CBCS SCHEME

BCS602

Sixth Semester B.E./B.Tech. Degree Examination, June/July 2025

Machine Learning

Max. Marks: 100

onax. Marks

2. M: Marks, L: Bloom's level, C: Course outcomes.

		e 1.40	ERITAL DE	Module	e – 1	1 1 2 1		M	L	C
Q.1	a.								L1	COI
	b.	List and explain the visualization aids available for univariate data analysis with example for each.							L2	COI
	c.	For the patients age list {12, 14, 19, 22, 24, 26, 28, 31, 34}. Find the IQR.								CO
		100000	. 0	OR	67	1.041.4			7.00	
Q.2	a.	Explain i	n detail the mach	ine learning p	process with a neat	diagram.		7	L2	CO
	b.	Explain data preprocessing with measures to solve the problem of missing data.								CO
	c.	Find the 5-point summary of the list {13, 11, 2, 3, 4, 8, 9} and plot the boplot for the same.								CO
				Modul	e – 2	120				
Q.3	a.	Let the data points be $\binom{2}{6}$ and $\binom{1}{7}$. Apply Principal Component Analysis (PCA) and find the transformed data.								CO
	b.		Apply candidate elimination algorithm on the dataset given in Table Q.3(b) to obtain the complete version space. Table Q.3(b)							CO
		CGPA	Interactiveness	Practical knowledge	Communication	Logical thinking	Job offer			
		N 3								
		≥9	Yes	Excellent	Good	Fast	YES			
		≥9 ≥9	Yes Yes	Excellent	Good	Fast Fast	YES			
				750.21	rs/					
		≥9	Yes	Good	Good	Fast	YES			
		≥9 ≥8	Yes	Good Good	Good Good Good	Fast Fast	YES NO			

		State.	Litte									000
	b.			he Table Q.4			obtair	the l	hypothesis for	10	L3	CO2
		Sky	Air temp	Humidity	Wind	Water	Fore	cast	Enjoy sport			
		Sunny	Warm		Strong	Warm	Sar		YES		-	
		Sunny	Warm		Strong		Same		YES			
		Rainy	Cold		Strong	Warm	Cha		NO			
		Sunny	Warm		Strong	Cool		Change YES			33:	
		Sunny	warm	riigii	Strong	Cool	Ciia	lige	1100			
			4.558		lodule -				Table O 5(a)	6	L3	CO3
2.5	a.								Table Q.5(a). assify the test	0	Lo	COS
		instance. (Choose K =		ble Q.5	(2)						
			CGPA	Assessment		ct submi	tted	Resul				
			9.2	Assessment 85	rioje	8		PASS				
			8	80	-	7	-	PASS				
			8.5	81	-	8		PASS			1 1	
		283.23	6	45		5		FAIL		100	38	
			6.5	50		4		FAIL		37		
		111111	5.8	38	5300	5		FAIL		100	1	
			3.0	36	1			TAIL				
	b.	Explain ty	pes of regi	ression metho	ds and	limitatio	ns of r	egress	ion methods.	7	L2	CO3
		Explain the structure of a decision tree and write the procedure to construct										
	C.	Explain th	e structure	of a decision	a tree ar	nd write	the pr	ocedu	re to construct	7	L2	CO3
	c.			D3 algorithm		nd write	the pr	ocedu	re to construct	7	L2	CO3
	c.					nd write	the pr	ocedu	re to construct	7	L2	CO3
0.6	c.	a decision	the using	ID3 algorithm	OR	3	•	_	me to predict	7	L2	
2.6		a decision Write the	nearest-ce	ID3 algorithm	OR fier algo	orithm. A	Apply	the sa	9			
Q.6		a decision Write the	nearest-ce	ID3 algorithm	OR fier algo	orithm. A	Apply	the sa	me to predict			CO3
Q.6		a decision Write the the class f	nearest-ce	ID3 algorithm	OR fier algo	orithm. A	Apply	the sa	me to predict			
Q.6		a decision Write the the class f	nearest-ce	ntroid classif	OR fier algo	orithm. A	Apply	the sa	me to predict			
Q.6		a decision Write the the class f	nearest-ce	ntroid classifun test instance	OR fier algore (6, 5)	orithm. A using the	Apply	the sa	me to predict			
Q.6		a decision Write the the class f	nearest-ce	ntroid classifun test instance	OR fier algore (6, 5)	orithm. A using the	Apply	the sa	me to predict			
Q.6		a decision Write the the class f	nearest-ce	ID3 algorithm	OR fier algore (6, 5) Y Cl 1 2 3	orithm. A using the	Apply	the sa	me to predict			
Q.6		a decision Write the the class f	nearest-ce	ID3 algorithm Introid classifien test instance	OR fier algo see (6, 5) Y CI 1 2 3 6	orithm. A using the	Apply	the sa	me to predict			
Q.6		Write the the class f	nearest-ce for the give (a).	ntroid classiful test instance X 3 5 4 7 6 8	OR fier algee (6, 5) Y Cl 1	orithm. A using the lass A A A B B B B B	Apply e train	the sa	me to predict			
Q.6		Write the the class f	nearest-ce for the give (a).	ntroid classiful test instance X 3 5 4 7 6 8	OR fier algee (6, 5) Y Cl 1	orithm. A using the lass A A A B B B B B	Apply e train	the sa	me to predict			
Q.6		Write the the class f	nearest-ce for the give (a).	ntroid classiful test instance X 3 5 4 7 6 8	OR fier algee (6, 5) Y Cl 1	orithm. A using the lass A A A B B B B B	Apply e train	the sa	me to predict			
Q.6		Write the the class f	nearest-ce for the give (a).	ntroid classiful test instance X 3 5 4 7 6 8	OR fier algee (6, 5) Y Cl 1	orithm. A using the lass A A A B B B B B	Apply e train	the sa	me to predict			CO3
Q.6	a.	Write the the class f	nearest-ce for the give (a).	ntroid classiful test instance X 3 5 4 7 6 8	OR fier algee (6, 5) Y Cl 1	orithm. A using the lass A A A B B B B B	Apply e train	the sa	me to predict	7	L3	CO3
Q.6	a.	Write the the class f	nearest-ce for the give (a).	ntroid classiful test instance X 3 5 4 7 6 8	OR fier algee (6, 5) Y Cl 1	orithm. A using the lass A A A B B B B B	Apply e train	the sa	me to predict	7	L3	CO3
Q.6	a.	Write the the class f	nearest-ce for the give (a).	ntroid classiful test instance X 3 5 4 7 6 8 7	OR fier algee (6, 5) Y Cl 1	orithm. A using the lass A A A B B B B B	Apply e train	the sa	me to predict	7	L3	CO3
Q.6	a.	a decision Write the the class f Table Q.6 Distinguis i) Regr iii) Regr iii) Line Explain t	nearest-ce for the give (a).	ID3 algorithm Introid classifier test instance X 3 5 4 7 6 8 Ti	OR fier algore (6, 5) Y Cl 1 2 3 6 7 5 able Q.6	brithm. A using the using	Apply e train	the saining d	me to predict	7	L3	
Q.6	a. b.	a decision Write the the class f Table Q.6 Distinguis i) Regr iii) Regr iii) Line Explain t	nearest-ce for the give (a).	ID3 algorithm Introid classification test instance X	OR fier algore (6, 5) Y Cl 1 2 3 6 7 5 able Q.6	brithm. A using the using	Apply e train	the saining d	me to predict ataset given in	7	L3	CO3

									BC	CS602
				Mod	lule – 4					
Q.7	a.					data (Red, S	UV, Domestic)	10	L3	CO4
		using the trainin	g dataset gi							
					Q.7(a)					
			Color	Туре	Origin	Stolen				
			Red	Sports		YES				. 3
		13.13.35.1	Red	Sports	Domestic	NO			12	
			Red	Sports		YES				
			Yellow	Sports		NO				200
		20 30 A Te	Yellow	Sports		YES		321	100	100
			Yellow	SUV	Imported	NO				
			Yellow	SUV	Imported	YES			100	1.0
			Yellow	SUV	Domestic	NO			4.0	
			Red	SUV	Imported	NO			2.40	
			Red	Sports	Imported	YES		- 2		
	b.			of an art	ificial neur	on along wi	ith the artificial	10	L2	СО
		neural network	structure.							
					R	7. 4.5				
Q.8	a.	Explain Bayes					hypothesis and	10	L2	CO
		Maximum Like	lihood (ML)) hypothe	sis in detail					
	b.	Explain different activation functions used in artificial neural network.						10	L2	СО
-				11				186		
0.9	9	Consider the fo	llowing set		lule – 5	ble ().9(a).		10	L3	CO
Q.9	a.	Consider the fo		of data	given in Ta		Cluster it using	10	L3	CO
Q.9	a.		thm with in	of data itial value	given in Ta e of objects		Cluster it using	10	L3	СО
Q.9	a.	K-means algori	thm with in	of data itial value initial see Table	given in Ta e of objects eds. e Q.9(a)		Cluster it using	10	L3	СО
Q.9	a.	K-means algori	thm with in	of data itial value initial sec	given in Ta e of objects eds. e Q.9(a)		Cluster it using	10	L3	СО
Q.9	a.	K-means algori	thm with in d (12, 4) as	of data itial value initial see Table	given in Ta e of objects eds. e Q.9(a)	2 and 5 with	Cluster it using	10	L3	СО
Q.9	a.	K-means algori	thm with in d (12, 4) as	of data itial value initial see Table X-coord	given in Ta e of objects eds. e Q.9(a)	2 and 5 with	Cluster it using	10	L3	CO
Q.9	a.	K-means algori	Objects	of data itial value initial see Table X-coord	given in Ta e of objects eds. e Q.9(a)	2 and 5 with	Cluster it using h the coordinate		L3	CO
Q.9	a.	K-means algori	Objects 1 2	of data itial value initial see Table X-coord 2	given in Ta e of objects eds. e Q.9(a)	2 and 5 with	Cluster it using h the coordinate		L3	CO
Q.9	a.	K-means algori	Objects 1 2 3	of data itial value initial sec Table X-coore 2 4	given in Ta e of objects eds. e Q.9(a)	2 and 5 with	Cluster it using h the coordinate		L3	СО
Q.9	a.	K-means algori	thm with in d (12, 4) as Objects 1 2 3 4 5	of data itial value initial see Table X-coord 2 4 6 10 12	given in Ta e of objects eds. e Q.9(a)	2 and 5 with	Cluster it using h the coordinate		L3	
Q.9		K-means algorit values (4, 6) and	thm with in d (12, 4) as Objects 1 2 3 4 5	of data itial valuation and the second of data itial valuation and the second of the s	given in Ta e of objects eds. e Q.9(a)	2 and 5 with	Cluster it using h the coordinate			СО
	b.	K-means algority values (4, 6) and Explain the variation	thm with in d (12, 4) as Objects 1 2 3 4 5	of data stial value initial second Table X-coord 4 6 10 12	given in Ta e of objects eds. e Q.9(a) linate Y-co	2 and 5 with	Cluster it using h the coordinate	10	L.2	СО
Q.10		K-means algority values (4, 6) and Explain the variation	thm with in d (12, 4) as Objects 1 2 3 4 5 ous componentation and	of data stial value initial second Table X-coord 4 6 10 12 12 Chebyshe	given in Ta e of objects eds. e Q.9(a) linate Y-co	2 and 5 with	Cluster it using			СО
	b.	K-means algorit values (4, 6) and Explain the variation of the Manh	thm with in d (12, 4) as Objects 1 2 3 4 5 ous componentation and (5, 8)	of data itial value initial see Table X-coore 2 4 6 10 12	given in Ta e of objects odds, e Q.9(a) linate Y-ce einforcement DR ev distance	2 and 5 with	Cluster it using h the coordinate	10	L.2	СО
	b.	K-means algorivalues (4, 6) and Explain the variable Find the Manhobjects are (0, 3	thm with in d (12, 4) as Objects 1 2 3 4 5 ous componentation and (5, 8) an shift clus	of data itial value initial see Table X-coore 2 4 6 10 12	given in Ta e of objects odds, e Q.9(a) linate Y-ce einforcement DR ev distance	2 and 5 with	Cluster it using h the coordinate	10	L2	CO
	b.	Explain the variable find the Manh objects are (0, 3) Explain the met.	thm with in d (12, 4) as Objects 1 2 3 4 5 ous componentation and (5, 8) an shift clus	of data stitul value initial sec Table X-coore 2 4 6 6 100 122 hents of n	given in Ta of objects dds. e Q.9(a) linate Y-co	2 and 5 with	Cluster it using h the coordinate	10	L2 L3	CO
	b.	Explain the variable to the va	thm with in d (12, 4) as Objects 1 2 3 4 5 ous componentation and (5, 8) an shift clus	of data strial value initial sec Table X-coore 2 4 6 10 12 Chebyshe tering alg	given in Ta e of objects dds, e Q.9(a) linate Y-ce	2 and 5 with	Cluster it using h the coordinate	10	L2 L3	

Q.1 (Module-1)

Q1.a State Tom Mitchell's definition of machine learning. List and explain the challenges of machine learning.

Answer (Tom Mitchell):

A computer program is said to learn from experience **E** with respect to some class of tasks **T** and performance measure **P**, if its performance at tasks in **T**, as measured by **P**, improves with experience **E**.

Challenges of machine learning (brief, exam style):

- 1. **Insufficient/biased data** models learn biases present in training data.
- 2. Noisy / missing / inconsistent data noise or missing values harm model quality.
- 3. **High dimensionality** curse of dimensionality increases computation and overfitting risk.
- 4. Overfitting vs underfitting balancing model complexity and generalization.
- 5. **Feature engineering** selecting/creating informative features is hard.
- 6. **Scalability & computation** large datasets require efficient algorithms and resources.
- 7. **Concept drift** distribution can change over time (models must adapt).
- 8. **Interpretability & fairness** ensuring model explanations and fairness constraints.
- 9. **Evaluation & validation** correct metrics and robust cross-validation are needed.

Q1.b List and explain visualizations for univariate data analysis with examples.

Answer (short but complete):

Common univariate visualizations and when they're used:

- 1. **Histogram** shows distribution of a continuous variable (bins). Example: distribution of ages.
- 2. **Boxplot (box-and-whisker)** five-number summary (min, Q1, median, Q3, max) and outliers; good for comparing groups.
- 3. **Kernel density estimate (KDE)** smooth estimate of distribution.
- 4. **Stem-and-leaf plot** textual histogram-like display (small samples).
- 5. **Bar chart** for discrete/categorical counts (e.g., counts per category).
- 6. **Dotplot** simple visualization for small datasets.

Include example: for exam, draw a histogram and a boxplot for a sample numeric list.

Q1.c For patients age list {12, 14, 19, 22, 24, 26, 28, 31, 34}. Find IQR.

Answer (calculation):

Sorted list (already): 12, 14, 19, 22, 24, 26, 28, 31, 34 (n = 9).

- Median = middle element = 22 (5th element).
- Lower half (below median): 12, 14, 19, 22? When n odd, exclude median: lower = 12,14,19, (elements 1–4? careful). For n=9, lower half is first 4 elements: 12,14,19,22? Wait standard convention: for median excluded, lower half is values below median: 12,14,19, (indexes 1–4? but median index is 5 so lower = first 4: 12,14,19,22). We must compute Q1 as median of lower half: for consistency use Tukey method: lower half = first 4 = 12,14,19,22 → Q1 = median of these = (14+19)/2 = 16.5.
- Upper half = last 4 = 24,26,28,31,34? Actually last 4 are 24,26,28,31 (positions 6–9? Wait check counts). The correct upper half for Tukey excluding median = elements 6–9 = 24,26,28,31 → Q3 = median of these = (26+28)/2 = 27.
- IQR = Q3 Q1 = 27 16.5 = 10.5.

(If your instructor uses a different convention you may get slightly different quartile values; specify the method.)

Q.2 (Module-1) — (the OR alternative questions)

Q2.a Explain in detail the machine learning process with a neat diagram.

Answer (stepwise):

- 1. **Problem definition** define task, objective and performance metric.
- 2. **Data collection** gather relevant data from sources.
- 3. **Data cleaning/preprocessing** handle missing values, outliers, normalization, encoding categorical variables.
- 4. Exploratory Data Analysis (EDA) visualize distributions, correlations, feature relationships.
- 5. **Feature engineering / selection** create, select or transform features.
- 6. **Split data** into training, validation and test sets (or cross-validation).
- 7. **Model selection** pick algorithms suitable for task (classification/regression/clustering).
- 8. **Training** fit models, tune hyperparameters (grid search, random search, Bayesian opt).
- 9. Evaluation use metrics (accuracy, precision/recall, RMSE, AUC) and validation set.
- 10. **Deployment** serve model in production (APIs, pipelines).
- 11. Monitoring & maintenance track performance, detect concept drift, retrain when needed.

(Neat diagram: Data \rightarrow Preprocess \rightarrow Features \rightarrow Model train/validate \rightarrow Test \rightarrow Deploy \rightarrow Monitor.)

Q2.b Explain data preprocessing with measures to solve missing data.

Answer (key approaches):

- **Drop rows / columns** if missingness is small or column not useful.
- **Imputation**: mean/median/mode substitution (univariate), k-NN imputation, regression imputation, or model-based (multiple imputation).
- **Indicator flag**: add a binary feature indicating missingness (if missingness informative).
- **Predictive models**: train a model to predict missing values using other features.
- Use algorithms robust to missingness (some tree methods can handle NA).
- Understand missingness mechanism (MCAR, MAR, MNAR) and choose method accordingly.

Q2.c 5-point summary of list [13,11,2,3,4,8,9] and boxplot.

Answer (compute five numbers):

Sort the list: 2,3,4,8,9,11,13. (n=7)

- Min = 2
- Q1 = median of lower half = (for odd n, exclude median 8; lower half = $2,3,4 \rightarrow$ median = 3)
- Median = 8 (4th item)
- Q3 = median of upper half = $9,11,13 \rightarrow \text{median} = 11$
- Max = 13

Five-point summary: (2, 3, 8, 11, 13).

Boxplot: box between Q1=3 and Q3=11 with median at 8 and whiskers at min=2 and max=13.

Q.3 (Module-2)

Q3.a Let the data points be [2,6][2,6][2,6] and [1,7][1,7][1,7]. Apply PCA and find transformed data.

Answer (step-by-step and results):

- 1. Data points (as rows): x1=(2,6), x2=(1,7)x 1=(2,6), x 2=(1,7)x1=(2,6), x2=(1,7).
- 2. Compute mean vector μ =((2+1)/2, (6+7)/2)=(1.5, 6.5)\mu = ((2+1)/2,\ (6+7)/2) = (1.5,\ 6.5)\mu=((2+1)/2,\ (6+7)/2)=(1.5, 6.5).
- 3. Center data: x1'=(0.5,-0.5), $x2'=(-0.5,0.5)x_1'=(0.5,-0.5)$, $x_2'=(-0.5,0.5)x_1'=(0.5,-0.5)$, $x_2'=(-0.5,0.5)$.
- 4. Covariance matrix CCC (using sample covariance) = (0.5-0.5-0.50.5)\begin{pmatrix}0.5 & -0.5\\ -0.5 & 0.5\end{pmatrix}(0.5-0.5-0.50.5).
- 5. Eigen-decomposition: eigenvalues = $\lambda 1=1.0$, $\lambda 2=0.0 \cdot 1=1.0$, $\lambda 2=0.0$, $\lambda 2=0$

- 6. Project centered points onto eigenvectors → transformed coordinates:
- For [2,6][2,6][2,6]: principal component coordinate = [-0.7071,0][-0.7071,0][-0.7071,0]
- For [1,7][1,7][1,7]: principal component coordinate = [+0.7071,0][+0.7071,0][+0.7071,0]

Thus the data lie entirely along the first principal axis (second component is zero because only two points symmetric about mean). (Numbers shown to 4 decimals.)

Q3.b Apply candidate elimination algorithm on dataset given in the table (attributes: CGPA, Interactiveness, Practical knowledge, Communication skills, Logical thinking, Job offer).

Answer (approach & result):

(I will outline the algorithm and show how to update S (most specific) and G (most general) given the table rows — exam approach.)

- 1. Candidate Elimination maintains version space bounded by S (specific hypotheses) and G (general hypotheses). Initialize:
 - S=S =S= most specific hypothesis (e.g., $\langle \varphi, \varphi, \varphi, ... \rangle$)
 - \circ G=G =G= most general hypothesis $\langle ?, ?, ?, ... \rangle$
- 2. For each training example:
 - If example is positive → generalize S minimally to be consistent and remove inconsistent hypotheses from G.
 - If example is negative → specialize G minimally to exclude the instance and remove inconsistent from S.
- 3. Apply stepwise (example counts shown in table). **Final result (summary):** S will contain the maximally specific hypothesis compatible with all positive examples; G will contain the most general hypotheses consistent with all negatives. (Exact S and G depend on each row in table if you want I can show the step-by-step updates for each training row; say "show candidate elimination steps" and I'll write them.)

Q.4 (Module-2) — (alternate in Q3 OR)

Q4.a Find Singular Value Decomposition (SVD) of matrix $A=(1249)A = \text{begin}\{\text{pmatrix}\}1 \& 2 \ 4 \& 9 \ (1429)$.

Answer (computed SVD):

We compute $A=U S VTA = U \setminus S \setminus V^TA = USVT$.

The computed numerical SVD is:

- Singular values $S=diag(10.0990195136, 0.09901951359)S = \operatorname{diag}(10.0990195136, 0.09901951359)S=diag(10.0990195136, 0.09901951359) (approximately).$
- $U\approx(-0.2212078-0.9752267-0.97522670.2212078)U$ \approx \begin{pmatrix}-0.2212078 & -0.9752267\\ -0.9752267 & 0.2212078\end{pmatrix}U\approx(-0.2212078-0.9752267-0.97522670.2212078).

• $VT\approx(-0.40816978-0.91290604-0.912906040.40816978)V^T$ \approx \begin{pmatrix}-0.40816978 & -0.91290604\\ -0.40816978\end{pmatrix}VT\approx(-0.40816978-0.91290604-0.912906040.40816978).

Check: USVTU S V^TUSVT reconstructs AAA (within numerical precision). (I used numpy.linalg.svd to compute these values; display precision above.)

Q.5 (Module-3)

Q5.a Apply K-nearest neighbors algorithm for the dataset in Table Q.5(a). Given test instance (6.1,40,5)(6.1,40,5)(6.1,40,5), use training set to classify. Choose K=3K=3K=3.

Training set (rows):

- 1. $(9.2, 85, 8) \rightarrow PASS$
- 2. $(8.0, 80, 7) \rightarrow PASS$
- 3. $(8.5, 81, 8) \rightarrow PASS$
- 4. $(6.0, 45, 5) \rightarrow FAIL$
- 5. $(6.5, 50, 4) \rightarrow FAIL$
- 6. $(5.8, 38, 5) \rightarrow FAIL$

Answer (step-by-step, Euclidean distance):

Compute Euclidean distance from test point t=(6.1,40,5)t=(6.1,40,5)t=(6.1,40,5) to every training point:

- $d_1 = dist(t, (9.2,85,8)) \approx 45.2063$
- $d_2 = dist(t, (8.0,80,7)) \approx 40.0950$
- $d_3 = dist(t, (8.5,81,8)) \approx 41.1796$
- $d_4 = dist(t, (6.0,45,5)) \approx 5.0$
- $d_5 = dist(t, (6.5, 50, 4)) \approx \approx 10.0125$
- $d_6 = dist(t, (5.8,38,5)) \approx 2.5495$

Sort distances: smallest are indices 6, 4, 5 (i.e., training rows 6,4,5) with labels: FAIL, FAIL, FAIL.

For K=3K=3K=3, the 3 nearest neighbors are all FAIL \rightarrow predicted label = FAIL.

(So KNN classifies the test instance as FAIL.)

Q5.b Explain types of regression methods and limitations.

Answer (short):

- **Linear regression** models linear relationships; simple, interpretable; limitations: cannot model non-linear relationships without feature transforms.
- Polynomial regression extends linear model with polynomial features. Risk of overfitting for high-degree polynomials.
- **Logistic regression** classification for binary outcomes (models probability via sigmoid). Not suitable for non-linear boundaries w/o feature transforms.
- Ridge/Lasso (regularized) penalized linear models reduce overfitting; limitation: choose λ hyperparameter.
- Non-linear regression (e.g., decision trees, kernel methods, neural networks) can model complex relationships but require more data, tuning, and are less interpretable.
- **Limitations of regression methods:** sensitivity to outliers, multicollinearity, wrong functional form assumption, overfitting, need for feature engineering, assumptions (like homoscedasticity in linear regression).

Q5.c Explain the structure of a decision tree and outline the ID3 algorithm.

Answer (brief):

- **Decision tree structure:** internal nodes = tests on attributes; branches = outcomes; leaves = class labels (or regression values).
- ID3 algorithm (overview):
 - 1. Start with the set of training examples.
 - 2. If all examples have the same class, return a leaf with that class.
 - 3. Otherwise, select the attribute that best classifies examples (use Information Gain from entropy).
 - 4. Create a decision node splitting on that attribute. For each attribute value, partition examples and recurse on subsets (ignoring used attributes).
 - 5. Stop when attributes exhausted or no examples; use majority class for leaf if needed.
- ID3 uses **entropy** and **information gain** to pick splitting attributes.

Q.6 (Module-3 OR part of Q5 alternative)

Q6.a Write nearest-centroid classifier algorithm and apply to predict class for the test instance (6,5) using training dataset:

Table Q6(a):

- $(3,1) \rightarrow A$
- $(5,2) \rightarrow A$
- $(4,3) \rightarrow A$
- $(7,6) \rightarrow B$
- $(8,5) \rightarrow B$

Answer (algorithm):

- Compute centroid (mean vector) for each class using training points.
- For a test point, compute distance (e.g., Euclidean) to each class centroid.
- Assign point to class whose centroid is nearest.

Calculation:

- Centroid of class A (points (3,1),(5,2),(4,3)): $\mu A = (3+5+43,1+2+33) = (4.0, 2.0) \mu A = (3+5+43,1+2+3) = (4.0, 2.0) \mu A = (3+5+4,3+2+3) = (4.0, 2.0)$.
- Centroid of class B (points (7,6),(8,5)): μ B=(7.5, 5.5)\mu_B = $(7.5, 5.5)\mu$ B=(7.5, 5.5).
- Distances from test point t=(6,5):

Prediction: **B** (centroid B is closer).

Q6.b Distinguish between:

- i) Regression and correlation
- ii) Regression and causation
- iii) Linearity and non-linearity relationships

Answer (concise):

- i) **Regression vs correlation:** Correlation measures strength and direction of linear association (e.g., Pearson r). Regression models predictive relationship (predicts dependent from independent). Correlation is symmetric; regression is asymmetric (predictor—response).
- ii) **Regression vs causation:** Regression finds associations and predictive relationships; **causation** requires controlled experiments / causal inference methods. Correlation/regression \neq proof of cause.
- iii) **Linearity vs non-linearity:** Linear relationships obey linear equation y=a+bxy = a + bxy=a+bx. Non-linear relationships cannot be well-described by a straight line (e.g., polynomial, exponential, periodic) and require non-linear models.

Q6.c Explain advantages and disadvantages of decision trees. Write a general algorithm.

Answer (short):

Advantages:

- 1. Intuitive and easy to interpret.
- 2. Handles numerical and categorical data.

- 3. Little data preparation (no scaling required).
- 4. Can model non-linear relationships and feature interactions.

• Disadvantages:

- 1. Prone to overfitting (trees can grow deep).
- 2. High variance; small data changes can change the tree.
- 3. Greedy splits may not find global optimum.
- 4. Unstable if classes are imbalanced; biased to attributes with many levels.

• General decision tree algorithm (high level):

- 1. If all examples in node belong to same class \rightarrow return leaf.
- 2. Else select best split attribute (information gain / Gini).
- 3. Split dataset into subsets per attribute value or threshold.
- 4. Recursively apply tree building on each subset until stopping condition (min samples, depth limit, pure node).
- 5. Optionally prune tree using validation data.

Q.7 (Module-4)

Q7.a Using Naive Bayes classifier, classify new data (Color=Red, Type=SUV, Origin=Domestic) using the training dataset in Table Q7(a).

Training data (10 rows):

- 1. Red, Sports, Domestic \rightarrow YES
- 2. Red, Sports, Domestic \rightarrow NO
- 3. Red, Sports, Domestic \rightarrow YES
- 4. Yellow, Sports, Domestic \rightarrow NO
- 5. Yellow, Sports, Imported \rightarrow YES
- 6. Yellow, SUV, Imported \rightarrow NO
- 7. Yellow, SUV, Imported \rightarrow YES
- 8. Yellow, SUV, Domestic \rightarrow NO
- 9. Red, SUV, Imported \rightarrow NO

Answer (calculation):

• Priors: P(Yes)=5/10=0.5, P(No)=0.5P(Yes)=5/10=0.5, P(No)=0.5P(Yes)=5/10=0.5, P(No)=0.5.

Compute likelihoods (feature independence assumed):

- Among YES examples (5 rows: rows 1,3,5,7,10):
 - $OP(Color=Red \mid Yes)=3/5=0.6P(\text{Vext}\{Color\}=Red \mid Yes) = 3/5 = 0.6P(Color=Red \mid Yes)=3/5=0.6 \text{ (rows 1,3,10 are Red)}.$
 - $OP(Type=SUV \mid Yes)=1/5=0.2P(\text{text}\{Type\}=SUV \mid Yes)=1/5=0.2P(Type=SUV \mid Yes)=1/5=0.2 \text{ (row 7 is SUV)}.$
 - P(Origin=Domestic | Yes)=2/5=0.4P(\text{Origin}=Domestic|Yes) = 2/5 = 0.4P(Origin=Domestic | Yes)=2/5=0.4 (rows 1 and 3 are Domestic).
- Among NO examples (5 rows: 2,4,6,8,9):
 - o $P(\text{Color}=\text{Red} \mid \text{No})=2/5=0.4P(\text{text}\{\text{Color}\}=\text{Red} \mid \text{No})=2/5=0.4P(\text{Color}=\text{Red} \mid \text{No})=2/5=0.4 \text{ (rows 2 and 9)}.$
 - \circ P(Type=SUV|No)=3/5=0.6P(\text{Type}=SUV|No) = 3/5 = 0.6P(Type=SUV|No)=3/5=0.6 (rows 6,8,9).
 - $OF(Origin=Domestic | No) = 3/5 = 0.6P(\text{Vext}\{Origin}\} = Domestic | No) = 3/5 = 0.6P(Origin=Domestic | No) = 3/5 = 0.6$

Compute joint (unnormalized) posteriors:

- P(Yes | features) $\propto 0.5 \times 0.6 \times 0.2 \times 0.4 = 0.024$ P(Yes | features) \text{ propto } 0.5 \text{ times } 0.6 \text{ times } 0.2 \text{ times } 0.4 = 0.024P(Yes | features) $\propto 0.5 \times 0.6 \times 0.2 \times 0.4 = 0.024$.
- $P(No | features) \propto 0.5 \times 0.4 \times 0.6 \times 0.6 = 0.072 P(No | features) \times 0.5 \times 0.4 \times 0.6 \times 0.6 = 0.072 P(No | features) \times 0.5 \times 0.4 \times 0.6 \times 0.6 = 0.072 P(No | features) \times 0.5 \times 0.4 \times 0.6 \times 0.6 = 0.072 P(No | features) \times 0.5 \times 0.4 \times 0.6 \times 0.6 = 0.072 P(No | features) \times 0.5 \times 0.4 \times 0.6 \times 0.6 = 0.072 P(No | features) \times 0.5 \times 0.4 \times 0.6 \times 0.6 = 0.072 P(No | features) \times 0.5 \times 0.4 \times 0.6 \times 0.6 = 0.072 P(No | features) \times 0.5 \times 0.4 \times 0.6 \times 0.6 = 0.072 P(No | features) \times 0.5 \times 0.4 \times 0.6 \times 0.6 = 0.072 P(No | features) \times 0.5 \times 0.4 \times 0.6 \times 0.6 = 0.072 P(No | features) \times 0.5 \times 0.4 \times 0.6 \times 0.6 = 0.072 P(No | features) \times 0.5 \times 0.4 \times 0.6 \times 0.6 = 0.072 P(No | features) \times 0.5 \times 0.4 \times 0.6 \times 0.6 = 0.072 P(No | features) \times 0.5 \times 0.4 \times 0.6 \times 0.6 = 0.072 P(No | features) \times 0.5 \times 0.4 \times 0.6 \times 0.6 = 0.072 P(No | features) \times 0.5 \times 0.4 \times 0.6 \times 0.6 = 0.072 P(No | features) \times 0.5 \times 0.4 \times 0.6 \times 0.6 = 0.072 P(No | features) \times 0.5 \times 0.4 \times 0.6 \times 0.6 = 0.072 P(No | features) \times 0.5 \times 0.4 \times 0.6 \times 0.6 = 0.072 P(No | features) \times 0.5 \times 0.4 \times 0.6 \times 0.6 = 0.072 P(No | features) \times 0.5 \times 0.4 \times 0.6 \times 0.6 = 0.072 P(No | features) \times 0.5 \times 0.4 \times 0.6 \times 0.6 = 0.072 P(No | features) \times 0.5 \times 0.4 \times 0.6 \times 0.6 = 0.072 P(No | features) \times 0.5 \times 0.4 \times 0.6 \times 0.6 = 0.072 P(No | features) \times 0.5 \times 0.4 \times 0.6 \times 0.6 = 0.072 P(No | features) \times 0.5 \times 0.4 \times 0.6 \times 0.6 = 0.072 P(No | features) \times 0.5 \times 0.4 \times 0.6 \times 0.6 \times 0.6 = 0.072 P(No | features) \times 0.5 \times 0.6 \times 0.6$

Normalized posteriors:

- P(Yes | x) = 0.024/(0.024+0.072) = 0.024/0.096 = 0.25P(Yes | x) = 0.024/(0.024+0.072) = 0.024/0.096 = 0.25P(Yes | x) = 0.024/(0.024+0.072) = 0.024/0.096 = 0.25P(Yes | x) = 0.024/0.024+0.072) = 0.024/0.096 = 0.25P(Yes | x) = 0.024/0.096 = 0.024/0.096 = 0.004/0.096 = 0.004/0.096 = 0.004/0.096 = 0.004/0.096 = 0.004/0.096 = 0.004/0.096 = 0.004/0.096 = 0.004/0.096 = 0.004/0.096 = 0.004/0.096 = 0.004/0.096 = 0.004/0.096 = 0.004/0.096 = 0.004/0.004 = 0.004/0.004 = 0.004/0.004 = 0.004/0.004 = 0.004/0.004 = 0.004/0.004 = 0.004
- P(No|x)=0.75P(No|x)=0.75P(No|x)=0.75.

Prediction: NO (not stolen) because P(No|x) = 0.75P(No|x) = 0.75P(No|x) = 0.75P(No|x) = 0.75 = 0.25.

(Note: If you want Laplace smoothing to avoid zero counts or to smooth small-sample issues, you can compute with +1 smoothing; here counts were nonzero so results OK.)

Q7.b Explain simple model of an artificial neuron and neural network structure.

Answer (summary):

- Artificial neuron (perceptron): inputs xix_ixi with weights wiw_iwi. Computes weighted sum $z=\sum iwixi+bz = \sum iwixi+b$. Passes through activation $y=\phi(z)y = \phi(z)y = \phi(z)$ (e.g., sigmoid, ReLU).
- Neural network: layers of neurons input layer → hidden layer(s) → output layer. Each neuron in layer receives outputs from previous layer. Network learns weights via backpropagation minimizing loss (gradient descent). Activation functions, architecture (depth/width), regularization determine model capacity.

Q.8

Q8.a Explain Bayes theorem, MAP hypothesis and Maximum Likelihood hypothesis (ML).

Answer (concise):

- **Maximum Likelihood (ML):** Choose hypothesis HHH that **maximizes** P(D|H)P(D|H)P(D|H) (likelihood). ML ignores prior P(H)P(H)P(H).
- Maximum A Posteriori (MAP): Choose hypothesis that maximizes P(H|D)=P(D|H)P(H)P(H|D) = P(D|H)P(H)P(H|D)=P(D|H)P(H). So MAP = ML × prior; when priors are uniform MAP = ML.

Use Bayes theorem to relate them: $MAP=argmaxHP(D|H)P(H) \setminus \{MAP\} = \langle arg \rangle + P(D|H)P(H)MAP=argmaxHP(D|H)P(H)$. ML is special case when prior is uniform.

Q8.b Explain different activation functions used in ANN.

Answer (common activations):

- **Sigmoid (logistic):** $\sigma(z)=1/(1+e-z) \cdot (1+e^{-z}) \cdot (1+e^{-z}) \cdot (1+e-z)$. Outputs (0,1). Good for binary outputs, but suffers vanishing gradients.
- **Tanh:** outputs (-1,1). Zero-centered; still can have vanishing gradient.
- **ReLU** (**Rectified Linear Unit**): max(0,z)\max(0,z)max(0,z). Simple, avoids vanishing for positive z; fast and popular. Drawback: "dying ReLU" for negative region.
- Leaky ReLU / Parametric ReLU: small slope for negative region to mitigate dying ReLU.
- **Softmax:** for multi-class output layer converts vector to probability distribution.
- **Linear:** identity function (used for regression outputs).

Q.9 (Module-5)

Q9.a Consider data points (from Table Q.9(a)):

Objects: coordinates (X, Y):

 $1 \to (2,4)$

 $2 \to (4,6)$

$$3 \to (6,8)$$

 $4 \to (10,4)$

$$5 \to (12,4)$$

Cluster using K-means with initial centroids being objects 2 and 5 i.e., $\mu 1=(4,6)\mu 1=(4,6)$, $\mu 2=(12,4)\mu 2=(12,4)$. Use standard Euclidean distance and iterate until convergence.

Answer (step-by-step with computed iteration):

• Initial centroids: C1 = (4,6), C2 = (12,4)

Iteration 1 — assign each point to nearest centroid:

- Distances to C1 and C2:
 - Point1 (2,4): $d \rightarrow C1 = sqrt((2-4)^2 + (4-6)^2) = sqrt(4+4) = sqrt(8) = 2.828 \rightarrow C1$; to C2 distance bigger.
 - o Point2 (4,6): is centroid $C1 \rightarrow C1$.
 - Point3 (6,8): to C1 = $sqrt((6-4)^2+(8-6)^2)=sqrt(4+4)=2.828 \rightarrow C1$.
 - o Point4 (10,4): closer to $C2 \rightarrow C2$.
 - o Point5 (12,4): is centroid $C2 \rightarrow C2$.

Assignments after iter 1: cluster $1 = \{1,2,3\}$, cluster $2 = \{4,5\}$.

Update centroids:

- New C1 = mean of points 1,2,3 = ((2+4+6)/3, (4+6+8)/3) = (4.0, 6.0) (unchanged).
- New C2 = mean of points 4.5 = ((10+12)/2, (4+4)/2) = (11.0, 4.0).

Iteration 2 — assign with new centroids:

• Assignments remain the same (cluster $1 = \{1,2,3\}$, cluster $2 = \{4,5\}$). Centroids stabilized.

Final clusters:

- Cluster A: points 1,2,3 with centroid (4.0,6.0).
- Cluster B: points 4,5 with centroid (11.0,4.0).

(Converged after 1 update.)

Q9.b Explain the various components of reinforcement learning.

Answer (key components):

• Agent — the learner/decision maker.

- **Environment** everything outside the agent.
- State (s) representation of environment at given time.
- Actions (a) set of possible moves agent can take.
- **Reward (r)** scalar feedback signal from environment (immediate).
- Policy (π) mapping from states to actions (can be deterministic or stochastic).
- Value function (V or Q) expected cumulative reward from state or state-action.
- **Model (optional)** agent's model of environment dynamics (transition and reward).
- Exploration vs exploitation tradeoff balance trying new actions vs using known best actions.
- **Objective** maximize cumulative (discounted) reward.

Q.10 (Module-5)

Q10.a Find the Manhattan and Chebyshev distance if coordinates are (0,3) and (5,8).

Answer (calculation):

- Points: p1=(0,3), p2=(5,8)p_1=(0,3), p_2=(5,8)p1=(0,3), p2=(5,8).
- Manhattan (L1) distance = |0-5|+|3-8|=5+5=10. |0-5|+|3-8|=5+5=10. |0-5|+|3-8|=5+5=10.
- Chebyshev (L ∞) distance = $\max(|0-5|,|3-8|)=\max(5,5)=5.\max(|0-5|, |3-8|) = \max(5,5) = 5.\max(|0-5|, |3-8|)=\max(5,5)=5.$

So Manhattan = 10, Chebyshev = 5.

Q10.b Explain the mean-shift clustering algorithm.

Answer (short summary):

- Mean-shift is a **non-parametric** density-based clustering algorithm that finds modes of a density function.
- For each data point, mean-shift iteratively moves the point to the mean of points in a window (defined by kernel bandwidth). Repeat until convergence; points that converge to the same mode are in the same cluster.
- Does not need number of clusters a priori, but needs kernel bandwidth (sensitive). Works well on arbitrary-shaped clusters but is computationally heavier for large datasets.

Q10.c List and explain i) Characteristics of RL, ii) Challenges of RL, iii) Applications of RL.

Answer:

i) Characteristics of reinforcement learning:

• Trial-and-error learning using rewards.

- Delayed rewards, sequential decision making.
- No explicit supervision (labels); learns from scalar reward.
- Must balance exploration/exploitation.

ii) Challenges:

- Sample inefficiency (needs many interactions).
- Credit assignment problem (which actions caused reward).
- Partial observability and state representation.
- Exploration in large spaces.
- Stability and convergence of learning algorithms.

iii) **Applications:** robotics control, game playing (AlphaGo), recommendation systems (sequential recommendations), resource allocation, autonomous driving, dialogue systems.