

Internal Assessment Test 1 – July 2025

Software Engineering Sub Code: MMC204

0107/2025 Duration
: 90 min’s Max Marks: 50 Sem: I Branch: MCA

PART I

1.​ Explain IEEE/ACM code of Software Engineering ethics.

The IEEE (Institute of Electrical and Electronics Engineers) and ACM (Association for
Computing Machinery) have jointly established a code of ethics and professional practices for
software engineers. This code provides guidelines for ethical behavior and professional conduct
in the field of software engineering. While the specific details may evolve over time, the general
principles include:
1. PUBLIC: Software engineers shall act consistently with the public interest. They should
consider the safety, health, and welfare of the public and disclose any factors that could endanger
it.
2. CLIENT AND EMPLOYER: Software engineers shall act in a manner that is in the best
interests of their clients and employers and shall ensure that the products of their work meet the
highest professional standards.
3. PRODUCT: Software engineers shall ensure that their products and related modifications meet
the highest professional standards possible. This includes being diligent in the design, testing,
and maintenance of software.
4. JUDGMENT: Software engineers shall maintain integrity and independence in their
professional judgment. They should provide honest assessments of software and system
implications, ensuring that decisions are made based on objective analysis.
5. MANAGEMENT: Software engineers shall subscribe to fair management practices and not
promote any action that is known to be unethical or illegal. They should work to improve their
management skills and promote an ethical approach to the management of software development
and maintenance.
6. PROFESSION: Software engineers shall advance the integrity and reputation of the profession
Consistent with the public interest. They should foster professional development, mentor
colleagues, and contribute to the community to enhance the understanding and appreciation of
the field.
7. COLLEAGUES: Software engineers shall be fair to and supportive of their colleagues. They
should avoid malicious or subversive behavior and strive to foster a positive and collaborative
working environment.
8. SELF: Software engineers shall participate in lifelong learning and consistently enhance their
Professional skills. They should promote ethical approaches to the practice of software
engineering and maintain high standards of professional conduct.
Adherence to this code of ethics is crucial for maintaining the trust of clients, employers, and the
public, and for ensuring the responsible and ethical development of software and technology.

2.​ Describe Prototyping Model of Software development with neat diagrams.

The prototyping paradigm begins with communication. Developer and customer meet and define
the overall objectives for the software, identify whatever requirements are known, A quick
design focuses on a representation of those aspects of the software that will be visible to the
customer/user (e.g. Input approaches and output formats). The quick design leads to the
construction of a prototype.
The prototype is evaluated by the customer/user and used to refine requirements for the software
To be developed. Iteration occurs as the prototype is tuned to satisfy the needs of the customer,
While at the same time enabling the developer to better understand what needs to be done.
Ideally, the prototype serves as a mechanism for identifying software requirements. If a working
prototype is built, the developer attempts to use existing program fragments or applies tools (e.g.,
report generators, window managers) that enable working programs to be generated quickly.

Advantages:
Requirements can be set earlier and more reliably.
Customer sees results very quickly.
Customer is educated in what is possible helping to refine requirements.
Requirements can be communicated more clearly and completely.
Between developers and clients Requirements and design options can be investigated quickly
and cheaply.
Drawbacks of prototyping:
In the first version itself, customer often wants ―few fixes‖ rather than rebuilding of the system

Whereas rebuilding of new system maintains high level of quality.
The first version may have some compromises.
Sometimes developer may make implementation compromises to get prototype working quickly.
Later on developer may become comfortable with compromises and forget why they are
inappropriate.

PART II
3.​ Discuss the process involved in Incremental Model with advantages and

disadvantages.
The incremental model delivers a series of releases, called increments that provide
progressively more functionality for the customer as each increment is delivered. The
incremental model applies linear sequences in a staggered fashion as calendar time
progresses. Each linear sequence produces deliverable ―increments‖ of the software
[McD93] in a manner that is similar to the increments produced by an evolutionary process
flow. The first increment is called core product. In this release the basic requirements are
implemented and then in subsequent increments new requirements are added. The core
product is used by the customer (or undergoes detailed evaluation). As a result of use and/or
evaluation, a plan is developed for the next increment. The plan addresses the modification of
the core product to better meet the needs of the customer and the delivery of additional
features and functionality. This process is repeated following the delivery of each increment,
until the complete product is produced.

Incremental Process Model

i) In the second increment, more sophisticated document producing and processing facilities,
file management functionalities are given.

Incremental process Model advantages

1. Produces working software early during the lifecycle.
2. More flexible as scope and requirement changes can be implemented at low cost.
3. Testing and debugging is easier, as the iterations are small.
4. Low risks factors as the risks can be identified and resolved during each iteration.
Incremental process Model disadvantages
1. This model has phases that are very rigid and do not overlap.
2. Not all the requirements are gathered before starting the development; this could lead to
Problems related to system architecture at later iterations.

4.​ Explain in detail the principles of Agile methods.
Agile is an iterative and incremental approach to software development that emphasizes
flexibility,
collaboration, and customer satisfaction. Here are the twelve Agile principles:
1. Customer Satisfaction through Early and Continuous Delivery of Valuable Software:
 Deliver working software frequently, with a preference for shorter timescales, to provide
tangible value to the customer.

2. Welcome Changing Requirements, Even Late in Development:
 Embrace changes in requirements, even if they occur late in the development process, to
provide the customer with a competitive advantage.

3. Deliver Working Software Frequently:
 Aim to deliver a working product as frequently as possible, with a preference for shorter
development cycles.

4. Collaboration between Business Stakeholders and Developers:
 Foster a collaborative environment where business stakeholders and developers work
together daily throughout the project.
5. Build Projects around Motivated Individuals:
 Give motivated individuals the resources and support they need and trust them to get the
job
done.

6. Face-to-Face Communication is Most Effective:
 Maximize face-to-face communication within the team as it is the most efficient and
effective
method of conveying information.

7. Working Software is the Primary Measure of Progress:
 Focus on delivering a working product, as it is the ultimate measure of progress in Agile
development.

8. Maintain a Sustainable Pace of Work:

 Encourage a sustainable pace of work to maintain a consistent level of productivity and
prevent burnout.

9. Continuous Attention to Technical Excellence and Good Design:
 Prioritize technical excellence and good design to ensure the long-term maintainability
and
adaptability of the software.

10. Simplicity—the Art of Maximizing the Amount of Work Not Done:

 Emphasize simplicity in design and implementation, maximizing the value of work
accomplished and minimizing unnecessary complexity.

11. Self-Organizing Teams:
 Allow the team to self-organize, encouraging collaboration and creativity while
recognizing the
expertise of individual team members.
12. Regular Reflection and Adaptation:
 Regularly reflect on the team's performance and adapt processes accordingly, fostering a
culture of continuous improvement.

PART III
5.​ Describe requirements elicitation and analysis process with example.

Requirements Elicitation
 It is related to the various ways used to gain knowledge about the project domain and
requirements.
 The various sources of domain knowledge include customers, business manuals, the
existing software of the same type, standards, and other stakeholders of the project.
 The techniques used for requirements elicitation include interviews, brainstorming,
task analysis, Delphi technique, prototyping, etc.
 Requirements elicitation is the process of gathering information about the needs and
expectations of stakeholders for a software system.
Several techniques can be used to elicit requirements, including:
• Interviews: These are one-on-one conversations with stakeholders to gather
information about their needs and expectations.
• Surveys: These are questionnaires that are distributed to stakeholders to gather
information about their needs and expectations.
• Focus Groups: These are small groups of stakeholders who are brought together to
discuss their needs and expectations for the software system.
• Observation: This technique involves observing the stakeholders in their work
environment to gather information about their needs and expectations.
• Prototyping: This technique involves creating a working model of the software
system, which can be used to gather feedback from stakeholders and to validate
requirements.

Activities involved in Software Requirement Analysis

Steps involved in the Requirement Analysis Process
Step 1: Identifying Stakeholders and Communicating Needs
Step 2: Gathering Requirements
Step 3: Analyzing and Prioritizing Requirements
Step 4: Documenting Requirements
Step 5: Validating Requirements
Step 6: Creating Use Cases or User Stories
Step 7: Getting Sign-off and Approval
Step 8: Managing Changes

6.​ What are Functional and Non-Functional requirements? Explain in detail..

Functional Requirements?
These are the requirements that the end user specifically demands as basic facilities that
the system should offer. All these functionalities need to be necessarily incorporated into
the system as a part of the contract.

●​ These are represented or stated in the form of input to be given to the system, the
operation performed and the output expected.

●​ They are the requirements stated by the user which one can see directly in the final
product, unlike the non-functional requirements.

Examples:
●​ What are the features that we need to design for this system?
●​ What are the edge cases we need to consider, if any, in our design?

Non-Functional Requirements?
These are the quality constraints that the system must satisfy according to the project
contract. The priority or extent to which these factors are implemented varies from one
project to another. They are also called non-behavioral requirements. They deal with
issues like:

●​ Portability

●​ Security
●​ Maintainability
●​ Reliability
●​ Scalability
●​ Performance
●​ Reusability
●​ Flexibility

Examples:
●​ Each request should be processed with the minimum latency?
●​ System should be highly available.

PART IV

7.​ Explain the format and characteristics of good SRS.
Structure of a Typical SRS Document (IEEE Standard 830)
1. Introduction
1.1 Purpose
Describes the purpose of the SRS and the intended audience.
Example:
“This SRS describes the requirements for an online bookstore system, intended for use by
customers, staff, and administrators.”
1.2 Scope
Describes the software to be developed, its objectives, and its benefits.
Example:
“The system allows users to browse, search, purchase books online, and enables
administrators to manage inventory and orders.”
1.3 Definitions, Acronyms, and Abbreviations
Terms used throughout the document for clarity.
1.4 References
Documents or standards referred to in the SRS.
1.5 Overview
What the rest of the document contains.

2. Overall Description

 2.1 Product Perspective
How the software fits into the broader system or context (standalone, part of a system,
etc.).
 2.2 Product Functions
High-level overview of system functions (e.g., login, checkout, etc.).
 2.3 User Classes and Characteristics
Types of users and their technical background.
 2.4 Operating Environment
Software, hardware, and network requirements.
 2.5 Design and Implementation Constraints
Limitations due to hardware, legal, or regulatory constraints.
2.6 Assumptions and Dependencies

https://www.geeksforgeeks.org/maintainability-in-system-design/
https://www.geeksforgeeks.org/reliability-in-system-design/
https://www.geeksforgeeks.org/what-is-scalability/

External factors the system depends on (e.g., third-party payment APIs).

3. Specific Requirements
3.1 Functional Requirements
Describes the behavior of the system under specific conditions.
Example:
o FR1: The system shall allow users to register using a valid email address and
password.
o FR2: The system shall send a confirmation email upon successful registration.
3.2 Non-Functional Requirements
Includes performance, reliability, usability, and security aspects.
Example:
o NFR1: The system shall respond to user actions within 2 seconds.
o NFR2: Passwords shall be stored using SHA-256 hashing.
 3.3 Interface Requirements
Describes interactions with hardware, software, or other systems.
3.4 User Interface Requirements
Layout, color schemes, responsiveness, accessibility, etc.

 3.5 Hardware and Communication Requirements
Minimum system requirements, data transfer protocols, etc.

4. Appendices
 Supporting information, mockups, data dictionaries, etc.
5. Index or Glossary
Terms and definitions used throughout the document.
Example for SRS DOCUMENT
Project Title: Library Management System
1. Introduction
1.1 Purpose
The purpose of this document is to define the requirements for the Library Management System.
This SRS will be used by the development team, testers, and the client to ensure a common
understanding of the system functionality.
1.2 Scope
This system is designed to manage the daily operations of a library. It will handle book
inventory, member records, issue and return of books, and report generation. It is meant for
librarians and library members.
1.3 Definitions, Acronyms, and Abbreviations
 LMS: Library Management System
 ISBN: International Standard Book Number
 UI: User Interface
1.4 References
 IEEE SRS Template
 Client-provided requirements document
1.5 Overview

This document is organized into sections covering system description, specific requirements, and
design constraints.

2. Overall Description
2.1 Product Perspective
The system is a standalone desktop/web application and does not rely on any external systems.
2.2 Product Functions
 Add/view/edit/delete books
 Issue and return books
 Register/view members
 Generate reports
2.3 User Classes and Characteristics
 Admin (Librarian): Full access to all features
 Member (Student/Faculty): Limited access, can view/search books, request issue
2.4 Operating Environment
 Web browser (Chrome/Firefox)
 Server with MySQL and PHP/Node.js backend
 Windows/Linux OS
2.5 Design and Implementation Constraints
 System should be developed using JavaScript (Node.js) and MySQL
 Responsive UI using HTML/CSS/Bootstrap
2.6 Assumptions and Dependencies
 Internet connectivity required for web version
 Database server must be running during operations

3. Specific Requirements
3.1 Functional Requirements
 FR-1: System shall allow the admin to add a new book with details like title, author,
ISBN, and quantity.
 FR-2: System shall allow the admin to register a new member with ID, name, and contact
info.
 FR-3: System shall allow members to search books by title, author, or category.
 FR-4: System shall allow the admin to issue and return books, updating the inventory
accordingly.
 FR-5: System shall send an alert when a book is overdue.
3.2 Non-Functional Requirements
 Performance: System should support up to 100 simultaneous users.
 Security: Login required for admin; data encrypted during transmission.
 Usability: UI should be clean and easy to navigate for non-technical users.
 Reliability: Backup system must run daily.
3.3 Interface Requirements
 User Interface: Login page, dashboard, book/member management pages
 Hardware Interface: Barcode scanner (optional)
 Software Interface: MySQL database connection
 Communication Interface: Email service for overdue alerts

4. Appendices
 Sample book entry form
 Entity-Relationship (ER) diagram
 UI mockups

CHARACTERISTICS OF THE SRS
1. Completeness: A SRS is complete if everything the software the software is supposed to do
and the responses of the software to all class of input data are specified in SRS. It ensures that
everything is indeed specified. It is one of the most difficult properties to spot. To ensure
completeness, one has to detect the absence of specification which is much harder to determine.
2. Clarity: The documented requirement should lead to only a single interpretation, independent
of the person or the time when the interpretation is done. The SRS needs to be unambiguous to
the authors, the users, other reviewers as well as the developers and testers who will use the
document. So SRS writer should be careful about ambiguity. One way to avoid ambiguity is to
use some formal requirements specification language, but it is the major drawback. The formal
languages require more effort to write an SRS more cost and the increased difficulty in reading
and understanding formally stated requirements.
3. Correctness: The SRS can be considered as correct if every requirements stated in the SRS is
required in the proposed system. Correctness of an SRS:
Ensures that what is specified is done correctly.
Is an easier property to establish as it basically involves examining each requirement to make
sure that it represents the use requirements?
There are no real tools or procedures that ensure correctness. If there are any preceding
documents then the requirements from those earlier documents need to be traced to the SRS:
4. Consistency: Requirements at all levels must be consistent with each other .any conflict
between requirements within the SRS must be identified and resolved. The types of conflicts that
generally occur are:
Characteristics (format details) of real word entity interfacing with the system maybe conflicting.
For an example, one requirements states that an individual can work up o 6 hours whereas
another requirement state is as 8 hours.
The terminology used for some entities events may be different for example different
requirements may use different terms to refer to the same objects.
5. Verifiability: A SRS is verifiable if and only if every stated requirement is verifiability. A
requirement is verifiable if there exists some cost effective process that can check whether the
final software meets that requirements un ambiguity is essential for verifiability of requirements

is often done through reviews it also implies that SRS in understandable, at least by the
developer the client and the users.
6.Ranking : Generally, the requirements are stated according to their priorities are critical,
other are important but not critical, and there are some which are desirable butnot very
important. Similarly some requirements are core requirements which are not likely to change as
time passes, while others are more dependent on time. A SRS is ranked for importance and or
stability if for each requirement the importance and the stability of the requirements are
indicated.
7. Modifiability: The SRS needs to be documented in such a manner that a history of changes
can be contained in the document. It will also necessary to be able to highlight and tr5ace the

changes of the requirements as we progress through the project. Certain good practices (that can
lead to high modifiability are minimal redundancy and the numbering of the requirements.
According to IEEE, standard 830-1993 (recommended practice for software requirements
specification) SRS is modifiable if its structure and style aresuch that any necessary changes to
the requirements can be made easily while preserving completeness an consistency while
retaining its structure and style.
8. Traceability: As SRS is traceable if the origin of each its requirements is clear and if it
facilitates the referencing of each requirements in future development. There are two types of
traceability.
9. Feasibility: Though it may not be possible to confirm the feasibility of implementation of all
the requirements any requirement which is apparent infeasible, should be eliminated from the
SRS.

8.​ What is testing? Explain the testing fundamentals.
Testing is the process of executing a program to find errors. To make our software
perform well
it should be error-free. If testing is done successfully it will remove all the errors from
the
software. In this article, we will discuss first the principles of testing and then we will
discuss, the
different types of testing.

Principles of Testing
● All the tests should meet the customer’s requirements.
● To make our software testing should be performed by a third party.
● Exhaustive testing is not possible. As we need the optimal amount of testing based
on the risk assessment of the application.
● All the tests to be conducted should be planned before implementing it
● It follows the Pareto rule(80/20 rule) which states that 80% of errors come from
20%
of program components.
● Start testing with small parts and extend it to large parts.
● Types of Testing

PART V

9.​ State and explain development testing and its levels.
Development Testing - It is a method of applying testing practices consistently throughout
the software development life cycle process. This testing ensures the detection of bugs or
errors at the right time which further ensures delay of any kind of risk in terms of time and
cost. Development Testing aims to establish a framework to verify whether the requirements
of a given project are met in accordance with the rules of the mission to be accomplished.
This testing is performed by the software developers or other engineers during the
construction phase of the software development lifecycle (SDLC). Development Testing is a
continuous or a running process in the development of a product in the entire software
development life cycle. This testing is done only once as compared to other testings which
can be performed many times. To meet the deadline date, development testing is performed
during the development phase of a software product,

In Development Testing, the phases are more tightly integrated so that code that is being
written and checked in is automatically tested. In this way, the problems can be more
quickly discovered and can be addressed.

 Development testing
requires some metric depending upon the organization to organization, and these may
include the following :
1.​ Static code Analysis : Static code analysis is a technique of debugging by analyzing the

source code before running a program. It is carried out by analyzing a set of code against
a set or multiple sets of coding rules. This involves analyzing the source code, without
actually executing the program.​
By performing static code analysis, the developers will know early on if there are any
problems in their code and by this, it will be easier to fix those problems.​

2.​ Data Flow Analysis : This concept uses the Control flow Graph mechanism to check
the flow of the program, at different levels. Data Flow Testing is a type of structural
testing. It is a method that is used to find the test paths of a program according to the
locations of definitions and uses of variables in the program. It has nothing to do with
data flow diagrams. This testing uses the control flow graph to check the anomalies in
the code which can interrupt the flow of the program.​

3.​ Metric Analysis : Metric is a synonym for measurement. To calculate the efficiency of a
program, various software metrics like calculating cyclomatic complexity, counting
Lines of code (LOC), function points, etc. are used in that case. In metric analysis, Test
metrics are used in taking the decision for the next phase of activities like cost
estimating & future projects, recognizing the type of improvement required to succeed
the project, or in taking a decision on the process or technology to be modified, etc.​

4.​ Code review : The source code is inspected and is checked for any flaws in it. It can be
used to find and remove flaws in the code such as memory leaks and buffer overflows.
 It is very important to do a code review in the early phase like a peer review, carry out
this step earlier than you send your code to be tested for development. Also, do some

https://www.geeksforgeeks.org/data-flow-testing/
https://www.geeksforgeeks.org/software-measurement-and-metrics/

functionality testing of your code so that it becomes easy for code review. There are
various approaches to do code reviews such as The Email thread, Pair programming,
Over shoulder, and Tool-assisted.

10.​What is debugging? Explain the steps involved in debugging process.

Debugging is the process of identifying and resolving errors, or bugs, in a software system. It is
an important aspect of software engineering because bugs can cause a software system to
 malfunction, and can lead to poor performance or incorrect results. Debugging can be a time-
consuming and complex task, but it is essential for ensuring that a software system is
functioning correctly.
What is Debugging ?
In the context of software engineering, debugging is the process of fixing a bug in the software.
When there’s a problem with software, programmers analyze the code to figure out why things
aren’t working correctly. They use different debugging tools to carefully go through the code,
step by step, find the issue, and make the necessary corrections.
Why is it called debugging?

The term “debugging” originated from an incident involving Grace Hopper in the 1940s when a
moth caused a malfunction in the Mark II computer at Harvard University. The term stuck and
is
now commonly used to describe the process of finding and fixing errors in computer programs.
In simpler terms, debugging got its name from removing a moth that caused a computer
problem.
Methods and Techniques Used in Debugging
There are several common methods and techniques used in debugging, including:
1. Code Inspection: This involves manually reviewing the source code of a software
system to identify potential bugs or errors.
2. Debugging Tools: There are various tools available for debugging such as
debuggers, trace tools, and profilers that can be used to identify and resolve bugs.
3. Unit Testing: This involves testing individual units or components of a software
system to identify bugs or errors.
4. Integration Testing: This involves testing the interactions between different
components of a software system to identify bugs or errors.
5. System Testing: This involves testing the entire software system to identify bugs or
errors.
6. Monitoring: This involves monitoring a software system for unusual behavior or
performance issues that can indicate the presence of bugs or errors.
7. Logging: This involves recording events and messages related to the software
system, which can be used to identify bugs or errors.

Process of Debugging

The steps involved in debugging are:
● Problem identification and report preparation.
● Assigning the report to the software engineer defect to verify that it is genuine.
● Defect Analysis using modeling, documentation, finding and testing candidate flaws,

etc.
● Defect Resolution by making required changes to the system.

● Validation of corrections.

The debugging process will always have one of two outcomes :
1. The cause will be found and corrected.
2. The cause will not be found.

