
 

 



Q.1 (Module-1) 

Q1.a State Tom Mitchell’s definition of machine learning. List and explain the challenges of machine learning. 

Answer (Tom Mitchell): 

A computer program is said to learn from experience E with respect to some class of tasks T and performance 
measure P, if its performance at tasks in T, as measured by P, improves with experience E. 

Challenges of machine learning (brief, exam style): 

1.​ Insufficient/biased data — models learn biases present in training data.​
 

2.​ Noisy / missing / inconsistent data — noise or missing values harm model quality.​
 

3.​ High dimensionality — curse of dimensionality increases computation and overfitting risk.​
 

4.​ Overfitting vs underfitting — balancing model complexity and generalization.​
 

5.​ Feature engineering — selecting/creating informative features is hard.​
 

6.​ Scalability & computation — large datasets require efficient algorithms and resources.​
 

7.​ Concept drift — distribution can change over time (models must adapt).​
 

8.​ Interpretability & fairness — ensuring model explanations and fairness constraints.​
 

9.​ Evaluation & validation — correct metrics and robust cross-validation are needed.​
 

Q1.b List and explain visualizations for univariate data analysis with examples. 

Answer (short but complete):​
 Common univariate visualizations and when they’re used: 

1.​ Histogram — shows distribution of a continuous variable (bins). Example: distribution of ages.​
 

2.​ Boxplot (box-and-whisker) — five-number summary (min, Q1, median, Q3, max) and outliers; good for 
comparing groups.​
 

3.​ Kernel density estimate (KDE) — smooth estimate of distribution.​
 

4.​ Stem-and-leaf plot — textual histogram-like display (small samples).​
 

5.​ Bar chart — for discrete/categorical counts (e.g., counts per category).​
 

6.​ Dotplot — simple visualization for small datasets.​
 

Include example: for exam, draw a histogram and a boxplot for a sample numeric list. 

Q1.c For patients age list {12, 14, 19, 22, 24, 26, 28, 31, 34}. Find IQR. 

Answer (calculation):​
 Sorted list (already): 12, 14, 19, 22, 24, 26, 28, 31, 34 (n = 9). 



●​ Median = middle element = 22 (5th element).​
 

●​ Lower half (below median): 12, 14, 19, 22? When n odd, exclude median: lower = 12,14,19, (elements 1–4? 
careful). For n=9, lower half is first 4 elements: 12,14,19,22? Wait standard convention: for median excluded, 
lower half is values below median: 12,14,19, (indexes 1–4? but median index is 5 so lower = first 4: 
12,14,19,22). We must compute Q1 as median of lower half: for consistency use Tukey method: lower half = 
first 4 = 12,14,19,22 → Q1 = median of these = (14+19)/2 = 16.5.​
 

●​ Upper half = last 4 = 24,26,28,31,34? Actually last 4 are 24,26,28,31 (positions 6–9? Wait check counts). The 
correct upper half for Tukey excluding median = elements 6–9 = 24,26,28,31 → Q3 = median of these = 
(26+28)/2 = 27.​
 

●​ IQR = Q3 − Q1 = 27 − 16.5 = 10.5.​
 

(If your instructor uses a different convention you may get slightly different quartile values; specify the method.) 

Q.2 (Module-1) — (the OR alternative questions) 

Q2.a Explain in detail the machine learning process with a neat diagram. 

Answer (stepwise): 

1.​ Problem definition — define task, objective and performance metric.​
 

2.​ Data collection — gather relevant data from sources.​
 

3.​ Data cleaning/preprocessing — handle missing values, outliers, normalization, encoding categorical 
variables.​
 

4.​ Exploratory Data Analysis (EDA) — visualize distributions, correlations, feature relationships.​
 

5.​ Feature engineering / selection — create, select or transform features.​
 

6.​ Split data — into training, validation and test sets (or cross-validation).​
 

7.​ Model selection — pick algorithms suitable for task (classification/regression/clustering).​
 

8.​ Training — fit models, tune hyperparameters (grid search, random search, Bayesian opt).​
 

9.​ Evaluation — use metrics (accuracy, precision/recall, RMSE, AUC) and validation set.​
 

10.​Deployment — serve model in production (APIs, pipelines).​
 

11.​Monitoring & maintenance — track performance, detect concept drift, retrain when needed.​
 

(Neat diagram: Data → Preprocess → Features → Model train/validate → Test → Deploy → Monitor.) 

 

Q2.b Explain data preprocessing with measures to solve missing data. 

Answer (key approaches): 



●​ Drop rows / columns if missingness is small or column not useful.​
 

●​ Imputation: mean/median/mode substitution (univariate), k-NN imputation, regression imputation, or 
model-based (multiple imputation).​
 

●​ Indicator flag: add a binary feature indicating missingness (if missingness informative).​
 

●​ Predictive models: train a model to predict missing values using other features.​
 

●​ Use algorithms robust to missingness (some tree methods can handle NA).​
 

●​ Understand missingness mechanism (MCAR, MAR, MNAR) and choose method accordingly.​
 

Q2.c 5-point summary of list [13,11,2,3,4,8,9] and boxplot. 

Answer (compute five numbers):​
 Sort the list: 2,3,4,8,9,11,13. (n=7) 

●​ Min = 2​
 

●​ Q1 = median of lower half = (for odd n, exclude median 8; lower half = 2,3,4 → median = 3)​
 

●​ Median = 8 (4th item)​
 

●​ Q3 = median of upper half = 9,11,13 → median = 11​
 

●​ Max = 13​
 

Five-point summary: (2, 3, 8, 11, 13). 

Boxplot: box between Q1=3 and Q3=11 with median at 8 and whiskers at min=2 and max=13. 

Q.3 (Module-2) 

Q3.a Let the data points be [2,6][2,6][2,6] and [1,7][1,7][1,7]. Apply PCA and find transformed data. 

Answer (step-by-step and results): 

1.​ Data points (as rows): x1=(2,6),x2=(1,7)x_1=(2,6), x_2=(1,7)x1​=(2,6),x2​=(1,7).​
 

2.​ Compute mean vector μ=((2+1)/2, (6+7)/2)=(1.5, 6.5)\mu = ((2+1)/2,\ (6+7)/2) = (1.5,\ 6.5)μ=((2+1)/2, 
(6+7)/2)=(1.5, 6.5).​
 

3.​ Center data: x1′=(0.5,−0.5), x2′=(−0.5,0.5)x_1' = (0.5, -0.5),\ x_2' = (-0.5, 0.5)x1′​=(0.5,−0.5), x2′​=(−0.5,0.5).​
 

4.​ Covariance matrix CCC (using sample covariance) = (0.5−0.5−0.50.5)\begin{pmatrix}0.5 & -0.5\\ -0.5 & 
0.5\end{pmatrix}(0.5−0.5​−0.50.5​).​
 

5.​ Eigen-decomposition: eigenvalues = λ1=1.0, λ2=0.0\lambda_1 = 1.0,\ \lambda_2 = 0.0λ1​=1.0, λ2​=0.0.​
 Corresponding eigenvectors (principal directions): v1=12(−1,1)v_1 = \frac{1}{\sqrt{2}}(-1,1)v1​=2​1​(−1,1) 
(direction of maximum variance), v2=12(−1,−1)v_2 = \frac{1}{\sqrt{2}}(-1,-1)v2​=2​1​(−1,−1) (zero variance).​
 



6.​ Project centered points onto eigenvectors → transformed coordinates:​
 

●​ For [2,6][2,6][2,6]: principal component coordinate = [−0.7071,0][-0.7071, 0][−0.7071,0]​
 

●​ For [1,7][1,7][1,7]: principal component coordinate = [+0.7071,0][+0.7071, 0][+0.7071,0]​
 

Thus the data lie entirely along the first principal axis (second component is zero because only two points symmetric 
about mean). (Numbers shown to 4 decimals.) 

Q3.b Apply candidate elimination algorithm on dataset given in the table (attributes: CGPA, Interactiveness, Practical 
knowledge, Communication skills, Logical thinking, Job offer). 

Answer (approach & result):​
 (I will outline the algorithm and show how to update S (most specific) and G (most general) given the table rows — 
exam approach.) 

1.​ Candidate Elimination maintains version space bounded by S (specific hypotheses) and G (general 
hypotheses). Initialize:​
 

○​ S=S =S= most specific hypothesis (e.g., ⟨φ,φ,φ,...⟩)​
 

○​ G=G =G= most general hypothesis ⟨?, ?, ?, ...⟩​
 

2.​ For each training example:​
 

○​ If example is positive → generalize S minimally to be consistent and remove inconsistent hypotheses 
from G.​
 

○​ If example is negative → specialize G minimally to exclude the instance and remove inconsistent 
from S.​
 

3.​ Apply stepwise (example counts shown in table). Final result (summary): S will contain the maximally 
specific hypothesis compatible with all positive examples; G will contain the most general hypotheses 
consistent with all negatives. (Exact S and G depend on each row in table — if you want I can show the 
step-by-step updates for each training row; say “show candidate elimination steps” and I’ll write them.)​
 

Q.4 (Module-2) — (alternate in Q3 OR) 

Q4.a Find Singular Value Decomposition (SVD) of matrix A=(1249)A = \begin{pmatrix}1 & 2\\ 4 & 
9\end{pmatrix}A=(14​29​). 

Answer (computed SVD):​
 We compute A=U S VTA = U \, S \, V^TA=USVT. 

The computed numerical SVD is: 

●​ Singular values S=diag⁡(10.0990195136, 0.09901951359)S = \operatorname{diag}(10.0990195136,\ 
0.09901951359)S=diag(10.0990195136, 0.09901951359) (approximately).​
 

●​ U≈(−0.2212078−0.9752267−0.97522670.2212078)U \approx \begin{pmatrix}-0.2212078 & -0.9752267\\ 
-0.9752267 & 0.2212078\end{pmatrix}U≈(−0.2212078−0.9752267​−0.97522670.2212078​).​
 



●​ VT≈(−0.40816978−0.91290604−0.912906040.40816978)V^T \approx \begin{pmatrix}-0.40816978 & 
-0.91290604\\ -0.91290604 & 
0.40816978\end{pmatrix}VT≈(−0.40816978−0.91290604​−0.912906040.40816978​).​
 

Check: USVTU S V^TUSVT reconstructs AAA (within numerical precision). (I used numpy.linalg.svd to compute 
these values; display precision above.) 

Q.5 (Module-3) 

Q5.a Apply K-nearest neighbors algorithm for the dataset in Table Q.5(a). Given test instance 
(6.1,40,5)(6.1,40,5)(6.1,40,5), use training set to classify. Choose K=3K=3K=3. 

Training set (rows): 

1.​ (9.2, 85, 8) → PASS​
 

2.​ (8.0, 80, 7) → PASS​
 

3.​ (8.5, 81, 8) → PASS​
 

4.​ (6.0, 45, 5) → FAIL​
 

5.​ (6.5, 50, 4) → FAIL​
 

6.​ (5.8, 38, 5) → FAIL​
 

Answer (step-by-step, Euclidean distance):​
 Compute Euclidean distance from test point t=(6.1,40,5)t=(6.1,40,5)t=(6.1,40,5) to every training point: 

●​ d₁ = dist(t, (9.2,85,8)) ≈ 45.2063​
 

●​ d₂ = dist(t, (8.0,80,7)) ≈ 40.0950​
 

●​ d₃ = dist(t, (8.5,81,8)) ≈ 41.1796​
 

●​ d₄ = dist(t, (6.0,45,5)) ≈ 5.0​
 

●​ d₅ = dist(t, (6.5,50,4)) ≈ ≈ 10.0125​
 

●​ d₆ = dist(t, (5.8,38,5)) ≈ 2.5495​
 

Sort distances: smallest are indices 6, 4, 5 (i.e., training rows 6,4,5) with labels: FAIL, FAIL, FAIL. 

For K=3K=3K=3, the 3 nearest neighbors are all FAIL → predicted label = FAIL. 

(So KNN classifies the test instance as FAIL.) 

Q5.b Explain types of regression methods and limitations. 

Answer (short): 



●​ Linear regression — models linear relationships; simple, interpretable; limitations: cannot model non-linear 
relationships without feature transforms.​
 

●​ Polynomial regression — extends linear model with polynomial features. Risk of overfitting for high-degree 
polynomials.​
 

●​ Logistic regression — classification for binary outcomes (models probability via sigmoid). Not suitable for 
non-linear boundaries w/o feature transforms.​
 

●​ Ridge/Lasso (regularized) — penalized linear models reduce overfitting; limitation: choose λ 
hyperparameter.​
 

●​ Non-linear regression (e.g., decision trees, kernel methods, neural networks) — can model complex 
relationships but require more data, tuning, and are less interpretable.​
 

●​ Limitations of regression methods: sensitivity to outliers, multicollinearity, wrong functional form 
assumption, overfitting, need for feature engineering, assumptions (like homoscedasticity in linear regression).​
 

Q5.c Explain the structure of a decision tree and outline the ID3 algorithm. 

Answer (brief): 

●​ Decision tree structure: internal nodes = tests on attributes; branches = outcomes; leaves = class labels (or 
regression values).​
 

●​ ID3 algorithm (overview):​
 

1.​ Start with the set of training examples.​
 

2.​ If all examples have the same class, return a leaf with that class.​
 

3.​ Otherwise, select the attribute that best classifies examples (use Information Gain from entropy).​
 

4.​ Create a decision node splitting on that attribute. For each attribute value, partition examples and 
recurse on subsets (ignoring used attributes).​
 

5.​ Stop when attributes exhausted or no examples; use majority class for leaf if needed.​
 

●​ ID3 uses entropy and information gain to pick splitting attributes.​
 

Q.6 (Module-3 OR part of Q5 alternative) 

Q6.a Write nearest-centroid classifier algorithm and apply to predict class for the test instance (6,5) using training 
dataset: 

Table Q6(a):​
 (3,1) → A​
 (5,2) → A​
 (4,3) → A​
 (7,6) → B​
 (8,5) → B 



Answer (algorithm): 

●​ Compute centroid (mean vector) for each class using training points.​
 

●​ For a test point, compute distance (e.g., Euclidean) to each class centroid.​
 

●​ Assign point to class whose centroid is nearest.​
 

Calculation: 

●​ Centroid of class A (points (3,1),(5,2),(4,3)):​
 μA=(3+5+43,1+2+33)=(4.0, 2.0)\mu_A = \left(\frac{3+5+4}{3}, \frac{1+2+3}{3}\right) = (4.0,\ 
2.0)μA​=(33+5+4​,31+2+3​)=(4.0, 2.0).​
 

●​ Centroid of class B (points (7,6),(8,5)):​
 μB=(7.5, 5.5)\mu_B = (7.5,\ 5.5)μB​=(7.5, 5.5).​
 

●​ Distances from test point t=(6,5):​
 

○​ dA=∥t−μA∥=(6−4)2+(5−2)2=4+9=13≈3.6056d_A = \|t - \mu_A\| = \sqrt{(6-4)^2 + (5-2)^2} = 
\sqrt{4 + 9} = \sqrt{13} \approx 3.6056dA​=∥t−μA​∥=(6−4)2+(5−2)2​=4+9​=13​≈3.6056.​
 

○​ dB=∥t−μB∥=(6−7.5)2+(5−5.5)2=2.25+0.25=2.5≈1.5811d_B = \|t - \mu_B\| = \sqrt{(6-7.5)^2 + 
(5-5.5)^2} = \sqrt{2.25 + 0.25} = \sqrt{2.5} \approx 
1.5811dB​=∥t−μB​∥=(6−7.5)2+(5−5.5)2​=2.25+0.25​=2.5​≈1.5811.​
 

Prediction: B (centroid B is closer). 

Q6.b Distinguish between:​
 i) Regression and correlation​
 ii) Regression and causation​
 iii) Linearity and non-linearity relationships 

Answer (concise):​
 i) Regression vs correlation: Correlation measures strength and direction of linear association (e.g., Pearson r). 
Regression models predictive relationship (predicts dependent from independent). Correlation is symmetric; 
regression is asymmetric (predictor→response).​
 ii) Regression vs causation: Regression finds associations and predictive relationships; causation requires controlled 
experiments / causal inference methods. Correlation/regression ≠ proof of cause.​
 iii) Linearity vs non-linearity: Linear relationships obey linear equation y=a+bxy = a + bxy=a+bx. Non-linear 
relationships cannot be well-described by a straight line (e.g., polynomial, exponential, periodic) and require 
non-linear models. 

Q6.c Explain advantages and disadvantages of decision trees. Write a general algorithm. 

Answer (short): 

●​ Advantages:​
 

1.​ Intuitive and easy to interpret.​
 

2.​ Handles numerical and categorical data.​
 



3.​ Little data preparation (no scaling required).​
 

4.​ Can model non-linear relationships and feature interactions.​
 

●​ Disadvantages:​
 

1.​ Prone to overfitting (trees can grow deep).​
 

2.​ High variance; small data changes can change the tree.​
 

3.​ Greedy splits may not find global optimum.​
 

4.​ Unstable if classes are imbalanced; biased to attributes with many levels.​
 

●​ General decision tree algorithm (high level):​
 

1.​ If all examples in node belong to same class → return leaf.​
 

2.​ Else select best split attribute (information gain / Gini).​
 

3.​ Split dataset into subsets per attribute value or threshold.​
 

4.​ Recursively apply tree building on each subset until stopping condition (min samples, depth limit, 
pure node).​
 

5.​ Optionally prune tree using validation data.​
 

Q.7 (Module-4) 

Q7.a Using Naive Bayes classifier, classify new data (Color=Red, Type=SUV, Origin=Domestic) using the training 
dataset in Table Q7(a). 

Training data (10 rows): 

1.​ Red, Sports, Domestic → YES​
 

2.​ Red, Sports, Domestic → NO​
 

3.​ Red, Sports, Domestic → YES​
 

4.​ Yellow, Sports, Domestic → NO​
 

5.​ Yellow, Sports, Imported → YES​
 

6.​ Yellow, SUV, Imported → NO​
 

7.​ Yellow, SUV, Imported → YES​
 

8.​ Yellow, SUV, Domestic → NO​
 

9.​ Red, SUV, Imported → NO​
 



10.​ Red, Sports, Imported → YES​
 

Answer (calculation): 

●​ Priors: P(Yes)=5/10=0.5, P(No)=0.5P(Yes) = 5/10 = 0.5,\ P(No)=0.5P(Yes)=5/10=0.5, P(No)=0.5.​
 

Compute likelihoods (feature independence assumed): 

●​ Among YES examples (5 rows: rows 1,3,5,7,10):​
 

○​ P(Color=Red∣Yes)=3/5=0.6P(\text{Color}=Red|Yes) = 3/5 = 0.6P(Color=Red∣Yes)=3/5=0.6 (rows 
1,3,10 are Red).​
 

○​ P(Type=SUV∣Yes)=1/5=0.2P(\text{Type}=SUV|Yes) = 1/5 = 0.2P(Type=SUV∣Yes)=1/5=0.2 (row 7 
is SUV).​
 

○​ P(Origin=Domestic∣Yes)=2/5=0.4P(\text{Origin}=Domestic|Yes) = 2/5 = 
0.4P(Origin=Domestic∣Yes)=2/5=0.4 (rows 1 and 3 are Domestic).​
 

●​ Among NO examples (5 rows: 2,4,6,8,9):​
 

○​ P(Color=Red∣No)=2/5=0.4P(\text{Color}=Red|No) = 2/5 = 0.4P(Color=Red∣No)=2/5=0.4 (rows 2 
and 9).​
 

○​ P(Type=SUV∣No)=3/5=0.6P(\text{Type}=SUV|No) = 3/5 = 0.6P(Type=SUV∣No)=3/5=0.6 (rows 
6,8,9).​
 

○​ P(Origin=Domestic∣No)=3/5=0.6P(\text{Origin}=Domestic|No) = 3/5 = 
0.6P(Origin=Domestic∣No)=3/5=0.6 (rows 2,4,8).​
 

Compute joint (unnormalized) posteriors: 

●​ P(Yes∣features)∝0.5×0.6×0.2×0.4=0.024P(Yes|features) \propto 0.5 \times 0.6 \times 0.2 \times 0.4 = 
0.024P(Yes∣features)∝0.5×0.6×0.2×0.4=0.024.​
 

●​ P(No∣features)∝0.5×0.4×0.6×0.6=0.072P(No|features) \propto 0.5 \times 0.4 \times 0.6 \times 0.6 = 
0.072P(No∣features)∝0.5×0.4×0.6×0.6=0.072.​
 

Normalized posteriors: 

●​ P(Yes∣x)=0.024/(0.024+0.072)=0.024/0.096=0.25P(Yes|x) = 0.024/(0.024+0.072) = 0.024/0.096 = 
0.25P(Yes∣x)=0.024/(0.024+0.072)=0.024/0.096=0.25.​
 

●​ P(No∣x)=0.75P(No|x) = 0.75P(No∣x)=0.75.​
 

Prediction: NO (not stolen) because P(No∣x)=0.75P(No|x) = 0.75P(No∣x)=0.75 > 0.25. 

(Note: If you want Laplace smoothing to avoid zero counts or to smooth small-sample issues, you can compute with 
+1 smoothing; here counts were nonzero so results OK.) 

Q7.b Explain simple model of an artificial neuron and neural network structure. 



Answer (summary): 

●​ Artificial neuron (perceptron): inputs xix_ixi​ with weights wiw_iwi​. Computes weighted sum z=∑iwixi+bz 
= \sum_i w_i x_i + bz=∑i​wi​xi​+b. Passes through activation y=ϕ(z)y = \phi(z)y=ϕ(z) (e.g., sigmoid, ReLU).​
 

●​ Neural network: layers of neurons — input layer → hidden layer(s) → output layer. Each neuron in layer 
receives outputs from previous layer. Network learns weights via backpropagation minimizing loss (gradient 
descent). Activation functions, architecture (depth/width), regularization determine model capacity. 

Q.8  

Q8.a Explain Bayes theorem, MAP hypothesis and Maximum Likelihood hypothesis (ML). 

Answer (concise): 

●​ Bayes theorem: P(H∣D)=P(D∣H)P(H)P(D)P(H|D) = \dfrac{P(D|H) P(H)}{P(D)}P(H∣D)=P(D)P(D∣H)P(H)​. 
It gives posterior probability of hypothesis HHH given data DDD.​
 

●​ Maximum Likelihood (ML): Choose hypothesis HHH that maximizes P(D∣H)P(D|H)P(D∣H) (likelihood). 
ML ignores prior P(H)P(H)P(H).​
 

●​ Maximum A Posteriori (MAP): Choose hypothesis that maximizes P(H∣D)=P(D∣H)P(H)P(H|D) = 
P(D|H)P(H)P(H∣D)=P(D∣H)P(H). So MAP = ML × prior; when priors are uniform MAP = ML.​
 

Use Bayes theorem to relate them: MAP=arg⁡max⁡HP(D∣H)P(H) \text{MAP} = \arg\max_H P(D|H) 
P(H)MAP=argmaxH​P(D∣H)P(H). ML is special case when prior is uniform. 

Q8.b Explain different activation functions used in ANN. 

Answer (common activations): 

●​ Sigmoid (logistic): σ(z)=1/(1+e−z)\sigma(z)=1/(1+e^{-z})σ(z)=1/(1+e−z). Outputs (0,1). Good for binary 
outputs, but suffers vanishing gradients.​
 

●​ Tanh: outputs (−1,1). Zero-centered; still can have vanishing gradient.​
 

●​ ReLU (Rectified Linear Unit): max⁡(0,z)\max(0,z)max(0,z). Simple, avoids vanishing for positive z; fast and 
popular. Drawback: "dying ReLU" for negative region.​
 

●​ Leaky ReLU / Parametric ReLU: small slope for negative region to mitigate dying ReLU.​
 

●​ Softmax: for multi-class output layer — converts vector to probability distribution.​
 

●​ Linear: identity function (used for regression outputs).​
 

Q.9 (Module-5) 

Q9.a Consider data points (from Table Q.9(a)): 

Objects: coordinates (X, Y):​
 1 → (2,4)​
 2 → (4,6)​



 3 → (6,8)​
 4 → (10,4)​
 5 → (12,4) 

Cluster using K-means with initial centroids being objects 2 and 5 i.e., μ1=(4,6)\mu_1=(4,6)μ1​=(4,6), 
μ2=(12,4)\mu_2=(12,4)μ2​=(12,4). Use standard Euclidean distance and iterate until convergence. 

Answer (step-by-step with computed iteration): 

●​ Initial centroids: C1 = (4,6), C2 = (12,4)​
 

Iteration 1 — assign each point to nearest centroid: 

●​ Distances to C1 and C2:​
 

○​ Point1 (2,4): d→C1 = sqrt((2-4)^2+(4-6)^2)=sqrt(4+4)=sqrt(8)=2.828 → C1; to C2 distance bigger.​
 

○​ Point2 (4,6): is centroid C1 → C1.​
 

○​ Point3 (6,8): to C1 = sqrt((6-4)^2+(8-6)^2)=sqrt(4+4)=2.828 → C1.​
 

○​ Point4 (10,4): closer to C2 → C2.​
 

○​ Point5 (12,4): is centroid C2 → C2.​
 

Assignments after iter 1: cluster 1 = {1,2,3}, cluster 2 = {4,5}. 

Update centroids: 

●​ New C1 = mean of points 1,2,3 = ((2+4+6)/3, (4+6+8)/3) = (4.0, 6.0) (unchanged).​
 

●​ New C2 = mean of points 4,5 = ((10+12)/2, (4+4)/2) = (11.0, 4.0).​
 

Iteration 2 — assign with new centroids: 

●​ Assignments remain the same (cluster1 = {1,2,3}, cluster2 = {4,5}). Centroids stabilized.​
 

Final clusters: 

●​ Cluster A: points 1,2,3 with centroid (4.0,6.0).​
 

●​ Cluster B: points 4,5 with centroid (11.0,4.0).​
 

(Converged after 1 update.) 

Q9.b Explain the various components of reinforcement learning. 

Answer (key components): 

●​ Agent — the learner/decision maker.​
 



●​ Environment — everything outside the agent.​
 

●​ State (s) — representation of environment at given time.​
 

●​ Actions (a) — set of possible moves agent can take.​
 

●​ Reward (r) — scalar feedback signal from environment (immediate).​
 

●​ Policy (π) — mapping from states to actions (can be deterministic or stochastic).​
 

●​ Value function (V or Q) — expected cumulative reward from state or state-action.​
 

●​ Model (optional) — agent’s model of environment dynamics (transition and reward).​
 

●​ Exploration vs exploitation tradeoff — balance trying new actions vs using known best actions.​
 

●​ Objective — maximize cumulative (discounted) reward.​
 

Q.10 (Module-5) 

Q10.a Find the Manhattan and Chebyshev distance if coordinates are (0,3) and (5,8). 

Answer (calculation): 

●​ Points: p1=(0,3), p2=(5,8)p_1=(0,3),\ p_2=(5,8)p1​=(0,3), p2​=(5,8).​
 

●​ Manhattan (L1) distance = ∣0−5∣+∣3−8∣=5+5=10.|0-5| + |3-8| = 5 + 5 = 10.∣0−5∣+∣3−8∣=5+5=10.​
 

●​ Chebyshev (L∞) distance = max⁡(∣0−5∣,∣3−8∣)=max⁡(5,5)=5.\max(|0-5|, |3-8|) = \max(5,5) = 
5.max(∣0−5∣,∣3−8∣)=max(5,5)=5.​
 

So Manhattan = 10, Chebyshev = 5. 

Q10.b Explain the mean-shift clustering algorithm. 

Answer (short summary): 

●​ Mean-shift is a non-parametric density-based clustering algorithm that finds modes of a density function.​
 

●​ For each data point, mean-shift iteratively moves the point to the mean of points in a window (defined by 
kernel bandwidth). Repeat until convergence; points that converge to the same mode are in the same cluster.​
 

●​ Does not need number of clusters a priori, but needs kernel bandwidth (sensitive). Works well on 
arbitrary-shaped clusters but is computationally heavier for large datasets.​
 

Q10.c List and explain i) Characteristics of RL, ii) Challenges of RL, iii) Applications of RL. 

Answer:​
 i) Characteristics of reinforcement learning: 

●​ Trial-and-error learning using rewards.​
 



●​ Delayed rewards, sequential decision making.​
 

●​ No explicit supervision (labels); learns from scalar reward.​
 

●​ Must balance exploration/exploitation.​
 

ii) Challenges: 

●​ Sample inefficiency (needs many interactions).​
 

●​ Credit assignment problem (which actions caused reward).​
 

●​ Partial observability and state representation.​
 

●​ Exploration in large spaces.​
 

●​ Stability and convergence of learning algorithms.​
 

iii) Applications: robotics control, game playing (AlphaGo), recommendation systems (sequential recommendations), 
resource allocation, autonomous driving, dialogue systems. 
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