$$
 (6.4)

Mathematically, entropy is defined in Eq. (6.5) as:

Entropy_Info(X) =
$$\sum_{x \in \text{values}(X)} Pr[X = x] \cdot \log_2 \frac{1}{Pr[X = x]}$$
 (6.5)

Pr[X = x] is the probability of a random variable X with a possible outcome x.

Note:
$$\log_2 \frac{1}{Pr[X = x]} = -\log_2(Pr[X = x])$$

- Split the training dataset into subsets based on the outcomes of the test attribute and each subset in a branch contains the data instances or tuples with the same value for the selected test attribute.
- 3. Repeat step 1 and step 2 on each subset until we end up in leaf nodes in all the branches of the tree.
- 4. This splitting process is recursive until the stopping criterion is reached.

Stopping Criteria

The following are some of the common stopping conditions:

- The data instances are homogenous which means all belong to the same class C_i and hence its entropy is 0.
- 2. A node with some defined minimum number of data instances becomes a leaf (Number of data instances in a node is between 0.25 and 1.00% of the full training dataset).
- The maximum tree depth is reached, so further splitting is not done and the node becomes a leaf node.

Expected information or Entropy needed to classify a data instance d' in T is denoted as Entropy_Info(T) given in Eq. (6.8).

Entropy_Info(T)=
$$-\sum_{i=1}^{m} P_i \log_2 P_i$$
 (6.8)

Entropy of every attribute denoted as $Entropy_Info(T, A)$ is shown in Eq. (6.9) as:

Entropy_Info(T, A) =
$$\sum_{i=1}^{v} \frac{|A_i|}{|T|} \times \text{Entropy_Info}(A_i)$$
 (6.9)

where, the attribute A has got 'v' distinct values { $a_1, a_2, \dots a_v$ }, $|A_i|$ is the number of instances for distinct value 'i' in attribute A, and Entropy_Info (A) is the entropy for that set of instances.

Information_Gain is a metric that measures how much information is gained by branching on an attribute *A*. In other words, it measures the reduction in impurity in an arbitrary subset of data.

It is calculated as given in Eq. (6.10):

$$Information_Gain(A) = Entropy_Info(T) - Entropy_Info(T, A)$$
 (6.10)

It can be noted that as entropy increases, information gain decreases. They are inversely proportional to each other.

6.a	Solution:	l		
0.4	Step 1: Compute the mean/centroid of each class. In this example there are two classes called 'A' and 'B'.			
	Centroid of class 'A' = $(3 + 5 + 4, 1 + 2 + 3)/3 = (12, 6)/3 = (4, 2)$			
	Centroid of class 'B' = $(7 + 6 + 8, 6 + 7 + 5)/3 = (21, 18)/3 = (7, 6)$			
	Now given a test instance (6, 5), we can predict the class.	7M	CO3	τ 2
	Step 2: Calculate the Euclidean distance between test instance (6, 5) and each of the centroid.	/ IVI	COS	L3
	Euc_Dist[(6, 5); (4, 2)] = $\sqrt{(6-4)^2 + (5-2)^2} = \sqrt{13} = 3.6$			
	Euc_Dist[(6, 5); (7, 6)] = $\sqrt{(6-7)^2 + (5-6)^2} = \sqrt{2} = 1.414$			
	The test instance has smaller distance to class B. Hence, the class of this test instance is predicted as 'B'.			
6b.	Regression and Correlation Difference	2M+2M		
	Regression and Causation Difference Linearity and Non linearity difference	+2M	CO3	L2
6c	Advantages of Decision Trees			
	•1. Easy to model and interpret			
	•2. Simple to understand			
	•3. The input and output attributes can be discrete or continuous predictor variables.			
	•4. Can model a high degree of nonlinearity in the relationship between the target variables and the predictor variables	7M	CO3	L2
	•5. Quick to train			
	Disadvantages of Decision Trees			
	•Some of the issues that generally arise with a decision tree learning are that:			
	•1. It is difficult to determine how deeply a decision tree can be grown or when to stop growing it.			
	•2. If training data has errors or missing attribute values, then the decision tree constructed may become unstable or biased.			
	•3. If the training data has continuous valued attributes, handling it is computationally complex and has to be discretized.			
	•4. A complex decision tree may also be over-fitting with the training data.			
	•5. Decision tree learning is not well suited for classifying multiple output classes.			
	•6. Learning an optimal decision tree is also known to be NP-complete.			

7a.

Algorithm 6.1: General Algorithm for Decision Trees

- 1. Find the best attribute from the training dataset using an attribute selection measure and place it at the root of the tree.
- Split the training dataset into subsets based on the outcomes of the test attribute and each subset in a branch contains the data instances or tuples with the same value for the selected test attribute.
- 3. Repeat step 1 and step 2 on each subset until we end up in leaf nodes in all the branches of the tree.
- 4. This splitting process is recursive until the stopping criterion is reached.

Stopping Criteria

The following are some of the common stopping conditions:

Answer = 'No'

- 1. The data instances are homogenous which means all belong to the same class C_i and hence its entropy is 0.
- 2. A node with some defined minimum number of data instances becomes a leaf (Number of data instances in a node is between 0.25 and 1.00% of the full training dataset).
- 3. The maximum tree depth is reached, so further splitting is not done and the node becomes a leaf node.

Frequency & likelihood table [colon) Plyes) Plno)

Red 3 0 Red 3/5 01-Red 3/5 2/5 Yellow 2/5 3/5 3/4 Frequency & limitood table of Type: p(yes) p(no) sports 415 2/5 Sports SUV 1 Frequency & Likelihood Table (origin); pives) P(NO) yes No Domestic Domestic 2 3 Imported Imported 3 Plyes/x) = P(Red/yes) & Plsov/yes) & PlDomostic/ yes) * P(yes) = 315×季×多×1 = 0.048 PINO(2) = P(Red/NO) * P(SUV/NO) * P(Domestic)no = 3 * 3 * 3 * 1 = 0.144

10M

CO4

L3

Figure 10.2: An Artificial Neuron

The activation function is a binary step function which outputs a value 1 if the Net-sum is above the threshold value θ , and a 0 if the Net-sum is below the threshold value θ . Therefore, the activation function is applied to Net-sum as shown in Eq. (10.2).

Cell body

$$f(x) = Activation function (Net - sum)$$
 (10.2)

Then, output of a neuron
$$Y = \begin{cases} 1 & \text{if } f(x) \ge \theta \\ 0 & \text{if } f(x) < \theta \end{cases}$$
 (10.3)

Figure 10.3: McCulloch & Pitts Neuron Mathematical Model

				ı
	Maximum A Posteriori (MAP) Hypothesis, h _{MAP}			
8a	Given a set of candidate hypotheses, the hypothesis which has the maximum value is considered as the maximum probable hypothesis or most probable hypothesis. This most probable hypothesis is called the Maximum A Posteriori Hypothesis h_{MAP} . Bayes theorem Eq. (8.1) can be used to find the h_{MAP} . $h_{MAP} = \max_{heh} P(Hypothesish Evidence E)$	10M	CO4	12
	$= \max_{heH} \frac{P(Evidence \ E \mid Hypothesis \ h)P(Hypothesis \ h)}{P(Evidence \ E)}$			
	$= \max_{heH} P(Evidence E \mid Hypothesis h)P(Hypothesis h) $ (8.2)			
	Maximum Likelihood (ML) Hypothesis, $h_{_{ML}}$			
	Given a set of candidate hypotheses, if every hypothesis is equally probable, only $P(E \mid h)$ is used to find the <i>most probable hypothesis</i> . The hypothesis that gives the maximum likelihood for $P(E \mid h)$ is called the Maximum Likelihood (ML) Hypothesis, h_{ML} . $h_{ML} = \max_{helt} P(Evidence E \mid Hypothesis h) \tag{8.3}$			
8b	•Activation functions are mathematical functions associated with each neuron in the neural network that map input signals to output signals. (used to introduce non-linearity)			
	•It decides whether to fire a neuron or not based on the input signals the neuron receives.			
	•These functions normalize the output value of each neuron either between 0 and 1 or between -1 and +1.	10M	CO4	L2
	•Typical activation functions can be linear or non-linear.			
	•Linear functions are useful when the input values can be classified into any one of the two groups and are generally used in binary perceptrons.			
	•Non-linear functions, on the other hand, are continuous functions that map the input in the range of (0, 1) or (-1, 1), etc.			
	•These functions are useful in learning high-dimensional data or complex data such as audio, video and images.			
	Below are some of the activation functions used in ANNs:			
	1. Identity Function or Linear Function			
	$f(x) = x \ \forall x \tag{10.4}$			
	The value of $f(x)$ increases linearly or proportionally with the value of x . This function is useful when we do not want to apply any threshold. The output would be just the weighted sum of input values. The output value ranges between $-\infty$ and $+\infty$.			
	2. Binary Step Function $\begin{cases} 1 & \text{if } f(x) > 0 \end{cases}$			
	$f(x) = \begin{cases} 1 & \text{if } f(x) \ge \theta \\ 0 & \text{if } f(x) < \theta \end{cases} $ (10.5)			
	The output value is binary, i.e., 0 or 1 based on the threshold value θ . If value of $f(x)$ is greater than or equal to θ , it outputs 1 or else it outputs 0.			
	3. Bipolar Step Function $ (1 : f(x) > 0) $			
	$f(x) = \begin{cases} 1 & \text{if } f(x) \ge \theta \\ -1 & \text{if } f(x) < \theta \end{cases} $ (10.6)			
	The output value is bipolar, i.e., $+1$ or -1 based on the threshold value θ . If value of $f(x)$ is greater than or equal to θ , it outputs $+1$ or else it outputs -1 .			

4. Sigmoidal Function or Logistic Function

$$\sigma(x) = \frac{1}{1 + e^{-x}} \tag{10.7}$$

It is a widely used non-linear activation function which produces an *S*-shaped curve and the output values are in the range of 0 and 1. It has a vanishing gradient problem, i.e., no change in the prediction for very low input values and very high input values.

5. Bipolar Sigmoid Function

$$\sigma(x) = \frac{1 - e^{-x}}{1 + e^{-x}} \tag{10.8}$$

It outputs values between -1 and +1.

6. Ramp Functions

$$f(x) = \begin{cases} 1 & \text{if } x > 1 \\ x & \text{if } 0 \le x \le 1 \\ 0 & \text{if } x < 0 \end{cases}$$
 (10.9)

It is a linear function whose upper and lower limits are fixed.

7. Tanh - Hyperbolic Tangent Function

The Tanh function is a scaled version of the sigmoid function which is also non-linear. It also suffers from the vanishing gradient problem. The output values range between -1 and 1.

$$\tan h(x) = \frac{2}{1 + e^{-2x}} - 1 \tag{10.10}$$

Solution: As per the problem, choose the objects 2 and 5 with the coordinate values. Hereafter, the objects' id is not important. The samples or data points (4, 6) and (12, 4) are started as two clusters as shown in Table 13.10.

Initially, centroid and data points are same as only one sample is involved.

Table 13.10: Initial Cluster Table

Cluster 1	Cluster 2
(4, 6)	(12, 4)
Centroid 1 (4, 6)	Centroid 2 (12, 4)

Iteration 1: Compare all the data points or samples with the centroid and assign to the nearest sample. Take the sample object 1 (2, 4) from Table 13.9 and compare with the centroid of

the clusters in Table 13.10. The distance is 0. Therefore, it remains in the same cluster. Similarly, consider the remaining samples. For the object 1 (2, 4), the Euclidean distance between it and the centroid is given as:

Dist (1, centroid 1) =
$$\sqrt{(2-4)^2 + (4-6)^2} = \sqrt{8}$$

Dist (1, centroid 2) =
$$\sqrt{(2-12)^2 + (4-4)^2} = \sqrt{100} = 10$$

Object 1 is closer to the centroid of cluster 1 and hence assign it to cluster 1. This is shown in Table 13.11. Object 2 is taken as centroid point.

For the object 3 (6, 8), the Euclidean distance between it and the centroid points is given as:

Dist (3, centroid 1) =
$$\sqrt{(6-4)^2 + (8-6)^2} = \sqrt{8}$$

Dist (3, centroid 2) =
$$\sqrt{(6-12)^2 + (8-4)^2} = \sqrt{52}$$

Object 3 is closer to the centroid of cluster 1 and hence remains in the same cluster 1.

Proceed with the next point object 4(10, 4) and again compare it with the centroids in Table 13.10.

Dist (4, centroid 1) =
$$\sqrt{(10-4)^2 + (4-6)^2} = \sqrt{40}$$

Dist (4, centroid 2) =
$$\sqrt{(10-12)^2 + (4-4)^2} = \sqrt{4} = 2$$

Object 4 is closer to the centroid of cluster 2 and hence assign it to the cluster table. Object 4 is in the same cluster. The final cluster table is shown in Table 13.11.

Obviously, Object 5 is in Cluster 3. Recompute the new centroids of cluster 1 and cluster 2. They are (4, 6) and (11, 4), respectively.

Table 13.11: Cluster Table After Iteration 1

Cluster 1	Cluster 2
(4, 6)	(10, 4)
(2, 4)	(12, 4)
(6, 8)	
Centroid 1 (4, 6)	Centroid 2 (11, 4)

The second iteration is started again with the Table 13.11.

Obviously, the point (4, 6) remains in cluster 1, as the distance of it with itself is 0. The remaining objects can be checked. Take the sample object 1 (2, 4) and compare with the centroid of the clusters in Table 13.12.

Dist (1, centroid 1) =
$$\sqrt{(2-4)^2 + (4-6)^2} = \sqrt{8}$$

Dist (1, centroid 2) =
$$\sqrt{(2-11)^2 + (4-4)^2} = \sqrt{81} = 9$$

Object 1 is closer to centroid of cluster 1 and hence remains in the same cluster. Take the sample object 3 (6, 8) and compare with the centroid values of clusters 1 (4, 6) and cluster 2 (11, 4) of the Table 13.12.

Dist (3, centroid 1) =
$$\sqrt{(6-4)^2 + (8-6)^2} = \sqrt{8}$$

Dist (3, centroid 2) =
$$\sqrt{(6-11)^2 + (8-4)^2} = \sqrt{41}$$

Object 3 is closer to centroid of cluster 1 and hence remains in the same cluster. Take the sample object 4 (10, 4) and compare with the centroid values of clusters 1 (4, 6) and cluster 2 (11, 4) of the Table 13.12:

Dist (4, centroid 1) =
$$\sqrt{(10-4)^2 + (4-6)^2} = \sqrt{40}$$

Dist (3, centroid 2) =
$$\sqrt{(10-11)^2 + (4-4)^2} = \sqrt{1} = 1$$

Object 3 is closer to centroid of cluster 2 and hence remains in the same cluster. Obviously, the sample (12, 4) is closer to its centroid as shown below:

Dist (5, centroid 1) =
$$\sqrt{(12-4)^2 + (4-6)^2} = \sqrt{68}$$

Dist (5, centroid 2) = $\sqrt{(12-11)^2 + (4-4)^2} = \sqrt{1} = 1$. Therefore, it remains in the same cluster. Object 5 is taken as centroid point.

The final cluster Table 13.12 is given below:

Table 13.12: Cluster Table After Iteration 2

Cluster 1	Cluster 2
(4, 6)	(10, 4)
(2, 4)	(12, 4)
(6, 8)	
Centroid (4, 6)	Centroid (11, 4)

There is no change in the cluster Table 13.12. It is exactly the same; therefore, the *k*-means algorithm terminates with two clusters with data points as shown in the Table 13.12.

Figure 14.4: Basic Components of RL

- There are two types of problems in reinforcement learning Learning and Planning.
- •In learning problems, the environment is unknown and the agent learns by trial and error.

The agent interacts with the environment to improve policy. Planning is another problem where the environment is known and the agent computes with the model and improves policy.

Environment is the world where all actions take place. It is the framework, where the input, output and reward are specified. The environment describes the state or state variables or simply as state. Initially, the environment is in a state called initial state. For example, in a car system, the maps, game rules and obstructions in the road are described in the environment. An agent is an autonomous body that looks at the environment and takes an action. It can be any human or another computer program such as a robot or chatbot

Solution: The Euclidean distance using Eq. (13.1) is given as follows: $Distance (x_i, x_j) = \sqrt{(0-5)^2 + (3-8)^2}$ $= \sqrt{50} = 7.07$ The Manhattan distance using Eq. (13.2) is given as follows: $Distance (x_i, x_j) = \left (0-5) + (3-8) \right = 10$ The Chebyshev distance using Eq. (13.3) is given as follows: $Max \left\{ \left 0-5 \right , \left 3-8 \right \right\} = Max \left\{ 5, 5 \right\} = 5$	5 L3
The Manhattan distance using Eq. (13.2) is given as follows: Distance $(x_i, x_j) = (0 - 5) + (3 - 8) = 10$ The Chebyshev distance using Eq. (13.3) is given as follows: $ \text{Max}\{ 0 - 5 , 3 - 8 \} = \text{Max}\{5, 5\} = 5$	
The Manhattan distance using Eq. (13.2) is given as follows: Distance $(x_i, x_j) = (0 - 5) + (3 - 8) = 10$ The Chebyshev distance using Eq. (13.3) is given as follows: $ \text{Max}\{ 0 - 5 , 3 - 8 \} = \text{Max}\{5, 5\} = 5$	
Distance $(x_i, x_j) = (0 - 5) + (3 - 8) = 10$ The Chebyshev distance using Eq. (13.3) is given as follows: $\max \{ 0 - 5 , 3 - 8 \} = \max\{5, 5\} = 5$	
The Chebyshev distance using Eq. (13.3) is given as follows: $ \text{Max } \{ 0 - 5 , 3 - 8 \} = \text{Max } \{5, 5\} = 5 $	
The Chebyshev distance using Eq. (13.3) is given as follows: $ \text{Max } \{ 0 - 5 , 3 - 8 \} = \text{Max } \{5, 5\} = 5 $	
Many shift is a garage parametric and biogenships a shortering allowithms. This	
Many shift is a many parametric and biomorphical short-sign showithm. This	
Mean-shift is a non-parametric and hierarchical clustering algorithm. This algorithm is also known as mode seeking algorithm or a sliding window algorithm.	
•It has many applications in image processing and computer vision.	
•There is no need for any prior knowledge of clusters or shape of the clusters present in the dataset.	5 L2
•The algorithm slowly moves from its initial position towards the dense regions.	
•The algorithm uses a window, which is basically a weighting function.	
Algorithm 13.2: Mean-Shift Clustering	
Step 1: Design a window.	
Step 2: Place the window on a set of data points.	
Step 3: Compute the mean for all the points that come under the window.	
Step 4: Move the center of the window to the mean computed in step 3. Thus, the window moves towards the dense regions. The movement to the dense region is controlled by a mean shift vector. The mean shift vector is given as:	
$v_{s} = \frac{1}{K} \sum_{x_{i} \in s_{k}} (x_{i} - x) $ (13.13)	
Here, K is the number of points and S_k is the data points where the distance from data points x_i and centroid of the kernel x is within the radius of the sphere. Then, the centroid is updated as $x = x + v_s$.	
Step 5: Repeat the steps 3–4 for convergence. Once convergence is achieved, no further points can be accommodated.	

	<u> </u>	T		
10.c	Characteristics of Reinforcement Learning.			
	•1. Sequential decision making – Consider the Figure 14.3. It can be seen the path from start to goal is not done in one step. It is a sequence of decisions that leads to the goal. One wrong move may result in a failure. This is the main characteristic of reinforcement learning.	10M	CO5	L3
	•2. Delayed feedback – Often, rewards are not immediate. One must spend many moves to get final success or failure. Feedback in terms of reward is often delayed.			
	•3. The agent actions are interdependent as any action affects the subsequent actions. For example, one wrong move of an agent may lead to failure.			
	•4. Time related – All actions are associated with time stamps inherently as all actions are ordered as per the timeline inherently.			
	Challenges of Reinforcement Learning			
	•1. Reward design is a big challenge as in many games, as determining the rewards and its value is a challenge.			
	•2. Absence of a model is a challenge – Games like chess have fixed board and rules. But, many games do not have any fixed environment or rules. There is no underlying model as well. So, simulation must be done to gather experience.			
	•3. Partial observability of states – Many states are fully observable. Imagine a scenario in a weather forecasting where the uncertainty or partial observability exists as complete information about the state is simply not available.			
	•4. Time consuming operations – More state spaces and possible actions may complicate the scenarios, resulting in more time consumption.			
	•5. Complexity – Many games like GO are complicated with much larger board configuration and many possibilities of actions. So, labelled data is simply not available. This adds more complexity to the design of reinforcement algorithms.			
	Applications of Reinforcement Learning			
	There are many applications of RL. Some of the application domains where reinforcement learning is used are listed below:			
	Industrial automation			
	Resource management applications to allocate resource			
	Traffic light controller to reduce congestion of traffic			
	Personalized recommendation systems like news			
	Bidding for advertisement			
	Customized applications			
	Driverless cars			
	Along with deep learning games like Chess and GO			
	Deep mind applications like to generate programs and images			

CCISignature

HODSignature

FacultySignature