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1  What is Machine Learning? Explain Reinforcement Learning with 

example.OR 
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2 Discuss MatPlotLib Library with examples. [10] CO1 L2 
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PART II 

What is the purpose of scaling the dataset? Explain MinMax Scaler and 

Standard Scaler.OR 
[10] CO2 L3 

4 

 

Apply appropriate evaluation metrics (such as MAE, MSE, RMSE) to assess 

the performance of a given regression model, and interpret the results.  
[10] CO3 L3 

 

 

 

5 
PART III 

Discuss the working mechanism of the KNN algorithm and analyze how the 

choice of 'K' and distance metric influences its performance with suitable 

examples.                                                                OR 

[10] CO1 L4 

6 Analyze how the Random Forest Classifier improves classification accuracy by 

combining multiple decision trees. Explain the role of bagging and feature 

randomness using an example.  
[10] CO1 L4 

 

7 
PART IV 

Analyze the structure and functioning of decision trees by explaining the ID3 

algorithm. Illustrate how information gain is used to build the tree with an 

example.                                                                OR 

[10] CO1 L4 

 

8 
Explain Confusion Matrix with example. What is the 

significance of ROC-AUC? 

 [10] CO3 L3 



 

9 
PARTV 

Explain different types of Cross Validation techniques. Apply them on a dataset 

and interpret the results.                                         OR 
[10] CO1 L3 

10  Explain underfitting and overfitting with respect to Bias and Variance.  [10] CO1 L2 
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1. What is Machine Learning? Explain Reinforcement Learning with example. 

Machine learning is a subset of Artificial Intelligence (AI). It is focused on teaching computers to 

learn from data and to improve with experience, instead of being explicitly programmed to do so.  

In machine learning, algorithms are trained to find patterns and correlations in large data sets and 

to make the best decisions and predictions based on that analysis. 

Reinforcement Learning 

 In some applications, the output of the system is a sequence of actions. In such a case, a single action is 

not important; what is important is the policy that is the sequence of correct actions to reach the goal. 

There is no such thing as the best action in any intermediate state; an action is good if it is part of a good 

policy. In such a case, the machine learning program should be able to assess the goodness of policies and 

learn from past good action sequences to be able to generate a policy. Such learning methods are called 

reinforcement learning algorithms. A good example is game playing where a single move by itself is not 

that important; it is the sequence of right moves that is good. A move is good if it is part of a good game 

playing policy. Game playing is an important research area in both artificial intelligence and machine 

learning. This is because games are easy to describe and at the same time, they are quite difficult to play 

well. A game like chess has a small number of rules but it is very complex because of the large number of 

possible moves at each state and the large number of moves that a game contains. 

Reinforcement learning (RL) is a type of machine learning where an agent learns to make decisions by 

interacting with an environment and receiving rewards or penalties for its actions.  

Agent: A program or system that interacts with the environment and makes decisions.  

Environment: The world in which the agent operates, and which provides feedback to the agent.  



Actions: The decisions the agent can make in the environment.  

State: The current situation or condition of the environment that the agent is in.  

Reward: A feedback provided by the environment to indicate whether an action was good or bad.  

Policy: The strategy the agent uses to choose actions based on the current state.  

 

  

 

2. Discuss MatPlotLib Library with examples. 

Matplotlib 

Matplotlib is a powerful and versatile open-source plotting library for Python, designed to help users 

visualize data in a variety of formats. Matplotlib is the primary scientific plotting library in Python. It 

provides functions for making publication-quality visualizations such as line charts, histograms, scatter 

plots, and so on. Visualizing your data and different aspects of your analysis can give you important 

insights, and we will be using matplotlib for all our visualizations.  

 

For example, this code produces the plot in Figure 1-1: 

 

import matplotlib.pyplot as plt 

# Generate a sequence of numbers from -10 to 10 with 100 steps in between 

x = np.linspace(-10, 10, 100) 

# Create a second array using sine 

y = np.sin(x) 

# The plot function makes a line chart of one array against another 

plt.plot(x, y, marker="x") 

  

 

 



 

 

 
3. What is the purpose of scaling the dataset? Explain MinMax Scaler and Standard Scaler. 

 

Feature scaling marks the end of the data preprocessing in Machine Learning. It is a method to 

standardize the independent variables of a dataset within a specific range. In other words, feature scaling 

limits the range of variables so that you can compare them on common grounds. 

Another reason why feature scaling is applied is that few algorithms like gradient descent converge much 

faster with feature scaling than without it. 

MinMax Scaler 

MinMax Scaler shrinks the data within the given range, usually of 0 to 1. It transforms data by scaling 

features to a given range. It scales the values to a specific value range without changing the shape of the 

original distribution. 

 



Example: 

 from sklearn.preprocessing import MinMaxScaler 

mm = MinMaxScaler() 

X_train[:, 3:] = mm.fit_transform(X_train[:, 3:]) 

X_test[:, 3:] = mm.transform(X_test[:, 3:]) 

print(X_train[:, 3:]) 

[[0.5120772946859904 0.11428571428571432] 

[0.5652173913043479 0.45079365079365075] 

[0.7391304347826089 0.6857142857142855] 

[0.4782608695652175 0.37142857142857144] 

[0.0 0.0] 

[0.9130434782608696 0.8857142857142857] 

[1.0 1.0] 

[0.34782608695652173 0.2857142857142856]] 

In [31]: 

print(X_test[:, 3:]) 

[[0.1304347826086958 0.17142857142857149] 

[0.43478260869565233 0.5428571428571427]] 

 Standardization: 

Standard Scaler 

StandardScaler follows Standard Normal Distribution (SND). Therefore, it makes mean = 0 and scales the 

data to unit variance. 

  

Example: 

In [32]: 

from sklearn.preprocessing import StandardScaler 

sta = StandardScaler() 

X_train[:, 3:] = sta.fit_transform(X_train[:, 3:]) 

X_test[:, 3:] = sta.transform(X_test[:, 3:]) 



In [33]: 

print(X_train[:, 3:]) 

[[-0.19159184384578537 -1.0781259408412425] 

[-0.014117293757057581 -0.07013167641635436] 

[0.5667085065333245 0.6335624327104541] 

[-0.3045301939022482 -0.3078661727429788] 

[-1.9018011447007983 -1.4204636155515822] 

[1.1475343068237058 1.2326533634535486] 

[1.4379472069688963 1.5749910381638883] 

[-0.740149544120035 -0.5646194287757338]] 

print(X_test[:, 3:]) 

[[-1.4661817944830116 -0.9069571034860727] 

[-0.4497366439748436 0.20564033932252992]] 

 

 

4. Apply appropriate evaluation metrics (such as MAE, MSE, RMSE) to assess the 

performance of a given regression model, and interpret the results.   

Regression is a method of estimating a relationship from given data to depict nature of data set. 

This relationship can then be used for the forecasting future values or for computing if there 

exists a relationship among the various variables. 

  
Model Evaluation Metrics: 



  
Mean Absolute Error(MAE): 

MAE is a very simple metric which calculates the absolute difference between actual and 

predicted values. 

To better understand, let’s take an example you have input data and output data and use Linear 

Regression, which draws a best-fit line. 

Now you have to find the MAE of your model which is basically a mistake made by the model 

known as an error. Now find the difference between the actual value and predicted value that is 

an absolute error but we have to find the mean absolute of the complete dataset. 

so, sum all the errors and divide them by a total number of observations And this is MAE. And 

we aim to get a minimum MAE because this is a loss.  

 

Example: 

Craft Item Actual Price ($) Predicted Price ($) 

Necklace 25    28 

Bracelet 15    14 

Earrings 20    22 

Ring  30    29 

Brooch  40    38 

 

 

 

 



 

 

 

 

Imagine you are a data scientist working for a startup that sells handmade crafts online. The 

company recently implemented a new pricing algorithm to predict the price of crafts based on 

various features like size, material, and complexity. You want to evaluate the performance of this 

new algorithm. 

Here’s a set of actual prices of crafts and the prices predicted by the algorithm: 

Solution: 

Here, n = 5, 

MAE = 1/5 * (|25-28| + |15-14| + |20-22| + |30-29| + |40-38|) = 1/5 * (3+1+2+1+2) = 1/5 * (9) = 

1.8 

Using Scikit Learn 

Scikit-learn is one of the most common and popular libraries in machine learning. It provides a 

built-in function to calculate the MAE. 

 
Output 

1.8 

Advantages of MAE 

The MAE you get is in the same unit as the output variable. It is most Robust to outliers. 

Disadvantages of MAE 

 The graph of MAE is not differentiable so we have to apply various optimizers like Gradient 

descent which can be differentiable. 

 
Mean Squared Error(MSE) 

 



MSE is a most used and very simple metric with a little bit of change in mean absolute error. 

Mean squared error states that finding the squared difference between actual and predicted value. 

So, above we are finding the absolute difference and here we are finding the squared difference. 

 
What actually the MSE represents? It represents the squared distance between actual and 

predicted values. we perform squared to avoid the cancellation of negative terms and it is the 

benefit of MSE. 

 

Advantages of MSE 

The graph of MSE is differentiable, so you can easily use it as a loss function. 

Disadvantages of MSE 

The value you get after calculating MSE is a squared unit of output. for example, the output 

variable is in meter(m) then after calculating MSE the output we get is in meter squared. 

If you have outliers in the dataset then it penalizes the outliers most and the calculated MSE is 

bigger. So, in short, It is not Robust to outliers which were an advantage in MAE. 

  

Output 

3.8 

 
 

 

 

 

Root Mean Squared Error(RMSE) 



 
As RMSE is clear by the name itself, that it is a simple square root of mean squared error. 

  
  

Output: 

1.9493588689617927 

 

Advantages of RMSE 

The output value you get is in the same unit as the required output variable which makes 

interpretation of loss easy. 

Disadvantages of RMSE 

It is not that robust to outliers as compared to MAE. 

For performing RMSE we have to NumPy NumPy square root function over MSE. 

Most of the time people use RMSE as an evaluation metric and mostly when you are working 

with deep learning techniques the most preferred metric is RMSE. 

 

5. Discuss the working mechanism of the KNN algorithm and analyze how the choice of 'K' 

and distance metric influences its performance with suitable examples.  

 

K-Nearest Neighbour 

 

The KNN algorithm is an instance-based method and is called a lazy learner. Lazy because it 

doesn’t explicitly learn from the training data. It just memorizes the training instances which are 

used as “knowledge” during prediction. 

As an example, consider the following table of data points containing two features: 



 

In the k-Nearest Neighbours (k-NN) algorithm k is just a number that tells the algorithm how 

many nearby points (neighbours) to look at when it makes a decision. 

Example: 

Imagine you’re deciding which fruit it is based on its shape and size. You compare it to fruits you already 

know. 

If k = 3, the algorithm looks at the 3 closest fruits to the new one. 

If 2 of those 3 fruits are apples and 1 is a banana, the algorithm says the new fruit is an apple because most 

of its neighbours are apples. 

 Choosing the value of k for KNN Algorithm: 

  

The value of k is critical in KNN as it determines the number of neighbors to consider when making 

predictions. Selecting the optimal value of k depends on the characteristics of the input data. 

 If the dataset has significant outliers or noise a higher k can help smooth out the predictions and 

reduce the influence of noisy data. However choosing very high value can lead to underfitting where the 

model becomes too simplistic. 



Distance Metrics Used in KNN Algorithm: 

KNN uses distance metrics to identify nearest neighbour, these neighbours are used for classification and 

regression task. To identify nearest neighbour we use below distance metrics: 

 1. Euclidean Distance 

Euclidean distance is defined as the straight-line distance between two points in a plane or space. 

You can think of it like the shortest path you would walk if you were to go directly from one point to 

another. 

 

2. Manhattan Distance 

This is the total distance you would travel if you could only move along horizontal and vertical 

lines (like a grid or city streets). It’s also called “taxicab distance” because a taxi can only drive along the 

grid-like streets of a city. 

 

3. Minkowski Distance 

Minkowski distance is like a family of distances, which includes both Euclidean and Manhattan 

distances as special cases. 

  

From the formula above we can say that when p = 2 then it is the same as the formula for the Euclidean 

distance and when p = 1 then we obtain the formula for the Manhattan distance. 

So, you can think of Minkowski as a flexible distance formula that can look like either Manhattan or 

Euclidean distance depending on the value of p. 



 

 

Working of KNN algorithm 

Thе K-Nearest Neighbors (KNN) algorithm operates on the principle of similarity where it predicts the 

label or value of a new data point by considering the labels or values of its K nearest neighbors in the 

training dataset. 

Step 1: Selecting the optimal value of K 

K represents the number of nearest neighbors that needs to be considered while making prediction. 

Step 2: Calculating distance 

To measure the similarity between target and training data points Euclidean distance is used. Distance is 

calculated between data points in the dataset and target point. 

Step 3: Finding Nearest Neighbors 

The k data points with the smallest distances to the target point are nearest neighbors. 

Step 4: Voting for Classification or Taking Average for Regression 

When you want to classify a data point into a category (like spam or not spam), the K-NN algorithm looks 

at the K closest points in the dataset. These closest points are called neighbors. The algorithm then looks 

at which category the neighbors belong to and picks the one that appears the most. This is called majority 

voting. 

  

In regression, the algorithm still looks for the K closest points. But instead of voting for a class in 

classification, it takes the average of the values of those K neighbors. This average is the predicted value 

for the new point for the algorithm. 



 

6. Analyze how the Random Forest Classifier improves classification accuracy by combining 

multiple decision trees. Explain the role of bagging and feature randomness using an 

example.   

Random Forest is a classifier that contains a number of decision trees on various subsets of the 

given dataset and takes the average to improve the predictive accuracy of that dataset. 

It is based on the concept of ensemble learning, which is a process of combining multiple 

classifiers to solve a complex problem and to improve the performance of the model. 

 
Eg. From the first decision tree algorithm, a fruit is classified as apple, same fruit is classified by 

the second decision tree also as apple, but he third decision tree is classifying the same fruit as 

banana. Then the majority wins-fruit is classified as APPLE. 



 
 

Steps: 

·        Process starts with a dataset with rows and their corresponding class labels (columns). 

·        Then - Multiple Decision Trees are created from the training data. Each tree is trained 

on a random subset of the data (with replacement) and a random subset of features. This 

process is known as bagging or bootstrap aggregating. 

·        Each Decision Tree in the ensemble learns to make predictions independently. 

·        When presented with a new, unseen instance, each Decision Tree in the ensemble 

makes a prediction. 

·        The final prediction is made by combining the predictions of all the Decision Trees. 

This is typically done through a majority vote (for classification) or averaging (for 

regression). 

Bagging: 

Multiple Decision Trees are created from the training data. Each tree is trained on a random 

subset of the data (with replacement) and a random subset of features. This process is known as 

bagging or bootstrap aggregating. Each Decision Tree in the ensemble learns to make predictions 

independently. 

When presented with a new, unseen instance, each Decision Tree in the ensemble makes a 

prediction. 

The final prediction is made by combining the predictions of all the Decision Trees.  



 

7. Analyze the structure and functioning of decision trees by explaining the ID3 algorithm. 

Illustrate how information gain is used to build the tree with an example.                        

              A decision tree is a supervised learning algorithm that can be used for both classification 

and regression tasks. It works by recursively partitioning the data into subsets based on feature 

values, making decisions at each node to maximize a specific criterion (e.g., information gain or 

Gini index). 

Key Components: 

Root Node: The top node in the tree that represents the best feature to split the data. 

Internal Nodes: Represent the features used for splitting the data based on specific decision rules. 

Leaf Nodes: Terminal nodes that represent the predicted outcome (class label or numerical value). 

Branches: Connections between nodes representing the possible values of the features. 

The process of creating a decision tree involves: 

Selecting the Best Attribute: Using a metric like Gini impurity, entropy, or information gain, the 

best attribute to split the data is selected. 

Splitting the Dataset: The dataset is split into subsets based on the selected attribute. 

Repeating the Process: The process is repeated recursively for each subset, creating a new 

internal node or leaf node until a stopping criterion is met (e.g., all instances in a node belong to 

the same class or a predefined depth is reached). 

 

A leaf node in a decision tree is the terminal node at the bottom of the tree, where no further splits 

are made. Leaf nodes represent the final output or prediction of the decision tree. Once a data point 

reaches a leaf node, a decision or prediction is made based on the majority class (for classification) 

or the average value (for regression) of the data points that reach that leaf. 

To check mathematically if any split is pure split or not we use entropy or gini impurity. 

Information Gain helps us to determine which features need to be selected 

ID3 Algorithm: 

ID3 learns decision trees by constructing them top-down. 

Entropy: 



Entropy is a concept borrowed from information theory and is commonly used as a measure 

of uncertainty or disorder in a set of data. In the context of decision trees, entropy is often employed 

as a criterion to decide how to split data points at each node, aiming to create subsets that are more 

homogeneous with respect to the target variable. 

Entropy, characterizes the (im)purity of an arbitrary collection of examples. 

Given a collection S, containing positive and negative examples of some target 

where p+, is the proportion of positive examples in S and p-, is the proportion of negative examples 

in S. 

S is a collection of training examples, 

  

·        p+ the proportion of positive examples in S (  P   )   

P+N 

·        p– the proportion of negative examples in S (  N   )   

      P+N 

·        Entropy is 0 if all members of S belong to the same class. 

·        Entropy is 1 when the collection contains equal number of +ve and –ve examples. 

Example: 

                      Entropy (S) – p+ log2 p+ – p– log2 p–                                                                    

  

Entropy ([9+, 5–]) 

 = – 9/14 log2 (9/14) – 5/14 log2 (5/14) 

= – 9/14 (0.637) - 5/14 (1.486) 

= 0.4095+0.531 

= 0.940 

 



 

After calculating the information gain for all the attributes, the attribute with the 

maximum gain is chosen as the node to be split further. 

      
8. Explain Confusion Matrix with example. What is the significance of ROC-AUC? 

Evaluating the performance of a Machine learning model is one of the important steps while 

building an effective ML model. To evaluate the performance or quality of the model, different 

metrics are used, and these metrics are known as performance metrics or evaluation metrics. 

These performance metrics help us understand how well our model has performed for the given 

data. In this way, we can improve the model's performance by tuning the hyper-parameters. Each 

ML model aims to generalize well on unseen/new data, and performance metrics help determine 

how well the model generalizes on the new dataset. 

In a classification problem, the category or classes of data is identified based on training data. The 

model learns from the given dataset and then classifies the new data into classes or groups based 



on the training. It predicts class labels as the output, such as Yes or No, 0 or 1, Spam or Not 

Spam, etc. To evaluate the performance of a classification model, different metrics are 

 used, and some of them are as follows: 

 
1. Accuracy 

The accuracy metric is one of the simplest Classification metrics to implement, and it can be 

determined as the number of correct predictions to the total number of predictions. 

But It is recommended not to use the Accuracy measure when the target variable majorly belongs 

to one class. For example, Suppose there is a model for a disease prediction in which, out of 100 

people, only five people have a disease, and 95 people don't have one. In this case, if our model 

predicts every person with no disease (which means a bad prediction), the Accuracy measure will 

be 95%, which is not correct. 

A confusion matrix is a tabular representation of prediction outcomes of any binary classifier, 

which is used to describe the performance of the classification model on a set of test data when 

true values are known. 

2. Classification Accuracy:  

It is one of the important parameters to determine the accuracy of the classification problems. It 

defines how often the model predicts the correct output. It can be calculated as the ratio of the 

number of correct predictions made by the classifier to all number of predictions made by the 

classifiers. The formula is given below: 

 Misclassification rate: It is also termed as Error rate, and it defines how often the model gives the 

wrong predictions. The value of error rate can be calculated as the number of incorrect 

predictions to all number of the predictions made by the classifier. The formula is given below: 

  

3. Precision: It can be defined as the number of correct outputs provided by the model or out of 

all positive classes that have predicted correctly by the model, how many of them were actually 

true. It can be calculated using the below formula: 

  

4. Recall: It is defined as the out of total positive classes, how our model predicted correctly. The 

recall must be as high as possible. 

5.  F-measure: If two models have low precision and high recall or vice versa, it is difficult to 

compare these models. So, for this purpose, we can use F-score. This score helps us to evaluate 



the recall and precision at the same time. The F-score is maximum if the recall is equal to the 

precision. It can be calculated using the below formula: 

 
  

- When the cost of incorrectly identifying something as positive (a false positive) is high, - 

precision is crucial. 

- When the cost of missing a positive case (a false negative) is high, recall is crucial. For 

example, in medical diagnosis, it's important to detect as many cases of a disease as 

possible, even if it means some false positives.  

ROC-AUC: 

 
ROC-AUC (or Receiver Operating Characteristic Area Under Curve), is a curve that 

maps the relationship between the True Positive Rate and False Positive Rate of the model across 

different cut-off thresholds. 

In the ROC-AUC curve, ROC is a probability curve, and AUC represents the degree or measure 

of separability. 

The higher the AUC, the better the model. 



The ROC curve is generated by calculating and outlining the TPR and FPR, at various thresholds. 

TPR (True Positive Rate/Sensitivity) = TP / TP +FN 

FPR (False Positive Rate/Specificity) = FP / FP + TN 

The ROC-AUC score ranges from 0.5 – 1, where 1 is the best 

 

9. Explain different types of Cross Validation techniques. Apply them on a dataset and 

interpret the results.   

     Cross-Validation is a resampling technique with the fundamental idea of splitting the dataset 

into 2 parts- training data and test data.  

Train data is used to train the model and the unseen test data is used for prediction.  

Cross Validation is used to handle the Overfitting and Underfitting issues. 

1. Hold Out method 

The entire dataset is divided into 2 sets – train set and test set. The data can be divided into 70-30 

or 60-40, 75-25 or 80-20, or even 50-50 depending on the use case.  

The data split happens randomly, and we can’t be sure which data ends up in the train and test 

bucket during the split.  

So every time, the split changes, the accuracy will also change unless we specify random_state.  

 

 
2. Leave One Out Cross-Validation 

Instead of dividing the data into two subsets, we select a single observation as test data and label 

everything else as training data to train the model.  

This process continues ‘n’ times, and we calculate the average of all these iterations to estimate 

the test set error. 

 



 
3. K-Fold Cross-Validation 

We divide the whole data into k sets of almost equal sizes. We select the first set as the test set 

and train the model on the remaining k-1 sets.  

The best part about this method is that each data point appears in the test set exactly once and 

participates in the training set k-1 times.  

As the number of folds k increases, the variance also decreases (low variance).  

 

 
4. Stratified K-Fold Cross-Validation 

                 In the stratified K-Fold CV will create K-Folds by preserving the percentage of sample 

for each class.  

This solves the problem of random sampling associated with Hold out and K-Fold methods. 

 



 
10. Explain underfitting and overfitting with respect to Bias and Variance.  

 

Bias and variance are two key sources of error in machine learning models that directly impact 

their performance and generalization ability. 

The relationship between bias and variance is often referred to as the bias-variance tradeoff, 

which highlights the need for balance: 

 
Increasing model complexity reduces bias but increases variance (risk of overfitting). 

Simplifying the model reduces variance but increases bias (risk of underfitting). 

The goal is to find an optimal balance where both bias and variance are minimized, resulting in 

good generalization performance. 

 

Bias: is the error that happens when a machine learning model is too simple and doesn't learn 

enough details from the data. It's like assuming all birds can only be small and fly, so the model fails to 

recognize big birds like ostriches or penguins that can't fly and get biased with predictions. 

These assumptions make the model easier to train but may prevent it from capturing the underlying 

complexities of the data. 

High bias typically leads to underfitting, where the model performs poorly on both training and testing 

data because it fails to learn enough from the data. 

 

Variance: Error that happens when a machine learning model learns too much from the data, 

including random noise. 

A high-variance model learns not only the patterns but also the noise in the training data, which leads to 

poor generalization on unseen data. 

High variance typically leads to overfitting, where the model performs well on training data but poorly on 

testing data. 

 

Overfitting: 



Overfitting happens when a model learns too much from the training data, including details that 

don’t matter (like noise or outliers). 

As a result, the model works great on training data but fails when tested on new data. 

Overfitting models are like students who memorize answers instead of understanding the topic. They do 

well in practice tests (training) but struggle in real exams (testing). 

 

The overfitted model has low bias and high variance. 

Reasons for Overfitting: 

 The model is too complex. 

The size of the training data is small. 

 

Underfitting: 

Underfitting is the opposite of overfitting. It happens when a model is too simple to capture 

what’s going on in the data. 

In this case, the model doesn’t work well on either the training or testing data. 

Underfitting models are like students who don’t study enough. They don’t do well in practice tests or real 

exams.  

An underfitted model has high bias and low variance. 

Reasons for Underfitting: 

The model is too simple, So it may be not capable to represent the complexities in the data. 

The input features which is used to train the model is not the adequate representations of underlying 

factors influencing the target variable. 

The size of the training dataset used is not enough. 

Features are not scaled. 

 


