

			USN						2	CMRIT
			ernal Asso	essment Test – I	I June	- 2025			DOMESTIC RESIDENCE	- Comment
ub:	Mathematics-II for	EC Stream					Code:	BMATE201		
Dat	Date: 17-06-2025 Duration: 90 mins Max Marks: 50 Sem: II		I	BRANCH:ECE						
		Question 1 is cor	npulsory ar	nd Answer any 6	from the	remaining	questions.			
								Marks	CO RE	
1	Solve the different $\frac{d^2y}{dt^2} + 4\frac{dy}{dt} + 4y =$	intial equation e^{-t} , $y(0) = e^{-t}$	on by : 0, y'(0) :	using the I	aplace	transfor	m method	d [08]	CO3	L3
	Apply Milnes predictor-corrector formula to compute y at 0.8, given $\frac{dy}{dx} = x - y^2$, Given $y(0) = 0$, $y(0.2) = 0.02$, $y(0.4) = 0.0795$, $y((0.6) = 0.1762$					[07]	COA			
					ax			[07]	CO4	L3

,			USN							THE RESIDENCE OF THE PARTY OF T	CMRIT
		Intern	al Assessr	ment Test - II	June - 2	025					-
Sub:	Mathematics-II for I							Code:	BMA	TE201	
Dat	Date: 17-06-2025 Duration: 90 mins Max Marks: 50 Sem: II		BRA		NCH:ECE						
	Q	uestion 1 is com	pulsory an	d Answer any 6	from the	remainir	g qu	estions.	1		
									M-1	OBE	
									Marks	CO	RBT
1 2	Solve the different $\frac{d^2y}{dt^2} + 4\frac{dy}{dt} + 4y = 4$	tial equation $e^{-t}, y(0) = 0$	1 by u^{0} , $y'(0) = 0$	using the L	aplace	transf	orm	method		CO3	RBT
2 A	Solve the different $\frac{d^2y}{dt^2} + 4\frac{dy}{dt} + 4y = 6$ upply Milnes predictor-cover $y(0) = 0$, $y(0.2) = 0$	orrector formula	a to compu	ite y at 0.8, give				method			

	Define a subspace. Show that the intersection of two subspaces of a vector space V is also a subspace of V.	[07]	CO2	L3
5	Define linearly independent set of vectors and linearly dependent set of vectors. Are the vectors $V_1 = (2, 5, 3)$, $V_2 = (1, 1, 1)$, and $V_3 = (4, -2, 0)$ linearly independent? Justify your answer.	[07]	CO2	L3
6	Let $T: V_3(R)$ to $V_3(R)$ be a linear transformation defined by $T(x, y, z) = (x + y, x - y, 2x + z)$. Find the range, null space, and hence verify the rank-nullity theorem.	[07]	CO2	L3
7	Find the Laplace transform of the triangular wave function $f(t) = \{t, if \ 0 \le t \le a, (2a - t), if \ a \le t \le 2a\}, f(t + 2a) = f(t).$	[07]	CO3	L3
8	Express $f(t) = \{cost, if \ 0 < t < \pi, cos2t, if \ \pi < t < 2\pi, cos3t, if \ t > 2\pi\}$ in terms of the Heaviside unit step function and hence find $L\{f(t)\}$.	[07]	CO3	L3

4	Define a subspace. Show that the intersection of two subspaces of a vector space V is also a subspace of V.	[07]	CO2	L3
5	Define linearly independent set of vectors and linearly dependent set of vectors. Are the vectors $V_1 = (2, 5, 3)$, $V_2 = (1, 1, 1)$, and $V_3 = (4, -2, 0)$ linearly independent? Justify your answer.	[07]	CO2	L3
6	Let $T: V_3(R)$ to $V_3(R)$ be a linear transformation defined by $T(x, y, z) = (x + y, x - y, 2x + z)$. Find the range, null space, and hence verify the rank-nullity theorem.	[07]	CO2	L3
7	Find the Laplace transform of the triangular wave function $f(t) = \{t, if \ 0 \le t \le a, (2a - t), if \ a \le t \le 2a\}, f(t + 2a) = f(t).$	[07]	CO3	L3
8	Express $f(t) = \{cost, if \ 0 < t < \pi, cos2t, if \ \pi < t < 2\pi, cos3t, if \ t > 2\pi\}$ ir terms of the Heaviside unit step function and hence find $L\{f(t)\}$.	[07]	CO3	L3

ic.

$$y(t) = \frac{1}{2}(\cos h \, kt + \cos kt)$$

Thus,

Solve the following initial value problem by using Laplace transforms:

Folve the following trees:
$$\frac{d^2y}{dt^2} + 4\frac{dy}{dt} + 4y = e^{-t} \; ; \; y \; (0) = 0, \; y'(0) = 0$$
[June 2016]

The given equation is $y''(t) + 4y'(t) + 4y(t) = e^{-t}$

Taking Laplace transform on both sides we have,

L[
$$y''(t)$$
] + $4L[y'(t)] + 4L[y(t)] = L(e^{-t})$

ie.,
$$\{s^2L[y(t)]-sy(0)-y'(0)\}+4\{sL[y(t)]-y(0)\}+4L[y(t)]=\frac{1}{s+1}$$

Using the given initial conditions we obtain,

the given finted est
$$L[y(t)]\{s^2 + 4s + 4\} = \frac{1}{s+1} \text{ or } L[y(t)] = \frac{1}{(s+1)(s+2)^2}$$

$$y(t) = L^{-1} \left[\frac{1}{(s+1)(s+2)^2} \right]$$
 and by partial fractions,

$$\frac{1}{(s+1)(s+2)^2} = \frac{1}{s+1} + \frac{-1}{s+2} + \frac{-1}{(s+2)^2}$$

$$L^{-1}\left[\frac{1}{(s+1)(s+2)^2}\right] = L^{-1}\left[\frac{1}{s+1}\right] - L^{-1}\left[\frac{1}{s+2}\right] - L^{-1}\left[\frac{1}{(s+2)^2}\right]$$

ie.,
$$y(t) = e^{-t} - e^{-2t} - e^{-2t} L^{-1} \left(\frac{1}{s^2}\right)$$

Thus,
$$y(t) = e^{-t} - e^{-2t} - e^{-2t} t = e^{-t} - (1+t)e^{-2t}$$

WORKED PROBLEMS

Q2 Given that
$$\frac{dy}{dx} = x - y^2$$
 and the data $y(0) = 0, y(0.2) = 0.02$,

y(0.4) = 0.0795, y(0.6) = 0.1762. Compute y(0.8) by applying Milne's method.

[June 18, Sep 20, Feb 21]

We prepare the following table using the given data which is essentially required for applying the predictor and corrector formulae.

x	y	$y' = x - y^2$
$x_0 = 0$	$y_0 = 0$	$y_0' = 0 - 0^2 = 0$
$x_1 = 0.2$	$y_1 = 0.02$	$y_1' = 0.2 - (0.02)^2 = 0.1996$
$x_2 = 0.4$	$y_2 = 0.0795$	$y_2' = 0.4 - (0.0795)^2 = 0.3937$
$x_3 = 0.6$	$y_3 = 0.1762$	$y_3' = 0.6 - (0.1762)^2 = 0.5689$
$x_4 = 0.8$	$y_4 = ?$	= 1, 4 = 0.2

We have the predictor formula : $y_4^{(P)} = y_0 + \frac{4h}{3}(2y_1' - y_2' + 2y_3')$

$$y_4^{(P)} = 0 + \frac{4(0.2)}{3} [2(0.1996) - 0.3937 + 2(0.5689)] = 0.3049$$

Now,
$$y_4' = x_4 - y_4^2 = 0.8 - (0.3049)^2 = 0.707$$

Next we have the corrector formula: $y_4^{(C)} = y_2 + \frac{h}{3}(y_2' + 4y_3' + y_4')$

$$y(0.8) = y_4^{(c)} = 0.0795 + \frac{0.2}{3}[0.3937 + 4(0.5689) + 0.707] = 0.3046$$

Apply Milne's method to compute y (1.4) corrector to four decimal places given

x - 1.7 09 0 1- cc 18, Sep 31 The problem has to be worked in two stages.

The problem 1...
$$y = 2$$
, $f(x,y) = 1 + (y/x)$, $h = 0.2$

We have Euler's formula : $y_1^{(0)} = y_0 + h f(x_0, y_0)$

$$y_1^{(0)} = 2 + (0.2)(3) = 2.6$$

Further we have modified Euler's formula:

$$y_1^{(1)} = y_0 + \frac{h}{2} [f(x_0, y_0) + f(x_1, y_1^{(0)})]$$

$$y_1^{(1)} = 2 + (0.1)[3 + (1 + y_1^{(0)}/x_1)] = 2 + (0.1)[4 + 2.6/1.2] = 2.6$$

Next approximation $y_1^{(2)}$ is got just by replacing the value of $y_1^{(1)}$ in place of

Now,
$$y_1^{(2)} = 2 + (0.1)[4 + 2.6167/1.2] = 2.6181$$

$$y_1^{(3)} = 2 + (0.1)[4 + 2.6181/1.2] = 2.6182 ; y_1^{(4)} = 2.6182 = y (1.2)$$

II Stage: We repeat the process by taking y(1.2) = 2.6182 as the in condition.

$$x_0 = 1.2$$
, $y_0 = 2.6182$; $f(x_0, y_0) = 1 + (y_0/x_0) = 3.1818$
 $x_1 = x_0 + h = 1.4$, $y(x_1) = y_1 = y(1.4) = ?$

From (1),
$$y_1^{(0)} = 2.6182 + (0.2)(3.1818) = 3.2546$$

From (2),
$$y_1^{(1)} = 2.6182 + (0.1)[3.1818 + (1 + y_1^{(0)}/x_1)]$$

$$y_1^{(1)} = 2.6182 + (0.1)[4.1818 + 3.2546/1.4] = 3.2689$$

 $y_1^{(2)} = 2.6182 + (0.1)[4.1818 + 3.2546/1.4] = 3.2689$

$$y_1^{(2)} = 2.6182 + (0.1)[4.1818 + 3.2689/1.4] = 3.2689$$

 $y_1^{(3)} = 2.6182 + (0.1)[4.1818 + 3.2689/1.4] = 3.2699$

$$y_1^{(3)} = 2.6182 + (0.1)[4.1818 + 3.2699/1.4] = 3.2699$$

nus, $y(1.4) = 3.2699 \approx 3.27$ the vector space V(F)
need to show that UNW is multphiation To Prone UNW is closed vector addition Since U,WEUNW u, wEUf u,WEW

ent No. utwe uf utwe W EUf CUEW Since USW are Subspace

Page No.: Ase the vectors $V_1 = (2\sqrt{5}, 3)$ $V_2 = (4, -2, 0)$ linearly ind some matrix and check for zero for zono for some somes exist than the vectors are rearly dependent of hearly independent Dut since the above matrix is Square we would just here to find the determinar

				Page No.:	CMI
1 37	lon a	naw =	Pine 20	yero, implija ink, then Ut ly independent ero shen I ly dependent	that he
	2	5	3	= 2(0-(-2))
	4 -	- 2	0	-5(0- +3(-2)-	4) 4)
				= 4+20 = = 6	
hen s	Since the	e d H	fermi f (4	roint of the m tors (2,5,	atox is 3) linear

Q6
$$T(x,y,z) = (x+y,x-y,2x+z)$$

 $T(1,0,0) = (1,1,2):T(0,1,0) = (1,-1,0);T(0,0,1) = (0,0,1)$
Consider, $[A] = \begin{bmatrix} 1 & 1 & 2 \\ 1 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} R_2 \rightarrow -R_1 + R_2 \begin{bmatrix} 1 & 1 & 2 \\ 0 & -2 & -2 \\ 0 & 0 & 1 \end{bmatrix} R_2 \rightarrow -1/2 \cdot R_1$

$$\begin{bmatrix} 1 & 1 & 2 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} :: r(T) = 3 \text{ and } n(T) = 0$$

$$r(T) + n(T) = 3 + 0 = 3 = d[V_3(R)]$$
. Theorem is verified.

$$R(T) = L(S) = \{x_1(1,1,2) + x_2(0,1,1) + x_3(0,0,1)\}$$

$$R(T) = \{(x_1, x_1 + x_2, 2x_1 + x_2 + x_3) / x_1, x_2, x_3 \in R\}$$

$$R(T) = \{(x_1, x_1 + x_2, 2x_1 + x_2 + x_3) / x_1, x_2, x_3 \in R\}$$

Next, consider T(x, y, z) = 0.

That is,
$$x + y = 0$$
, $x - y = 0$, $2x + z = 0$

On solving
$$x = 0, y = 0, z = 0$$
 :: $N(T) = \{(0,0,0)\}$

$$(-E, a < t < 2a)$$

Q7 If
$$f(t) = \begin{cases} t, & 0 \le t \le a \\ 2a - t, & a \le t \le 2a, & f(t + 2a) = f(t) \end{cases}$$

(i) Sketch the graph of f (t) as a periodic function

(ii) Show that
$$L[f(t)] = \frac{1}{s^2} \tan h (as/2)$$
 [June & Dec 2016]

(i) Let f(t) = y and y = t is a straight line passing through the origin making an angle 45° with the t-axis. y = 2a - t or y + t = 2a or t/2a + y/2a = 1 is a straight line passing through the points (2a, 0) and (0, 2a). The graph of y = f(t) is as follows.

The periodic function f(t) is called the triangular wave function.

(ii) We have,
$$T = 2a$$
 and $L[f(t)] = \frac{1}{1 - e^{-sT}} \int_{0}^{T} e^{-st} f(t) dt$

$$L[f(t)] = \frac{1}{1 - e^{-2as}} \int_{0}^{2a} e^{-st} f(t) dt$$

$$L[f(t)] = \frac{1}{1 - e^{-2as}} \left\{ \int_{0}^{a} t e^{-st} dt + \int_{a}^{2a} (2a - t) e^{-st} dt \right\}$$

Applying Bernoulli's rule to each of the integrals we have,

Applying Bernoulli's rule to each of the integrals we have,
$$L[f(t)] = \frac{1}{1 - e^{-2as}} \left\{ \left[t \cdot \frac{e^{-st}}{-s} - (1) \frac{e^{-st}}{s^2} \right]_0^a + \left[(2a - t) \frac{e^{-st}}{-s} - (-1) \frac{e^{-st}}{s^2} \right]_a^{2a} \right\}$$

$$L[f(t)] = \frac{1}{1 - e^{-2as}} \left\{ \frac{-1}{s} (ae^{-as} - 0) - \frac{1}{s^2} (e^{-as} - 1) - \frac{1}{s} (0 - ae^{-as}) + \frac{1}{s^2} (e^{-2as} - e^{-as}) \right\}$$

$$L[f(t)] = \frac{1}{s^2 (1 - e^{-2as})} (-e^{-as} + 1 + e^{-2as} - e^{-as})$$

$$= \frac{1}{s^2 (1 - e^{-2as})} (1 - 2e^{-as} + e^{-2as}) = \frac{(1 - e^{-as})^2}{s^2 (1 - e^{-as}) (1 + e^{-as})}$$

$$L[f(t)] = \frac{(1 - e^{-as})}{s^2 (1 + e^{-as})} = \frac{e^{as/2} - e^{-as/2}}{s^2 (e^{as/2} + e^{-as/2})}$$

$$L[f(t)] = \frac{(1 - e^{-as})}{s^2 (1 + e^{-as})} = \frac{e^{as/2} - e^{-as/2}}{s^2 (e^{as/2} + e^{-as/2})}$$

where we have multiplied both the numerator and denominator by $e^{as/2}$.

$$L[f(t)] = \frac{2\sin h(as/2)}{s^2 \cdot 2\cos h(as/2)} = \frac{1}{s^2} \tan h\left(\frac{as}{2}\right)$$

Thus,

$$L[f(t)] = 1/s^2 \cdot \tan h(as/2)$$

Similar Problems

Find I [f(t)] : f(t) f(t) f(t) f(t) f(t)

[June 20]

Q8
$$f(t) = \begin{cases} \cos t, & 0 < t < \pi \\ \cos 2t, & \pi < t < 2\pi \\ \cos 3t, & t > 2\pi \end{cases}$$

$$f(t) = \cos t + (\cos 2t - \cos t) u(t - \pi) + (\cos 3t - \cos 2t) u(t - 2\pi)$$

$$L[f(t)] = L(\cos t) + L[(\cos 2t - \cos t) u(t - \pi)] + L[(\cos 3t - \cos 2t) u(t - 2\pi)] ...(1)$$

$$\text{let} \quad F(t - \pi) = \cos 2t - \cos t \quad ; \quad G(t - 2\pi) = \cos 3t - \cos 2t$$

$$\Rightarrow \quad F(t) = \cos 2(t + \pi) - \cos(t + \pi) \text{ and}$$

$$G(t) = \cos 3(t + 2\pi) - \cos 2(t + 2\pi)$$

$$L[f(t) = \cos 2t + \cos t \qquad ; \quad G(t) = \cos 3t - \cos 2t$$

$$L[f(t) = \cos 3t - \cos 2t \qquad ; \quad G(t) = \cos 3t - \cos 2t$$

$$L[f(t) = \cos 3t - \cos 2t \qquad ; \quad G(t) = \cos 3t - \cos 2t$$

$$L[f(t) = \cos 3t - \cos 2t \qquad ; \quad G(t) = \cos 3t - \cos 2t$$

$$L[f(t) = \cos 3t - \cos 2t \qquad ; \quad G(t) = \cos 3t - \cos 2t$$

$$L[f(t) = \cos 3t - \cos 2t \qquad ; \quad G(t) = \cos 3t - \cos 2t$$

$$L[f(t) = \cos 3t - \cos 2t \qquad ; \quad G(t) = \cos 3t - \cos 2t$$

$$L[f(t) = \cos 3t - \cos 2t \qquad ; \quad G(t) = \cos 3t - \cos 2t$$

$$L[f(t) = \cos 3t - \cos 2t \qquad ; \quad G(t) = \cos 3t - \cos 2t$$

$$L[f(t) = \cos 3t - \cos 2t \qquad ; \quad G(t) = \cos 3t - \cos 2t$$

$$L[f(t) = \cos 3t - \cos 2t \qquad ; \quad G(t) = \cos 3t - \cos 2t$$

$$L[f(t) = \cos 3t - \cos 2t \qquad ; \quad G(t) = \cos 3t - \cos 2t$$

$$L[f(t) = \cos 3t - \cos 2t \qquad ; \quad G(t) = \cos 3t - \cos 2t$$

$$L[f(t) = \cos 3t - \cos 2t \qquad ; \quad G(t) = \cos 3t - \cos 2t$$

$$L[f(t) = \cos 3t - \cos 2t \qquad ; \quad G(t) = \cos 3t - \cos 2t$$

$$L[f(t) = \cos 3t - \cos 2t \qquad ; \quad G(t) = \cos 3t - \cos 2t$$

$$L[f(t) = \cos 3t - \cos 2t \qquad ; \quad G(t) = \cos 3t - \cos 2t$$

$$L[f(t) = \cos 3t - \cos 2t \qquad ; \quad G(t) = \cos 3t - \cos 2t$$

$$L[f(t) = \cos 3t - \cos 2t \qquad ; \quad G(t) = \cos 3t - \cos 2t$$

$$L[f(t) = \cos 3t - \cos 2t \qquad ; \quad G(t) = \cos 3t - \cos 2t$$

and
$$L[(\cos 3t - \cos 2t)u(t - 2\pi)] = e^{-2\pi s} \left(\frac{s}{s^2 + 9} - \frac{s}{s^2 + 4}\right)$$

Hence (1) becomes

$$L[f(t)] = \frac{s}{s^2 + 1} + e^{-\pi s} \left(\frac{s}{s^2 + 4} + \frac{s}{s^2 + 1} \right) + e^{-2\pi s} \left(\frac{s}{s^2 + 9} - \frac{s}{s^2 + 4} \right)$$

Thus
$$\left[L[f(t)] = \frac{s}{s^2 + 1} + s e^{-\pi s} \left(\frac{1}{s^2 + 4} + \frac{1}{s^2 + 1} \right) - \frac{5s e^{-2\pi s}}{(s^2 + 4)(s^2 + 9)} \right]$$