CMR INSTITUTE OF TECHNOLOGY

++ GRADE

-

Internal Assessment Test | —June 2025

Sub: Machine learning and Data analytics using Python Sub Code: MMC201
_ — 90 Max ; .
Date: 30/06/25 Duration: min’s | Marks: 50 | Sem: | Il | Branch: MCA
Note : Answer FIVE FULL Questions, choosing ONE full guestion from each Module
OBE
PART I MARKS
CO | RBT
1 |What is Machine Learning? Explain Reinforcement Learning with [10] co1l L2
example.OR
2 |Discuss MatPlotLib Library with examples. [10] coll L2
PART Il
3 | What is the purpose of scaling the dataset? Explain MinMax Scaler and [10] CO2| L3
Standard Scaler.OR
4 |\Apply appropriate evaluation metrics (such as MAE, MSE, RMSE) to assess
. .) [10] CO3| L3
the performance of a given regression model, and interpret the results.
PART III
5 |Discuss the working mechanism of the KNN algorithm and analyze how the
choice of 'K' and distance metric influences its performance with suitable [10] |CO1| L4
examples. OR
6 |Analyze how the Random Forest Classifier improves classification accuracy by
combining multiple decision trees. Explain the role of bagging and feature [10] |coi| L4
randomness using an example.
PART IV
7 |Analyze the structure and functioning of decision trees by explaining the 1D3 o] |coi| La
algorithm. Illustrate how information gain is used to build the tree with an
example. OR
g Explain Confusion Matrix with example. What is the _Spam _ Nenspom
significance of ROC-AUC? Seam | so0 a0
[10] |CO3| L3

PARTV
9 |Explain different types of Cross Validation techniques. Apply them on a dataset [10] |coi| L3
and interpret the results. OR
10 | Explain underfitting and overfitting with respect to Bias and Variance. [10] |co1]| L2

Internal Assessment Test | —June 2025

Machine learning and Data analytics using Python Sub Code: MMC201

Date: 30/06/25 | Duration: | 90 mins Max Marks: |50 |Sem: |1l |Branch: MCA

1. What is Machine Learning? Explain Reinforcement Learning with example.
Machine learning is a subset of Artificial Intelligence (Al). It is focused on teaching computers to
learn from data and to improve with experience, instead of being explicitly programmed to do so.
In machine learning, algorithms are trained to find patterns and correlations in large data sets and
to make the best decisions and predictions based on that analysis.

Reinforcement Learning

In some applications, the output of the system is a sequence of actions. In such a case, a single action is
not important; what is important is the policy that is the sequence of correct actions to reach the goal.
There is no such thing as the best action in any intermediate state; an action is good if it is part of a good
policy. In such a case, the machine learning program should be able to assess the goodness of policies and
learn from past good action sequences to be able to generate a policy. Such learning methods are called
reinforcement learning algorithms. A good example is game playing where a single move by itself is not
that important; it is the sequence of right moves that is good. A move is good if it is part of a good game
playing policy. Game playing is an important research area in both artificial intelligence and machine
learning. This is because games are easy to describe and at the same time, they are quite difficult to play
well. A game like chess has a small number of rules but it is very complex because of the large number of
possible moves at each state and the large number of moves that a game contains.

Reinforcement learning (RL) is a type of machine learning where an agent learns to make decisions by
interacting with an environment and receiving rewards or penalties for its actions.

Agent: A program or system that interacts with the environment and makes decisions.

Environment: The world in which the agent operates, and which provides feedback to the agent.

Actions: The decisions the agent can make in the environment.
State: The current situation or condition of the environment that the agent is in.
Reward: A feedback provided by the environment to indicate whether an action was good or bad.

Policy: The strategy the agent uses to choose actions based on the current state.

State, Reward

Environment

2. Discuss MatPlotLib Library with examples.
Matplotlib
Matplotlib is a powerful and versatile open-source plotting library for Python, designed to help users
visualize data in a variety of formats. Matplotlib is the primary scientific plotting library in Python. It
provides functions for making publication-quality visualizations such as line charts, histograms, scatter
plots, and so on. Visualizing your data and different aspects of your analysis can give you important
insights, and we will be using matplotlib for all our visualizations.

For example, this code produces the plot in Figure 1-1:

import matplotlib.pyplot as plt

Generate a sequence of numbers from -10 to 10 with 100 steps in between
x = np.linspace(-10, 10, 100)

Create a second array using sine

y = np.sin(x) s
The plot function makes a line chart of one array against another

plt.plot(x, y, marker="x" 10 = - A =

05

00}

import matplotlib.pyplot as plt
x = [0, 2, 4, 6, 8]

y = [@, 4, 16, 36, 64]

fig, ax = plt.subplots()
ax.plot(x, y,marker='0")

import matplotlib.pyplot as plt

x = [0, 1, 2, 3, 4]
y =100, 1, 4, 9, 16]
plt.plot(x, y)
plt.show()

ax.set_title("Basic Components of Matplotlib Figure")

ax.set_xlabel("X-Axis")
ax.set_ylabel("Y-Axis")
plt.show()

import matplotlib.pyplot as plt

import numpy as np
fruits = ['Apples’,
sales = [400, 350, 300, 450]
plt.bar(fruits, sales)
plt.title("Fruit Sales')

‘Bananas’,

plt.
plt.
plt.

ylabel('Sales")
show()

Basic Components of Matplotlib Figure

xlabel('Fruits"')

60

o 1 2 3 4
X-Axis

s

6

7

Sales

‘Cherries', 'Dates']

400

300

200

100

]

import matplotlib.pyplot as plt

import numpy as np

x1 = np.array([160@, 165, 170, 175,
np.array([55, 58, 60, 62, 64,

yl

x2

= np.array([150, 155, 160, 165,
y2 = np.array([5@, 52, 54, 56, 58,

180, 185, 19@, 195, 200, 205])
66, 68, 70, 72, 74])

17e, 175, 186, 195, 200, 265])
64, 66, 68, 70, 72])

plt.scatter(x1, yl, color='blue', label="Group 1')

plt.scatter(x2, y2, color="red", label='Group 2")

plt.xlabel('Height (cm)"')
plt.ylabel('Weight (kg)')
plt.title('Comparison of Height vs Weight between two groups"')

plt.legend()
plt.show()

Fruit Sales

Dates

Chermies
Fruits

3. What is the purpose of scaling the dataset? Explain MinMax Scaler and Standard Scaler.

Apples Bananas

o
&

weight (kg)
2

55

Comparison of Height vs Weight between two groups

® Group L .
® Group2 . o
L)
. .
. e
. .
.
.
.
.
:
.
.
150 160 170 180 190 200

Height (cm)

Feature scaling marks the end of the data preprocessing in Machine Learning. It is a method to
standardize the independent variables of a dataset within a specific range. In other words, feature scaling
limits the range of variables so that you can compare them on common grounds.

Another reason why feature scaling is applied is that few algorithms like gradient descent converge much

faster with feature scaling than without it.

MinMax Scaler

MinMax Scaler shrinks the data within the given range, usually of 0 to 1. It transforms data by scaling
features to a given range. It scales the values to a specific value range without changing the shape of the

original distribution.

#6.a Standarzation of the data using MinMax Scaler
from sklearn.preprocessing import MinMaxScaler

mm = MinMaxScaler()
X34 =

mm.fit_transform(X[:, 3:4])

Normalization

x —min(x)

= max(x) — min(x)

Example:
from sklearn.preprocessing import MinMaxScaler

mm = MinMaxScaler()

X_train[:, 3:] = mm.fit_transform(X_train[:, 3:])
X_test[:, 3:] = mm.transform(X_test[:, 3:])
print(X_train[:, 3:])

[[0.5120772946859904 0.11428571428571432]
[0.5652173913043479 0.45079365079365075]
[0.7391304347826089 0.6857142857142855]
[0.4782608695652175 0.37142857142857144]
[0.00.0]

[0.9130434782608696 0.8857142857142857]
[1.01.0]

[0.34782608695652173 0.2857142857142856]]

In [31]:

print(X_test[:, 3:])
[[0.1304347826086958 0.17142857142857149]
[0.43478260869565233 0.5428571428571427]]

Standardization:
Standard Scaler

StandardScaler follows Standard Normal Distribution (SND). Therefore, it makes mean = 0 and scales the
data to unit variance.

#6.b Standarzation of the data using Standard Scaler
from sklearn.preprocessing import StandardScaler

sta = StandardScaler()

x —mean(x) X[:,4:] = sta.fit_transform(X[:,4:])

- standard deviation(x)

Standardization

Example:
In [32]:

from sklearn.preprocessing import StandardScaler
sta = StandardScaler()

X_train[:, 3:] = sta.fit_transform(X_train[:, 3:])
X_test[:, 3:] = sta.transform(X_test[:, 3:])

In [33]:

print(X_train[:, 3:])

[[-0.19159184384578537 -1.0781259408412425]
[-0.014117293757057581 -0.07013167641635436]
[0.5667085065333245 0.6335624327104541]
[-0.3045301939022482 -0.3078661727429788]
[-1.9018011447007983 -1.4204636155515822]
[1.1475343068237058 1.2326533634535486]
[1.4379472069688963 1.5749910381638883]
[-0.740149544120035 -0.5646194287757338]]
print(X_test[:, 3:])

[[-1.4661817944830116 -0.9069571034860727]
[-0.4497366439748436 0.20564033932252992]]

4. Apply appropriate evaluation metrics (such as MAE, MSE, RMSE) to assess the
performance of a given regression model, and interpret the results.
Regression is a method of estimating a relationship from given data to depict nature of data set.
This relationship can then be used for the forecasting future values or for computing if there
exists a relationship among the various variables.

bo + b1xq

Simple

Linear y

Regression

Multiple

Linear y= bO - b1X1 + b2X2 + ...+ bnxn

Regression

Polynomial

Linear y = h) + lel -+ bzx]? R T bnxf

Regression

&

Model Evaluation Metrics:

Output

Inputs

Mean Absolute Error(MAE):

MAE is a very simple metric which calculates the absolute difference between actual and
predicted values.

To better understand, let’s take an example you have input data and output data and use Linear
Regression, which draws a best-fit line.

Now you have to find the MAE of your model which is basically a mistake made by the model
known as an error. Now find the difference between the actual value and predicted value that is
an absolute error but we have to find the mean absolute of the complete dataset.

so, sum all the errors and divide them by a total number of observations And this is MAE. And
we aim to get a minimum MAE because this is a loss.

Example:

Craft Item Actual Price ($) Predicted Price ($)
Necklace 25 28
Bracelet 15 14
Earrings 20 22
Ring 30 29

Brooch 40 38

Imagine you are a data scientist working for a startup that sells handmade crafts online. The
company recently implemented a new pricing algorithm to predict the price of crafts based on
various features like size, material, and complexity. You want to evaluate the performance of this
new algorithm.

Here’s a set of actual prices of crafts and the prices predicted by the algorithm:

Solution:

Here,n =5,

MAE = 1/5 * (|25-28| + |15-14| + |20-22| + |30-29| + |40-38|) = 1/5 * (3+1+2+1+2) = 1/5* (9) =
1.8

Using Scikit Learn

Scikit-learn is one of the most common and popular libraries in machine learning. It provides a
built-in function to calculate the MAE.

Divide by total

Number of Data
Points Actual Output Predicted

MAE = — > |-

S o'gAbsolute Value of
residual

Output
1.8
Advantages of MAE
The MAE you get is in the same unit as the output variable. It is most Robust to outliers.
Disadvantages of MAE
The graph of MAE is not differentiable so we have to apply various optimizers like Gradient
descent which can be differentiable.
from sklearn.metrics import mean_absolute_error
actual = [25,15,20,30,40]
predicted = [28,14,22,29,38]

mae=mean_absolute error(actual,predicted)
print(mae)

Mean Squared Error(MSE)

MSE is a most used and very simple metric with a little bit of change in mean absolute error.
Mean squared error states that finding the squared difference between actual and predicted value.
So, above we are finding the absolute difference and here we are finding the squared difference.

2
MSE = ﬁz(_y _

-

i

The square of the difference
etween actual and
predicted

What actually the MSE represents? It represents the squared distance between actual and
predicted values. we perform squared to avoid the cancellation of negative terms and it is the
benefit of MSE.

Advantages of MSE

The graph of MSE is differentiable, so you can easily use it as a loss function.

Disadvantages of MSE

The value you get after calculating MSE is a squared unit of output. for example, the output
variable is in meter(m) then after calculating MSE the output we get is in meter squared.

If you have outliers in the dataset then it penalizes the outliers most and the calculated MSE is
bigger. So, in short, It is not Robust to outliers which were an advantage in MAE.

Output

3.8
fr sklearn.metrics import mean_squared_errod
actual = [25,15,20,30,40]

predicted = [28,14,22,29,38]

mse=mean_squared_error(actual,predicted)
print(mse)

Root Mean Squared Error(RMSE)

RMSE = MSE

n

B 1

RMSE = | = (y; — 9;)
- ; ;
i=1

As RMSE is clear by the name itself, that it is a simple square root of mean squared error.

clearn.metrics t root_mean_squared_error

actual = [25,15,20,30,40]
predicted = [28,14,22,29,38]

rmse=root_mean_squared_error(actual,predicted)
print(rmse)

Output:
1.9493588689617927

Advantages of RMSE

The output value you get is in the same unit as the required output variable which makes
interpretation of loss easy.

Disadvantages of RMSE

It is not that robust to outliers as compared to MAE.

For performing RMSE we have to NumPy NumPy square root function over MSE.

Most of the time people use RMSE as an evaluation metric and mostly when you are working
with deep learning techniques the most preferred metric is RMSE.

Discuss the working mechanism of the KNN algorithm and analyze how the choice of 'K*
and distance metric influences its performance with suitable examples.

K-Nearest Neighbour

The KNN algorithm is an instance-based method and is called a lazy learner. Lazy because it
doesn’t explicitly learn from the training data. It just memorizes the training instances which are
used as “knowledge” during prediction.

As an example, consider the following table of data points containing two features:

’ ‘ I‘, new data point
¢ ¢

category 1

In the k-Nearest Neighbours (k-NN) algorithm k is just a number that tells the algorithm how
many nearby points (neighbours) to look at when it makes a decision.

Example:

Imagine you’re deciding which fruit it is based on its shape and size. You compare it to fruits you already
know.

If k = 3, the algorithm looks at the 3 closest fruits to the new one.

If 2 of those 3 fruits are apples and 1 is a banana, the algorithm says the new fruit is an apple because most
of its neighbours are apples.

Choosing the value of k for KNN Algorithm:

The value of k is critical in KNN as it determines the number of neighbors to consider when making
predictions. Selecting the optimal value of k depends on the characteristics of the input data.

If the dataset has significant outliers or noise a higher k can help smooth out the predictions and
reduce the influence of noisy data. However choosing very high value can lead to underfitting where the
model becomes too simplistic.

Distance Metrics Used in KNN Algorithm:

KNN uses distance metrics to identify nearest neighbour, these neighbours are used for classification and
regression task. To identify nearest neighbour we use below distance metrics:

1. Euclidean Distance

Euclidean distance is defined as the straight-line distance between two points in a plane or space.
You can think of it like the shortest path you would walk if you were to go directly from one point to
another.

distance(z, X;) = \:’_‘:'Jf (z,-X,)?]

2. Manhattan Distance

This is the total distance you would travel if you could only move along horizontal and vertical
lines (like a grid or city streets). It’s also called “taxicab distance” because a taxi can only drive along the
grid-like streets of a city.

— 7

d(z,y) =2, |Ti — ¥

3. Minkowski Distance

Minkowski distance is like a family of distances, which includes both Euclidean and Manhattan
distances as special cases.

iy ==

d(z,y) = (X, (xi — %))
From the formula above we can say that when p = 2 then it is the same as the formula for the Euclidean

distance and when p = 1 then we obtain the formula for the Manhattan distance.

So, you can think of Minkowski as a flexible distance formula that can look like either Manhattan or
Euclidean distance depending on the value of p.

Y Axis Y Axis Y Axis

(o) o) o)
O O Target Point O o O O

C o O o © o

OO.o 00 OO‘o 00 OO.o 00

o © o © o ©
O o O o O o
X Axis X Axis X Axis
O Class 1 O Class 1 O Class 1
O Class 2 O Class 2 O Class 2

Working of KNN algorithm

The K-Nearest Neighbors (KNN) algorithm operates on the principle of similarity where it predicts the
label or value of a new data point by considering the labels or values of its K nearest neighbors in the
training dataset.

Step 1: Selecting the optimal value of K
K represents the number of nearest neighbors that needs to be considered while making prediction.
Step 2: Calculating distance

To measure the similarity between target and training data points Euclidean distance is used. Distance is
calculated between data points in the dataset and target point.

Step 3: Finding Nearest Neighbors
The k data points with the smallest distances to the target point are nearest neighbors.
Step 4: Voting for Classification or Taking Average for Regression

When you want to classify a data point into a category (like spam or not spam), the K-NN algorithm looks
at the K closest points in the dataset. These closest points are called neighbors. The algorithm then looks
at which category the neighbors belong to and picks the one that appears the most. This is called majority
voting.

In regression, the algorithm still looks for the K closest points. But instead of voting for a class in
classification, it takes the average of the values of those K neighbors. This average is the predicted value
for the new point for the algorithm.

X_new = np.array([[5, 2.9, 1, 0.2]])
print("X_new.shape: {}".format(X_new.shape))

from sklearn.neighbors import KNeighborsClassifier
knn = KNeighborsClassifier(n_neighbors=1)
knn.fit(X_train, y_train)

prediction = knn.predict(X_new)

print("Prediction: {}".format(prediction))

print("Predicted target name: {}".format(iris_dataset['target_names'][prediction]))

6. Analyze how the Random Forest Classifier improves classification accuracy by combining
multiple decision trees. Explain the role of bagging and feature randomness using an
example.

Random Forest is a classifier that contains a number of decision trees on various subsets of the
given dataset and takes the average to improve the predictive accuracy of that dataset.

It is based on the concept of ensemble learning, which is a process of combining multiple
classifiers to solve a complex problem and to improve the performance of the model.

AMA
W N

\ LA

™
{ AAN

Tree-1 Tree-2 Tree-n »
\- ‘-

Class-A Class-A Class-8

ity-Voting
]

Eg. From the first decision tree algorithm, a fruit is classified as apple, same fruit is classified by
the second decision tree also as apple, but he third decision tree is classifying the same fruit as
banana. Then the majority wins-fruit is classified as APPLE.

Random Forest Algorithm
in Machine Learning

Training Data
Instance

= AR A
S R L W

Class 8

Y Y Y
Bagging (voting majority)
Model i
Testing ~

\j

Prediction output

Class A

Steps:
Process starts with a dataset with rows and their corresponding class labels (columns).

Then - Multiple Decision Trees are created from the training data. Each tree is trained
on a random subset of the data (with replacement) and a random subset of features. This
process is known as bagging or bootstrap aggregating.

Each Decision Tree in the ensemble learns to make predictions independently.

When presented with a new, unseen instance, each Decision Tree in the ensemble
makes a prediction.

The final prediction is made by combining the predictions of all the Decision Trees.
This is typically done through a majority vote (for classification) or averaging (for
regression).

Bagging:
Multiple Decision Trees are created from the training data. Each tree is trained on a random
subset of the data (with replacement) and a random subset of features. This process is known as
bagging or bootstrap aggregating. Each Decision Tree in the ensemble learns to make predictions
independently.
When presented with a new, unseen instance, each Decision Tree in the ensemble makes a
prediction.
The final prediction is made by combining the predictions of all the Decision Trees.

7. Analyze the structure and functioning of decision trees by explaining the 1D3 algorithm.
Ilustrate how information gain is used to build the tree with an example.

A decision tree is a supervised learning algorithm that can be used for both classification
and regression tasks. It works by recursively partitioning the data into subsets based on feature
values, making decisions at each node to maximize a specific criterion (e.g., information gain or
Gini index).

Key Components:

Root Node: The top node in the tree that represents the best feature to split the data.

Internal Nodes: Represent the features used for splitting the data based on specific decision rules.
Leaf Nodes: Terminal nodes that represent the predicted outcome (class label or numerical value).
Branches: Connections between nodes representing the possible values of the features.

The process of creating a decision tree involves:

Selecting the Best Attribute: Using a metric like Gini impurity, entropy, or information gain, the
best attribute to split the data is selected.

Splitting the Dataset: The dataset is split into subsets based on the selected attribute.

Repeating the Process: The process is repeated recursively for each subset, creating a new
internal node or leaf node until a stopping criterion is met (e.g., all instances in a node belong to
the same class or a predefined depth is reached).

Decision Tree for Loan Approval

Credit History

Income

A leaf node in a decision tree is the terminal node at the bottom of the tree, where no further splits
are made. Leaf nodes represent the final output or prediction of the decision tree. Once a data point
reaches a leaf node, a decision or prediction is made based on the majority class (for classification)
or the average value (for regression) of the data points that reach that leaf.

To check mathematically if any split is pure split or not we use entropy or gini impurity.
Information Gain helps us to determine which features need to be selected

ID3 Algorithm:
ID3 learns decision trees by constructing them top-down.

Entropy:

Entropy is a concept borrowed from information theory and is commonly used as a measure
of uncertainty or disorder in a set of data. In the context of decision trees, entropy is often employed
as a criterion to decide how to split data points at each node, aiming to create subsets that are more
homogeneous with respect to the target variable.

Entropy, characterizes the (im)purity of an arbitrary collection of examples.
Given a collection S, containing positive and negative examples of some target

where p+, is the proportion of positive examples in S and p-, is the proportion of negative examples
inS.

S is a collection of training examples,

Entropy(S) = —pg l0g, pe — Po 108, Pg
p+ the proportion of positive examples in S (P)
P+N
p— the proportion of negative examples in S (N)
P+N
Entropy is 0 if all members of S belong to the same class.
Entropy is 1 when the collection contains equal number of +ve and —ve examples.

Example:

Entropy (S) — p+ log2 p+ — p— log2 p—

Entropy ([9+, 5-])

= 9/14 log2 (9/14) — 5/14 log2 (5/14)

=~ 9/14 (0.637) - 5/14 (1.486)
= 0.4095+0.531
=0.940
1S% |

Gain(S, A) = Entropy(S) — E —— Entropy(Sy)
veValues(A) I'SI

Values(Wind) = Weak, Strong
S = [94,5-]
Sweax < [6+,2—]
Sstrong < [3+,3—1]
[Sul
ve(Weak Strong) 1|
= Entropy(S) — (8/14)Entropy(Swear)
— (6/14) Entropy(Sstrong)
= 0.940 — (8/14)0.811 — (6/14)1.00
= 0.048

Gain(S, Wind) = Entropy(S) —

Entropy(S,)

After calculating the information gain for all the attributes, the attribute with the
maximum gain is chosen as the node to be split further.

from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier

from sklearn.datasets import load_breast_cancer

cancer = load_breast_cancer()

X_train, X_test, y_train, y test = train_test_split(

cancer.data, cancer.target, stratify=cancer.target, random_state=42)

tree = DecisionTreeClassifier(random_state=0)

tree.fit(X_train, y_train)

print("Accuracy on training set: {:.3f}".format(tree.score(X_train, y_train)))
print("Accuracy on test set: {:.3f}".format(tree.score(X_test, y test)))

Accuracy on training set: 1.000
Accuracy on test set: 0.937

8. Explain Confusion Matrix with example. What is the significance of ROC-AUC?
Evaluating the performance of a Machine learning model is one of the important steps while
building an effective ML model. To evaluate the performance or quality of the model, different
metrics are used, and these metrics are known as performance metrics or evaluation metrics.
These performance metrics help us understand how well our model has performed for the given
data. In this way, we can improve the model's performance by tuning the hyper-parameters. Each
ML model aims to generalize well on unseen/new data, and performance metrics help determine
how well the model generalizes on the new dataset.
In a classification problem, the category or classes of data is identified based on training data. The
model learns from the given dataset and then classifies the new data into classes or groups based

on the training. It predicts class labels as the output, such as Yes or No, 0 or 1, Spam or Not
Spam, etc. To evaluate the performance of a classification model, different metrics are
used, and some of them are as follows:

Predicted Class
VaE N
Positive Negative
(Sensitivity
2 i False Negative (FN)
Positive True Positive (TP) . nE TP
ype rrox m
Actual Class {
: False Positive (FP) _ Specificity
Negative % s True Negative (TN) TN
ype ITOX (—f—m
\
= Negative Predictive Accuracy
Precision
Value TP+ TN
Pl ™ (TP +TN + FP + FN)
(TP + FP) b
(TN + FN)
1. Accuracy

The accuracy metric is one of the simplest Classification metrics to implement, and it can be
determined as the number of correct predictions to the total number of predictions.

But It is recommended not to use the Accuracy measure when the target variable majorly belongs
to one class. For example, Suppose there is a model for a disease prediction in which, out of 100
people, only five people have a disease, and 95 people don't have one. In this case, if our model
predicts every person with no disease (which means a bad prediction), the Accuracy measure will
be 95%, which is not correct.
A confusion matrix is a tabular representation of prediction outcomes of any binary classifier,
which is used to describe the performance of the classification model on a set of test data when
true values are known.

2. Classification Accuracy:

It is one of the important parameters to determine the accuracy of the classification problems. It
defines how often the model predicts the correct output. It can be calculated as the ratio of the
number of correct predictions made by the classifier to all number of predictions made by the
classifiers. The formula is given below:

Misclassification rate: It is also termed as Error rate, and it defines how often the model gives the
wrong predictions. The value of error rate can be calculated as the number of incorrect
predictions to all number of the predictions made by the classifier. The formula is given below:

3. Precision: It can be defined as the number of correct outputs provided by the model or out of
all positive classes that have predicted correctly by the model, how many of them were actually
true. It can be calculated using the below formula:

4. Recall: It is defined as the out of total positive classes, how our model predicted correctly. The
recall must be as high as possible.

5. F-measure: If two models have low precision and high recall or vice versa, it is difficult to
compare these models. So, for this purpose, we can use F-score. This score helps us to evaluate

the recall and precision at the same time. The F-score is maximum if the recall is equal to the
precision. It can be calculated using the below formula:

Predicted Accuracy

I—l—\

Spam Non-spam
Sparn

Spam 600 300 True predictions
Actual Spam TP) (FN) (TP + TN)
Actual Accuracy = —————
Al predictions
Bon: 9000 o] (TP + TN + FP + FN)
spam o J

Predicted

Precision Recall
Predicted Predicted

Spam

Spam Not
Actual
600 300 C’“(?”f)pam 300 AcmaTI Ps)pam
SEen U) (FN) Precision = ——— Spam Tp (FN)
Actual = Actual Secall
Predicted spam pr—
Not | 100 2000 (e o6 9000 P +FN)
TN) Not
" | (FP) (TN)

- When the cost of incorrectly identifying something as positive (a false positive) is high, -
precision is crucial.

- When the cost of missing a positive case (a false negative) is high, recall is crucial. For
example, in medical diagnosis, it's important to detect as many cases of a disease as
possible, even if it means some false positives.

ROC-AUC:
| p—]
e
//ﬂ'/'/’/
//‘,, i
2 Ay %
S / : /
2 /
2 é/ ;
£ ;
- / 7
[i
Vo
i

False Positive Rate 1

ROC-AUC (or Receiver Operating Characteristic Area Under Curve), is a curve that
maps the relationship between the True Positive Rate and False Positive Rate of the model across
different cut-off thresholds.

In the ROC-AUC curve, ROC is a probability curve, and AUC represents the degree or measure
of separability.
The higher the AUC, the better the model.

The ROC curve is generated by calculating and outlining the TPR and FPR, at various thresholds.
TPR (True Positive Rate/Sensitivity) = TP/ TP +FN

FPR (False Positive Rate/Specificity) =FP/FP + TN

The ROC-AUC score ranges from 0.5 — 1, where 1 is the best

Explain different types of Cross Validation techniques. Apply them on a dataset and
interpret the results.

Cross-Validation is a resampling technique with the fundamental idea of splitting the dataset
into 2 parts- training data and test data.
Train data is used to train the model and the unseen test data is used for prediction.
Cross Validation is used to handle the Overfitting and Underfitting issues.
1. Hold Out method
The entire dataset is divided into 2 sets — train set and test set. The data can be divided into 70-30
or 60-40, 75-25 or 80-20, or even 50-50 depending on the use case.
The data split happens randomly, and we can’t be sure which data ends up in the train and test
bucket during the split.
So every time, the split changes, the accuracy will also change unless we specify random_state.

Training Dataset Testing Dataset
| TRAIN
Train Model Evaluate Model

2. Leave One Out Cross-Validation

Instead of dividing the data into two subsets, we select a single observation as test data and label
everything else as training data to train the model.

This process continues ‘n’ times, and we calculate the average of all these iterations to estimate
the test set error.

[123 n |
123 n
123 n
123 n

from sklearn.model_selection import LeaveOneOut

X

[10,20,30,48,50,60,70,82,90,100]

1 LeaveOneout()

for train, test in l.split(X):

print("%s %s"X% (train,test))

3. K-Fold Cross-Validation

We divide the whole data into k sets of almost equal sizes. We select the first set as the test set
and train the model on the remaining k-1 sets.

The best part about this method is that each data point appears in the test set exactly once and
participates in the training set k-1 times.

As the number of folds k increases, the variance also decreases (low variance).

a1 | {00000/000000000000000

[teaen2 | -0 0000000 0/0000000000
[teacns | +0000000000(0000000000

[teank | +00000000000000000007)]

— -} —————

from sklearn.model_selection import KFold

X = ["8","D%; ¢, d" " e, "+"]

kf = KFold(n_splits=3, shuffle=False, random_state=None)
for train, test in kf.split(X):

print("Train data",train,"Test data",test)
4. Stratified K-Fold Cross-Validation
In the stratified K-Fold CV will create K-Folds by preserving the percentage of sample
for each class.
This solves the problem of random sampling associated with Hold out and K-Fold methods.

A=
e
R
LR
L B

Class Distributions Round 1

skf = StratifiedKFold(n_splits=3,random_state=None,shuffle=False)

for train_index,test_index in skf.split(X,y):
print("Train:",train_index, 'Test:',test_index)
X_train,X_test = X[train_index], X[test_index]
y_train,y_test = y[train_index], y[test_index]

10. Explain underfitting and overfitting with respect to Bias and Variance.

Bias and variance are two key sources of error in machine learning models that directly impact
their performance and generalization ability.

The relationship between bias and variance is often referred to as the bias-variance tradeoff,
which highlights the need for balance:

A X A X
X X
X X X(O\X
X X X 4 X X X X X
XX X XX X
Under-fitting Appropirate-fitting Over-fitting

Increasing model complexity reduces bias but increases variance (risk of overfitting).
Simplifying the model reduces variance but increases bias (risk of underfitting).

The goal is to find an optimal balance where both bias and variance are minimized, resulting in
good generalization performance.

Bias: is the error that happens when a machine learning model is too simple and doesn't learn
enough details from the data. It's like assuming all birds can only be small and fly, so the model fails to
recognize big birds like ostriches or penguins that can't fly and get biased with predictions.

These assumptions make the model easier to train but may prevent it from capturing the underlying
complexities of the data.

High bias typically leads to underfitting, where the model performs poorly on both training and testing
data because it fails to learn enough from the data.

Variance: Error that happens when a machine learning model learns too much from the data,
including random noise.
A high-variance model learns not only the patterns but also the noise in the training data, which leads to
poor generalization on unseen data.
High variance typically leads to overfitting, where the model performs well on training data but poorly on
testing data.

Overfitting:

Overfitting happens when a model learns too much from the training data, including details that
don’t matter (like noise or outliers).
As a result, the model works great on training data but fails when tested on new data.
Overfitting models are like students who memorize answers instead of understanding the topic. They do
well in practice tests (training) but struggle in real exams (testing).

The overfitted model has low bias and high variance.

Reasons for Overfitting:
The model is too complex.
The size of the training data is small.

Underfitting:

Underfitting is the opposite of overfitting. It happens when a model is too simple to capture
what’s going on in the data.
In this case, the model doesn’t work well on either the training or testing data.
Underfitting models are like students who don’t study enough. They don’t do well in practice tests or real
exams.

An underfitted model has high bias and low variance.

Reasons for Underfitting:

The model is too simple, So it may be not capable to represent the complexities in the data.

The input features which is used to train the model is not the adequate representations of underlying
factors influencing the target variable.

The size of the training dataset used is not enough.

Features are not scaled.

