

CMR
INSTITUTE
OF
TECHNOLOGY

USN

VTU Examination August - 2025

Sub: Web Application Development Code: MMC205

Answer Key Marks OBE

CO RBT

 Module-1

Q1.a Explain the concept of client-server architecture with an example.

Client-Server Model/Architecture:-

The Client-Server Model is a distributed application architecture that divides tasks
or workloads between servers (providers of resources or services) and clients
(requesters of those services). In this model, a client sends a request to a server for
data, which is typically processed on the server side. The server then returns the
requested data to the client.

Clients generally do not share resources with each other, but instead rely on the
server to provide the resources or services requested. Common examples of the
client-server model include email systems and the World Wide Web (WWW),
where email clients interact with mail servers, and web browsers request resources
from web servers.

How Does the Client-Server Model Work?

In this article, we are going to take a dive into the Client-Server model and have a
look at how the Internet works via web browsers. This article will help us have a
solid WEB foundation and help us easily work with WEB technologies.

Client

When we talk about a "Client," it refers to a device (usually a computer,
smartphone, or application) that requests and receives services from a server. The
client is the entity that initiates communication, asking for data or resources from
the server. For instance, web browsers like Google Chrome, Mozilla Firefox, or
Safari are common client applications that request data from a server to render web
pages.

6 L2 CO1

Server

A Server, on the other hand, is a remote computer or system that provides data,
resources, or services to clients. It listens to incoming client requests, processes
them, and sends the required information back. A server can handle multiple client
requests simultaneously.

For example, Web servers host websites, and database servers store and serve
databases for applications. In simple terms, the client sends a request to the server,
and the server serves the request as long as the data or service is available in its
system.

Client Server Model

How the Browser Interacts With the Servers?

The process of interacting with servers through a browser involves several steps.
Here's a breakdown of the steps taken when you enter a URL in a browser and
receive the website data:

1. User Enters the URL (Uniform Resource Locator): The user types a website
address (e.g., www.example.com) into the browser's address bar.

2. DNS (Domain Name System) Lookup: The browser sends a request to the DNS
server to resolve the human-readable URL into an IP address (since computers use
IP addresses to identify and connect to each other).

3. DNS Server Resolves the Address: The DNS server looks up the domain name
and returns the IP address of the web server hosting the requested website.

4. Browser Sends HTTP/HTTPS Request: The browser sends an HTTP/HTTPS
request to the IP address of the web server to fetch the website’s data. HTTP

(HyperText Transfer Protocol) or HTTPS (the secure version) is the protocol used
for communication between the browser (client) and the web server (server).

5. Server Sends Website Files: The server processes the request and sends the
necessary website files (HTML, CSS, JavaScript, images, etc.) back to the browser.

6. Rendering the Website: The browser renders the files and displays the website
to the user. This rendering process involves several components:Together, these
components, known as Just-In-Time (JIT) Compilers, allow the browser to
convert raw data into a visual webpage.

●​ DOM (Document Object Model) Interpreter: Processes the HTML
structure.

●​ CSS Interpreter: Applies styles to the HTML elements.
●​ JS Engine: Executes JavaScript code for interactivity.

Advantages of the Client-Server Model

The Client-Server model offers several advantages that make it popular in
networked and distributed systems:

●​ Centralized Data Management: All data is stored in a centralized server,
which makes it easier to manage, update, and back up.

●​ Cost Efficiency: Since the server handles most of the processing, clients
require fewer resources and can be simpler devices, reducing costs.

●​ Scalability: Both clients and servers can be scaled separately. Servers can
be upgraded to handle more clients, and new clients can be added without
significant changes to the server infrastructure.

●​ Data Recovery: Centralized data storage on the server allows for better
data recovery and easier backup strategies.

●​ Security: Security measures such as firewalls, encryption, and
authentication can be centralized on the server, ensuring that sensitive data
is protected.

Disadvantages of Client-Server Model

●​ Clients Are Vulnerable: Clients are prone to viruses, Trojans, and worms if
present in the Server or uploaded into the Server.

●​ Servers Are Targets: Servers are prone to Denial of Service (DOS) attacks,
where the server is overwhelmed with traffic and made unavailable to
legitimate clients.

Q1.b Differentiate between front-end and back-end development.

1. Definition
4 L2 CO1

https://www.geeksforgeeks.org/deniel-service-prevention/

●​ Front-End Development:​
 Refers to the part of a website or application that users interact with
directly. It deals with the user interface (UI) and user experience (UX).​

●​ Back-End Development:​
 Refers to the part that works behind the scenes. It handles server-side
operations, databases, and business logic to ensure the front-end works
smoothly.

2. Focus Area

●​ Front-End: Looks, design, and behavior of the application (what users see).​

●​ Back-End: Functionality, data management, and logic (how the system
works).

3. Technologies Used

●​ Front-End:​

○​ Languages: HTML, CSS, JavaScript​

○​ Frameworks/Libraries: React, Angular, Vue.js, Bootstrap​

●​ Back-End:​

○​ Languages: Java, Python, PHP, Node.js, Ruby, C#​

○​ Frameworks: Django, Flask, Spring, Express.js, Laravel​

○​ Databases: MySQL, MongoDB, PostgreSQL, Oracle​

4. Role in Client-Server Model

●​ Front-End: Acts as the client side, sending requests and displaying
responses.​

●​ Back-End: Acts as the server side, processing requests, fetching/storing
data, and sending responses.​

5. Example

Imagine an online shopping site:

●​ Front-End: The product listings, search bar, shopping cart button, and
checkout page that users see and interact with.​

●​ Back-End: The system that stores product details, manages inventory,
processes payments, and updates order status in the database.

Q1.c List any five HTML5 elements and explain their purpose.

HTML Elements

An HTML Element consists of a start tag, content, and an end tag, which together
define the element’s structure and functionality. Elements are the basic building
blocks of a webpage and can represent different types of content, such as text, links,
images, or headings.

For example, the <p> element for paragraphs includes opening and closing tags
with text content in between.

​

Syntax:

<tagname >Your Contents... </tagname>

HTML Element Code Example:
In this example <p> is a starting tag, </p> is an ending tag and it contains some
content between the tags, which form an element

<!-- HTML code to illustrate HTML elements -->

<!DOCTYPE html>

<html>

5 L2 CO1

<head>

 <title>HTML Elements</title>

</head>

<body>

 <p>Welcome to GeeksforGeeks!</p>

</body>

</html>
Some Key Points About HTML Elements
1. Syntax:

●​ An opening tag indicates where the content begins: <tagname>.
●​ A closing tag indicates where the content ends: </tagname>.
●​ The actual content resides between the opening and closing tags.

2. Case Sensitivity:

●​ HTML tags are not case-sensitive. For example, and both
represent bold text.

●​ However, it’s a best practice to use lowercase tags for consistency and
readability.

Block-Level Elements and Inline Elements
In HTML, elements are broadly categorized into two main types based on how they
display in the document layout: block-level elements and inline elements.

1. Block-Level Elements – Block-level elements typically start on a new line and
take up the full width available to them, regardless of their actual content width.
This means they stack vertically and can contain other block-level elements as well
as inline elements. Here are some examples of block-level elements:

Examples:

●​ <div>: A general-purpose container for other elements.
●​ <p>: Defines a paragraph.
●​ <h1>, <h2>, …, <h6>: Heading elements of different levels.
●​ , : Ordered and unordered lists.
●​ <table>: Defines a table.
●​ <form>: Used for HTML forms to collect user inputs.
●​ <section>, <article>, <nav>, <aside>, <header>, <footer>: Semantic

elements that define areas of a webpage.

2. Inline Elements – Inline elements do not start on a new line; they appear on the
same line as adjacent content, as long as there is space. They only take up as much

width as their content requires. Inline elements are typically used within block-level
elements to add content or style. Here are some examples of inline elements:

Examples:

●​ : A general-purpose inline container for phrasing content.
●​ <a>: Creates hyperlinks.
●​ : Embeds an image.

○​ , : Used for strong emphasis and bold text, respectively.
●​ , <i>: Used for emphasis and italic text, respectively.
●​
: Inserts a line break within text.

Components of Attribute
An HTML attribute consists of two primary components:

1. attribute_name: This is the name of the attribute, which specifies what kind of
additional information or property you are defining for the element. Common
attribute names include href, src, class, id, etc.

2. attribute_value: The value is assigned to the attribute to define the specific
setting or behavior. It is always placed in quotes.

Types of HTML Attributes
HTML attributes can be broadly categorized based on their function and the type of
elements they modify.

1.href

Definition:​
 Specifies the URL of the page the hyperlink points to. Used with the <a> tag.​

Syntax:​
Link Text
Example:​
Visit Google

2. src

●​ Definition:​
 Specifies the file path or URL of the image or media file to be
displayed. Used with , <video>, and <audio>.

Syntax:​

●​ Example:​

3. width and height

Definition:​
​ ​ Define the width and height of an image or media element in pixels.

Syntax:​
​
Example:​
​

4. alt

Definition:​
​ ​ Provides alternative text for an image if it cannot be displayed. Also
helps with accessibility.

Syntax:​
​ ​

Example:​
​ ​

5. style

●​ Definition:​
 Applies inline CSS styling to an HTML element.

Syntax:​
​ ​ <element style="property:value;">

Example:​
​ ​ <p style="color: blue; font-size: 18px;">Styled text</p>

6. lang Attribute

Definition:​
 Declares the language of the web page's content. Used with the
<html> tag.

Syntax:​
​ ​ <html lang="language_code">

Example:​
​ ​ <html lang="en">

7. title Attribute

●​ Definition:​
 Provides additional information about an element. The info appears

as a tooltip when the mouse hovers over it.​
Syntax:​
<element title="Tooltip text">

●​ Example:​
<p title="This is a tooltip">Hover over this paragraph</p>

HTML5 Semantics

HTML5 introduced a range of semantic elements that clearly describe their purpose
in human and machine-readable language. Unlike non-semantic elements, which
provide no information about their content, semantic elements clearly define their
content.

For instance, <form>, <table>, and <article> tags clearly define the content and
purpose, to the browser.

Why Use Semantic HTML Tags?

●​ Accessibility: Semantic elements make web pages more accessible.
Screen readers and other assistive technologies can interpret the
structure and navigate the content more efficiently.

●​ Maintainability: Semantic HTML helps create a logically structured
document, which is easier to read and maintain.

Semantic Elements

Here are some of the fundamental HTML5 semantic elements that you should use
to structure your web content:

​ The following tags have been introduced for better structure −
●​ section − This tag represents a generic document or application section. It
can be used together with h1-h6 to indicate the document structure.
●​ article − This tag represents an independent piece of content of a
document, such as a blog entry or newspaper article.
●​ aside − This tag represents a piece of content that is only slightly related
to the rest of the page.
●​ header − This tag represents the header of a section.
●​ footer − This tag represents a footer for a section and can contain
information about the author, copyright information, et cetera.
●​ nav − This tag represents a section of the document intended for
navigation.
●​ Mark − This tag can be used to mark up a conversation.
●​ figure − This tag can be used to associate a caption together with some
embedded content, such as a graphic or video.

Q1.d Explain how to embed an audio file in a web page using HTML5.

 HTML5 <audio> Tag

HTML5 introduced the <audio> element, which allows us to play audio directly in
the browser without plugins (like Flash).

5 L2 CO1

2. Basic Syntax

<audio controls>
 <source src="audiofile.mp3" type="audio/mpeg">
 <source src="audiofile.ogg" type="audio/ogg">
 Your browser does not support the audio element.
</audio>

3. Explanation

●​ <audio>: The main tag for embedding audio.​

●​ controls: Adds play, pause, volume, and seek bar controls.​

●​ <source>: Specifies audio files. Multiple formats ensure cross-browser
compatibility.​

○​ src → file path or URL of the audio.​

○​ type → audio format (e.g., audio/mpeg, audio/ogg).​

●​ Fallback Text: Shown if the browser doesn’t support <audio>.​

4. Attributes of <audio>

●​ controls → Shows audio player controls.​

●​ autoplay → Starts playing automatically when the page loads.​

●​ loop → Plays the audio repeatedly.​

●​ muted → Starts the audio in muted mode.​

●​ preload → Hints how the browser should load audio:​

○​ auto → Load entire audio (default).​

○​ metadata → Load only audio details (duration, etc.).​

○​ none → Don’t load audio until the user plays it.​

5. Example with Attributes

<audio controls autoplay loop muted>
 <source src="song.mp3" type="audio/mpeg">
 <source src="song.ogg" type="audio/ogg">
 Your browser does not support the audio element.
</audio>

 OR

Q2.a Explain the use of the <canvas> element in HTML5. How is it different from SVG?
Illustrate with examples.

1. What is <canvas>?

●​ The <canvas> element in HTML5 provides an area (a drawing surface)
where you can draw graphics using JavaScript.​

●​ It is mainly used for:​

○​ Drawing shapes (rectangles, circles, lines).​

○​ Creating charts and graphs.​

○​ Rendering images.​

○​ Developing games and animations.

2. Basic Syntax

<canvas id="myCanvas" width="400" height="200" style="border:1px solid
black;"></canvas>

●​ id → Unique identifier (to access it via JavaScript).​

●​ width & height → Size of the drawing area.​

●​ Inside <canvas> → fallback text (shown if browser doesn’t support canvas).​

3. Drawing Example (Rectangle in Canvas)

<!DOCTYPE html>
<html>
<head>
 <title>Canvas Example</title>
</head>
<body>
 <h2>Canvas Rectangle</h2>

10 L2 CO1

 <canvas id="myCanvas" width="300" height="150" style="border:1px solid
black;"></canvas>

 <script>
 // Access the canvas
 var c = document.getElementById("myCanvas");
 var ctx = c.getContext("2d"); // 2D drawing context

 // Draw a blue rectangle
 ctx.fillStyle = "blue";
 ctx.fillRect(50, 40, 200, 80);
 </script>
</body>
</html>

Difference Between <canvas> and SVG

Feature <canvas> (HTML5 Canvas) SVG (Scalable Vector
Graphics)

Definition Bitmap-based drawing surface. XML-based vector graphics
format.

Drawing
Method

Drawn using JavaScript
(imperative).

Defined using tags
(declarative).

Scalability Loses quality when scaled
(pixel-based).

Infinite scalability
(vector-based).

Interactivity Requires manual coding (hit
detection).

Built-in DOM elements, easy
to style & interact.

Use Cases Games, animations, charts
with frequent redraws.

Static graphics, logos, maps,
icons.

Performance Faster for complex, dynamic
graphics.

Better for simpler, scalable
images.

Q2.b List any three HTML5 APIs and explain their functionality briefly.
What is Web API?

API stands for Application Programming Interface. An API is some kind of
interface that includes a set of functions and subroutines that allow

10 L2 CO1

programmers to access specific features or data of an application, operating
system or other services.

A Web API is an application programming interface for the Web.

HTML APIs

All browsers have a set of built-in Web APIs to support complex operations,
and to help accessing data.

Here are some of the main HTML5 APIs:

1. Geolocation API - This API is used to access the current location of a user
(with latitude and longitude).

2. Drag and Drop API - This API enables you to use drag-and-drop features in
browsers.

3. Web Storage API - This API has mechanisms to let browsers store key/value
pairs (in a more intuitive way than cookies).

4. Web Workers API - This API allows a JavaScript to run in the background,
without affecting the performance of the page. Users can continue to do
whatever they want: clicking, selecting things, etc., while the web worker runs
in the background.

5. Server-Sent Events API - This API allows a web page to automatically get
updates from a server.

6. Canvas API - This API lets you draw graphics, on the fly, via JavaScript.

HTML Geolocation API

The Geolocation API is used to get the user's current location.

Locate the User's Position

The Geolocation API is used to access the user's current location.

Since this can compromise privacy, the location is not available unless the user
approves it.

Using HTML Geolocation API

The Geolocation API is accessed via a call to navigator.geolocation. This will
cause the browser to ask the user for permission to access their location data. If

https://www.w3schools.com/html/html5_geolocation.asp
https://www.w3schools.com/html/html5_draganddrop.asp
https://www.w3schools.com/html/html5_webstorage.asp
https://www.w3schools.com/html/html5_webworkers.asp
https://www.w3schools.com/html/html5_serversentevents.asp
https://www.w3schools.com/html/html5_canvas.asp

the user accepts, the browser will search for the best available functionality on
the device to access this information (for example GPS).

The getCurrentPosition() method is used to return the user's current location.

The example below returns the latitude and longitude of the user's current
location:

Example

<script>
const x = document.getElementById("demo");
function getLocation() {
 if (navigator.geolocation) {
​ navigator.geolocation.getCurrentPosition(success, error);
 } else {
​ x.innerHTML = "Geolocation is not supported by this browser.";
 }
}
function success(position) {
 x.innerHTML = "Latitude: " + position.coords.latitude +
 "
Longitude: " + position.coords.longitude;
}
function error() {
 alert("Sorry, no position available.");
}
</script>

Example explained:

●​ Check if Geolocation is supported
●​ If Geolocation is supported, run the getCurrentPosition() method. If not,
display a message to the user
●​ The success() function outputs the user's location in latitude and
longitude
●​ The error() function alerts a text if the browser retrieves an error in
getCurrentPosition()

What is HTML Web Storage?

With web storage, applications can store data locally within the user's browser.

Before HTML5, application data had to be stored in cookies, included in every
server request. Web storage is more secure, and large amounts of data can be
stored locally, without affecting website performance.

Unlike cookies, the storage limit is far larger (at least 5MB) and information is
never transferred to the server.

Web storage is per origin (per domain and protocol). All pages, from one origin,
can store and access the same data.

Web Storage API Objects

Web storage provides two objects for storing data in the browser:

●​ window.localStorage - stores data with no expiration date (data is not
lost when the browser tab is closed)

●​ window.sessionStorage - stores data for one session (data is lost when
the browser tab is closed)

Test Web Storage API Support

Before using web storage, we can quickly check browser support for
localStorage and sessionStorage:

Example

<script>

const x = document.getElementById("result");
if (typeof(Storage) !== "undefined") {
 x.innerHTML = "Your browser supports Web storage!";
} else {
 x.innerHTML = "Sorry, no Web storage support!";
}
</script>

The localStorage Object

The localStorage object stores the data with no expiration date. The data will
not be lost when the browser is closed, and will be available the next day, week,
or year.

Example

Use localStorage to set and retrieve name and value pairs:

<script>
const x = document.getElementById("result");

if (typeof(Storage) !== "undefined") {
 // Store
 localStorage.setItem("lastname", "Smith");
 localStorage.setItem("bgcolor", "yellow");
 // Retrieve
 x.innerHTML = localStorage.getItem("lastname");
 x.style.backgroundColor = localStorage.getItem("bgcolor");
} else {
 x.innerHTML = "Sorry, no Web storage support!";
}
</script>

Example explained:

●​ Use the localStorage.setItem() method to create name/value pairs
●​ Use the localStorage.getItem() method to retrieve the values set
●​ Retrieve the value of "lastname" and insert it into an element with
id="result"
●​ Retrieve the value of "bgcolor" and insert it into the style
backgroundColor of the element with id="result”

The sessionStorage Object

The sessionStorage object is equal to the localStorage object, except that it
stores the data for only one session! The data is deleted when the user closes the
specific browser tab.

Counting Clicks with sessionStorage

The following example counts the number of times a user has clicked a button,
in the current session:

Example

<script>
function clickCounter() {
 const x = document.getElementById("result");
 if (typeof(Storage) !== "undefined") {
 if (sessionStorage.clickcount) {
 sessionStorage.clickcount = Number(sessionStorage.clickcount)+1;
 } else {
 ​ sessionStorage.clickcount = 1;
 }
​ x.innerHTML = "You have clicked the button " + sessionStorage.clickcount +
time(s) in this session!";
 } else {
 x.innerHTML = "Sorry, no Web storage support!";
 }
}
</script>

What is a Web Worker?

When executing scripts in an HTML page, the page becomes unresponsive until
the script is finished.

A web worker is an external JavaScript file that runs in the background,
independently of other scripts, without affecting the performance of the page.
You can continue to do whatever you want: clicking, selecting things, etc.,
while the web worker runs in the background.

Web workers are useful for heavy code that can't be run on the main thread,
without causing long tasks that make the page unresponsive.

●​ Create a Web Worker Object

●​ Once we have created the .js web worker file, we can call it from an
HTML page.

●​ The following lines checks if a worker (w) already exists, if not - it
creates a new web worker object and points to the .js file: "demo_workers.js":

if (typeof(w) == "undefined") {

 w = new Worker("demo_workers.js");

}

●​ Then we can SEND and RETRIEVE messages from the web worker.

●​ Data is sent between web workers and the main thread via a system of
messages - both sides send their messages using the postMessage() method, and
respond to messages via the onmessage event handler.

●​ Add an onmessage event listener to the web worker object.

●​ onmessage

●​ When the web worker in the .js posts a message, the code within the
event listener is executed. The data from the web worker is stored in event.data.

 Module-2

Q3.a What are CSS3 properties? List any five properties with their use.

❖​ CSS Properties:-
●​ Font​

CSS font properties allow you to style text on web pages by
controlling aspects like font family, size, weight, style, and spacing.
Here’s a detailed overview of the font-related properties in CSS:

1. Font-family

Specifies the typeface of the text. It can include multiple fonts as a
fallback mechanism. If the browser doesn't support the first font, it
will try the next.

​
 p {
 font-family: "Arial", "Helvetica", sans-serif;
 }

●​ Generic Families:
○​ serif (e.g., Times New Roman)
○​ sans-serif (e.g., Arial)
○​ monospace (e.g., Courier)

7 L2 CO2

○​ cursive (e.g., Comic Sans)

2. font-size

Defines the size of the text. It can be specified in:

●​ Absolute units: px, pt, cm, etc.
●​ Keywords: small, medium, large, etc.

 h1 {
 font-size: 24px;
 }

3. font-weight

Controls the boldness of text. Acceptable values:

●​ Keywords: normal, bold, lighter, bolder
●​ Numerical values: 100 (thin) to 900 (extra-bold)

p {
 font-weight: bold;

}
h2 {

 ​​ ​ font-weight: 300; /* Light */
}

4. font-style

Defines the style of the font. Options:

●​ normal: Default text style
●​ italic: Italicized text
●​ oblique: Slanted text

h1 {
 font-style: italic;
}

5. font-variant

Used to enable or disable small-caps text (small uppercase letters).

p {
 font-variant: small-caps;
}

6. font-shorthand

The font property allows you to define multiple font properties in one line.
The order is important:​
font: font-style font-variant font-weight font-size/line-height font-family;

p {
 font: italic small-caps bold 16px/1.5 "Georgia", serif;
}

color:-
In CSS, colors are used to define the visual appearance of elements, such as
text, backgrounds, borders, and more. CSS provides several ways to specify
colors, offering flexibility for design and accessibility.

1. CSS Color Properties

These properties are commonly used to apply colors:

●​ color: Sets the color of text

p {
 color: red;
}

background-color: Sets the background color of an element.​
​
div {
 background-color: lightblue;
}

border-color: Sets the color of an element's border.​
​
div {
 border: 2px solid black;
 border-color: green;
}
2. Color Value Types
a. Named Colors

CSS has 140+ predefined color names.

h1 {

 color: blue;

}

Examples: red, green, blue, yellow, orange, purple, black, white, etc.

b. Hexadecimal Colors

Hexadecimal values represent colors using the format #RRGGBB.

p {

 color: #ff5733; /* Bright orange */

}

●​ Short form: #RGB (e.g., #f53 is equivalent to #ff5533).

c. RGB Colors

Specifies colors using red, green, and blue values (0–255).

body {

 background-color: rgb(255, 87, 51); /* Bright orange */

}

RGB with Alpha Transparency (rgba): Adds an alpha channel for
transparency (0.0 to 1.0).​
div {

 background-color: rgba(255, 87, 51, 0.5); /* 50% transparent */

}

Text Properties

CSS text properties are used to style and control the appearance and
alignment of text on a webpage. Here's a comprehensive guide to the most
commonly used CSS text properties:

1. color

Sets the color of the text.

p {
 color: blue;
}

2. text-align

Specifies the horizontal alignment of text within an element.​
Values:

●​ left (default)
●​ right
●​ center
●​ justify

h1 {
 text-align: center;
}

3. text-decoration

Adds or removes text decorations.​
Values:

●​ none: Removes all decorations.
●​ underline: Adds an underline.
●​ overline: Adds a line above the text.
●​ line-through: Adds a strike-through line.
●​ blink (deprecated, not supported in most browsers).

a {
 text-decoration: overline;
}

4. text-transform

Controls the capitalization of text.​
Values:

●​ none: Default (no transformation).
●​ capitalize: Capitalizes the first letter of each word.
●​ uppercase: Converts text to uppercase.
●​ lowercase: Converts text to lowercase.

h2 {
 text-transform: uppercase;
}

5. letter-spacing

Adjusts the spacing between characters (kerning).​
Values:

●​ Use length units (px, em, %, etc.).

p {
 letter-spacing: 2px;
}

Combining Text Properties

p {
 color: #333;
 text-align: justify;
 text-decoration: underline;
 text-transform: capitalize;
 letter-spacing: 1px;
 word-spacing: 2px;
 line-height: 1.8;
 text-indent: 20px;
}

Q3.b What is responsive web design? Why is it important?

What is responsive web design? Why is it important?

Responsive Web Design (RWD) is an approach to building websites so that the
layout and content adapt smoothly to different screen sizes and device types —
phones, tablets, laptops, desktops — without needing separate sites for each. It uses
flexible grids, fluid images, and CSS media queries to change styles based on
viewport size, orientation, or other device features.

Why it's important

●​ Better user experience: Visitors can read and navigate easily on any
device.​

●​ Single codebase: One site works across devices, simpler to maintain than
separate mobile/desktop sites.​

6 L2 CO2

●​ SEO benefits: Search engines (like Google) prefer mobile-friendly,
responsive sites.​

●​ Wider reach: Supports users on phones, tablets, desktops — increases
engagement and conversions.​

●​ Performance: Proper responsive design helps deliver appropriate assets
(sizes) for devices, improving load times.

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <meta name="viewport" content="width=device-width, initial-scale=1">
 <title>Responsive Example</title>
 <style>
 .container {
 display: flex;
 gap: 10px;
 }
 .box {
 flex: 1;
 padding: 20px;
 background: lightblue;
 text-align: center;
 font-size: 20px;
 }
 /* Responsive: On small screens, stack boxes vertically */
 @media (max-width: 600px) {
 .container {
 flex-direction: column;
 }
 }
 </style>
</head>
<body>
 <h2>Responsive Web Design Example</h2>
 <p>Resize the browser window to see the effect.</p>

 <div class="container">
 <div class="box">Box 1</div>
 <div class="box">Box 2</div>
 <div class="box">Box 3</div>
 </div>
</body>
</html>

Q3.c Write a CSS rule to change the background color of all <h1> elements to blue.
Explain the selector and property used.

1. Selector: h1

●​ In CSS, a selector is used to target the HTML elements you want to style.​

●​ Here, the selector is h1, which means this rule will apply to all <h1>
elements in the webpage.​

●​ If a page has multiple <h1> tags, this rule ensures that each one will receive
the same background color.​

Example in HTML:​
​
 <h1>Welcome to My Website</h1>
<h1>About Us</h1>

●​ Both headings above would be styled with a blue background.​

2. Property: background-color

●​ In CSS, a property defines what aspect of the element you want to change.​

●​ The property background-color controls the background color of the
selected element.​

●​ It can take values such as:​

○​ Color names (e.g., blue, red, green)​

○​ HEX codes (e.g., #0000FF for blue)​

○​ RGB values (e.g., rgb(0, 0, 255))​

○​ HSL values (e.g., hsl(240, 100%, 50%) for blue)​

In this case, background-color: blue; sets the background behind the text of all
<h1> headings to blue.

<!DOCTYPE html>

7 L3 CO2

<html>
<head>
 <style>
 h1 {
 background-color: blue; /* CSS rule applied */
 color: white; /* Text color changed for better visibility */
 padding: 10px; /* Adds space around text */
 }
 </style>
</head>
<body>
 <h1>Main Heading</h1>
 <h1>Another Heading</h1>
</body>
</html>

 OR

Q4.a What is Bootstrap? Mention two benefits of using it in web development.

Bootstrap is a popular open-source front-end framework used for designing
responsive and mobile-first websites. It provides pre-designed HTML, CSS, and
JavaScript components such as navigation bars, buttons, forms, grids, and modals
that help developers build websites quickly and efficiently.

Two benefits of using Bootstrap:

1.​ Responsive Design – Bootstrap’s grid system and ready-made classes
ensure that websites automatically adjust and look good on all screen sizes
(mobile, tablet, desktop).​

2.​ Faster Development – With built-in templates, components, and utilities,
developers can save time and effort instead of writing CSS and JavaScript
from scratch.

4 L2 CO2

Q4.b Describe how you would implement a mobile-first design using CSS

Mobile-First Design with CSS

A mobile-first design means creating a website that is optimized for small screens
(like smartphones) first, and then gradually enhancing the layout for larger devices
(like tablets and desktops) using media queries.

Steps to Implement

6 L2 CO2

1.​ Start with Base Styles for Mobile​

○​ Write simple CSS that works well on small screens by default.​

○​ Use a single-column layout, larger touch-friendly buttons, and
readable font sizes.​

body {
 font-family: Arial, sans-serif;
 font-size: 16px;
 margin: 10px;
}
.container {
 display: block; /* simple stacking layout */
}

2.​ Use Relative Units​

○​ Use %, em, rem, vw, and vh instead of fixed px to ensure flexibility
across devices.​

3.​ Apply Fluid Images and Elements​

○​ Ensure images and videos don’t overflow the screen.​

img {
 max-width: 100%;
 height: auto;
}

4.​ Enhance Layout with Media Queries​

○​ Add breakpoints for larger screens (min-width) to adjust the design
step by step.​

@media (min-width: 600px) {
 .container {
 display: flex; /* two-column layout for tablets */
 gap: 20px;
 }

}

@media (min-width: 900px) {
 .container {
 max-width: 1100px; /* center content on desktops */
 margin: auto;
 }
}

5.​ Progressive Enhancement​

○​ Instead of hiding content for mobile, start with the simplest version
and add more features/styles for larger devices.​

Advantages of Mobile-First Approach

●​ Ensures websites are usable on the most common devices (mobiles).​

●​ Improves performance by loading lightweight styles first.​

●​ Easier maintenance since larger layouts are just enhancements.

Q4.c Show the effect of flexible images with an example (HTML and CSS snippet).

Flexible Images in Responsive Web Design

Flexible images automatically scale to fit the width of their parent container,
preventing overflow on small screens. This is done using CSS with max-width:
100% and height: auto.

Example (HTML + CSS)

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <meta name="viewport" content="width=device-width, initial-scale=1.0">
 <title>Flexible Image Example</title>
 <style>
 img {
 max-width: 100%; /* Image will shrink if container is small */
 height: auto; /* Keeps the aspect ratio */
 border: 2px solid black;

5 L2 CO2

 }
 .container {
 width: 50%; /* Change this to see the effect */
 border: 2px solid blue;
 }
 </style>
</head>
<body>
 <h2>Flexible Image Demo</h2>
 <div class="container">

 </div>
</body>
</html>

Q4.d Write a CSS snippet using class selectors and apply it to an HTML element.

CSS Snippet Using Class Selector

A class selector in CSS is defined with a dot (.) before the class name. It is used to
style one or more elements that share the same class.

Example

<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>Class Selector Example</title>
 <style>
 .highlight {
 background-color: yellow; /* sets background */
 color: red; /* sets text color */
 font-weight: bold; /* makes text bold */
 padding: 10px; /* adds spacing */
 }
 </style>
</head>
<body>
 <h1 class="highlight">This is a highlighted heading</h1>
 <p>This paragraph is normal.</p>
 <p class="highlight">This paragraph is also highlighted using the same class.</p>
</body>
</html>

5 L3 CO2

 Module-3

Q5.a Write a JavaScript program to find the largest of three numbers using if-else and
explain the logic.

<!DOCTYPE html>

<html lang="en">

<head>

 <meta charset="UTF-8">

 <title>Largest Number</title>

</head>

<body>

 <script>

 // Three numbers

 let a = 25, b = 42, c = 18;

 let largest;

 // Using if-else to compare

 if (a >= b && a >= c) {

 largest = a;

 } else if (b >= a && b >= c) {

 largest = b;

 } else {

 largest = c;

 }

 // Output

 document.write("The largest number is: " + largest);

 </script>

</body>

10 L3 CO3

</html>

Q5.b Describe various JavaScript operators with at least two examples for each type.

What is an Operator?

In JavaScript, an operator is a symbol that performs an operation on one or more
operands, such as

variables or values, and returns a result. Let us take a simple expression 4 + 5 is
equal to 9. Here 4

and 5 are called operands, and + is called the operator.

JavaScript supports the following types of operators.

●​ Arithmetic Operators
●​ Comparison Operators
●​ Logical (or Relational) Operators
●​ Bitwise Operators
●​ Assignment Operators

1.JavaScript Arithmetic Operators

The JavaScript arithmetic operators are used to perform mathematical calculations
such as addition,

multiplication, subtraction, division, etc. on numbers. JavaScript supports the
following arithmetic

2.JavaScript Comparison Operators

The comparison operators in JavaScript compare two variables or values and return
a boolean

value, either true or false based on the comparison result. For example, we can use
the comparison

operators to check whether two operands are equal or not.

The comparison operators are used in logical expressions. A logical expression is
evaluated to

either true or false.

The comparison operators are binary operators as they perform operations on two
operands. The

operands can be numerical, string, logical, or object values.

10 L2 CO3

There are eight comparison operators in JavaScript to perform different types of
comparison. Here,

we have given a table explaining each comparison operator with the example.

Operator Description Example

== Equal x == y

!= Not Equal x != y

=== Strict equality (equal value and equal type) x === y

!== Strict inequality (not equal value or not equal type) x !== y

Operator Description Example

+ (Addition) Adds two operands. x + y will give 30.

- (Subtraction) Subtracts the second operand from

the first. x - y will give -10.

* (Multiplication) Multiplies both operands. x * y will give 200.

/ (Division) Divides the numerator by the denominator.

y / x will give 2.

% (Modulus) Outputs the remainder of an

integer division. y % x will give 0

++ (Increment) Increases an integer value by one. x++ will give 11.

-- (Decrement) Decreases an integer value by one. x-- will give 9.

> Greater than x > y

< Less than x < y<

>= Greater than or Equal to x >= y

<= Less than or Equal to x <= y

3.JavaScript Logical Operators

The logical operators in JavaScript are generally used with Boolean operands and
return a boolean

value. There are mainly three types on logical operators in JavaScript - && (AND),
|| (OR), and !

(NOT). These operators are used to control the flow of the program.

Although the logical operators are typically used with Boolean values, they can be
used with any

type. For each non-boolean value, the operator converts to a boolean. The falsy
values are

converted to false and truthy values to true.

The && and || operators return the value of one of the operands based on condition.
So if the

operands are non-boolean, they return a non-boolean value. The ! operator always
returns a Boolean

value.

The operands may be literals, variables or expressions. These are first evaluated to
the boolean

equivalent before performing the logical operation.

In the below table, we have given the logical operators with its description and
example. Let's

assume: x = true, y = false.

Operator Description Example

&& Logical AND (x && y) is false.

|| Logical OR (x || y) is true.

! Logical NOT !(x) is false.

JavaScript Logical AND (&&) Operator

The logical AND (&&) operator evaluates the operands from left to right. If the
first operand can be

converted to false, it will return the value of the first operand, otherwise it will
return the value of

the second operand.

x && y

In the above expression if x is a falsy value then it will return the value of x
otherwise it will return

the value of y.

The above rule is followed for all types of operands, whether they are Boolean
values, numbers or

strings, etc.

Let's first discuss Boolean operands. In general, for a set of Boolean operands, it
will return true if

both operands are true else it returns false.

JavaScript Logical OR (||) Operator

The logical OR (||) operator also evaluates the operands from left to right. If the first
operand can be

converted to true, it will return the value of first operand, otherwise it will return the
value of the

second operand.

x || y

In the above expression if x is a truthy value then it will return the value of x
otherwise it will return

the value of y.

As || is a logical operator but it can be applied to any type of operand not only
boolean.

Let's first discuss Boolean operands. In general, for a set of Boolean operands, it
will return false if

both operands are false else it returns true.

JavaScript Logical NOT (!) Operator

The logical NOT (!) Operator is a unary operator. It returns false if the operand can
be converted to

true, otherwise it returns true.

!x

If x is truthy, the NOT (!) operator returns false. If the x is false then it returns true.

Same as Logical AND, and OR operators, this logical NOT operator can also be
used with

non-boolean operands. But it will always return a Boolean value.

 OR

Q6.a What is the Document Object Model (DOM)? Explain its structure and purpose.
What is DOM?

The Document Object Model (DOM) is a programming interface for web
documents. It represents the structure of a document as a tree of objects, where each
object corresponds to a part of the document, such as elements, attributes, and text.
JavaScript can manipulate this tree structure, allowing developers to dynamically
alter the content and appearance of a webpage.JavaScript can interact with the
DOM to dynamically change content, structure, and styles on a webpage.

DOM Structure

The HTML DOM model is constructed as a tree of Objects:

The HTML DOM Tree of Objects

With the object model, JavaScript gets all the power it needs to create dynamic
HTML:

●​ JavaScript can change all the HTML elements in the page
●​ JavaScript can change all the HTML attributes in the page
●​ JavaScript can change all the CSS styles in the page
●​ JavaScript can remove existing HTML elements and attributes
●​ JavaScript can add new HTML elements and attributes
●​ JavaScript can react to all existing HTML events in the page

10 L2 CO3

●​ JavaScript can create new HTML events in the page

DOM Manipulation

The document object represents your web page.

If you want to access any element in an HTML page, you always start with
accessing the document object.

Below are some examples of how you can use the document object to access and
manipulate HTML.

Finding HTML Elements

Method Description

document.getElementById(id) Find an element by element id

document.getElementsByTagName(name) Find elements by tag name

document.getElementsByClassName(name) Find elements by class name

Q6.b What is AJAX? Explain how it helps in loading data without reloading the page.

AJAX

AJAX (Asynchronous JavaScript and XML) is a technique in web development
used to send and receive data from a server asynchronously (in the background)
without needing to reload the entire web page.

Although the name contains “XML,” today AJAX commonly works with data
formats like JSON.

How AJAX Works

1.​ A browser event occurs (e.g., button click).​

2.​ JavaScript creates an XMLHttpRequest (or uses fetch() API).​

3.​ The request is sent to the server in the background.​

4.​ The server processes the request and sends data back.​

10 L3 CO3

5.​ JavaScript updates part of the web page with the new data without
reloading.​

Why AJAX is Useful

●​ Improves User Experience → Only part of the page updates, making
websites faster and smoother.​

●​ Saves Bandwidth → Only required data is transferred, not the whole page.​

●​ Real-Time Updates → Used in live chat apps, stock updates, weather apps,
etc.​

Example: Loading Data without Reloading

<!DOCTYPE html>
<html>
<head>
 <title>AJAX Example</title>
 <script>
 function loadData() {
 // Create an XMLHttpRequest object
 let xhr = new XMLHttpRequest();

 // Define what happens when data is ready
 xhr.onreadystatechange = function () {
 if (xhr.readyState == 4 && xhr.status == 200) {
 document.getElementById("data").innerHTML = xhr.responseText;
 }
 };

 // Send request to server file (sample.txt)
 xhr.open("GET", "sample.txt", true);
 xhr.send();
 }
 </script>
</head>
<body>
 <h2>AJAX Demo</h2>
 <button onclick="loadData()">Load Data</button>
 <div id="data">Content will load here...</div>
</body>
</html>

 Module-4

Q7.a List any three popular front-end frameworks and describe their key features.

1. React.js (Developed by Facebook)

React is a JavaScript library often considered a framework because of its wide
ecosystem. It is mainly used for building user interfaces.

Key Features:

●​ Component-Based Architecture: The UI is divided into reusable
components, making development easier and modular.​

●​ Virtual DOM: React updates only the changed parts of the DOM,
improving speed and performance.​

●​ Unidirectional Data Flow: Data flows in a single direction, which makes
debugging and state management simpler.​

●​ Strong Ecosystem: React works well with libraries like Redux (state
management) and React Router (routing).​

👉 Example use: Instagram’s web app uses React for smooth rendering and
updates.

2. Angular (Developed by Google)

Angular is a full-fledged front-end framework based on TypeScript, suitable for
building large-scale enterprise web applications.

Key Features:

●​ Two-Way Data Binding: Automatically syncs data between model (logic)
and view (UI).​

●​ Dependency Injection (DI): Manages object creation and sharing, making
code more maintainable.​

●​ Directives: Special HTML attributes (like *ngIf, *ngFor) that add dynamic
behavior to web pages.​

●​ Built-in Tools: Provides routing, form validation, and HTTP services
out-of-the-box.​

6 L2 CO4

👉 Example use: Google applications like Gmail and Google Cloud Console use
Angular.

3. Vue.js

Vue is a progressive framework that is lightweight yet powerful, making it
popular for both small and large projects.

Key Features:

●​ Reactive Data Binding: Like Angular, Vue supports two-way data binding,
making UI updates automatic.​

●​ Easy Learning Curve: Simple syntax, making it beginner-friendly
compared to Angular.​

●​ Component-Based: Supports reusable, modular components like React.​

●​ Integration Flexibility: Vue can be integrated into existing projects
gradually (progressive nature).

Q7.b Explain the concept of scope in AngularJS with a simple example.

oncept of Scope in AngularJS

In AngularJS, Scope is a special JavaScript object that binds the controller and
the view (HTML).

●​ It acts as a glue between the Model (data) and the View (UI).​

●​ The $scope object stores the application data (variables, functions) and
makes them available to the view.​

●​ Whenever data inside the scope changes, the view automatically updates
(two-way data binding).​

●​ Each AngularJS application has a root scope ($rootScope) and can have
multiple child scopes inside controllers and directives.​

Simple Example

HTML + AngularJS Code:

<!DOCTYPE html>
<html ng-app="myApp">

7 L3 CO4

<head>
 <script
src="https://ajax.googleapis.com/ajax/libs/angularjs/1.8.2/angular.min.js"></script>
</head>
<body ng-controller="myController">

 <h2>Scope Example in AngularJS</h2>

 <!-- Binding scope variable to input -->
 Enter your name: <input type="text" ng-model="name">

 <!-- Displaying value from scope -->
 <p>Hello, {{name}}!</p>

</body>

<script>
 // Define AngularJS app
 var app = angular.module("myApp", []);

 // Define controller with $scope
 app.controller("myController", function($scope) {
 $scope.name = "Daya"; // initial value stored in scope
 });
</script>
</html>

Q7.c What are AngularJS expressions? How are they different from JavaScript
expressions?

AngularJS Expressions

●​ AngularJS expressions are written inside double curly braces {{ }}.​

●​ They are used to bind data between the model and view.​

●​ These expressions can contain variables, operators, and function calls
defined in the AngularJS scope.​

●​ AngularJS evaluates the expression against the $scope object, not the global
window object.​

7 L2 CO4

Example:​
​
 <p>Total: {{ price * quantity }}</p>

●​ If $scope.price = 50 and $scope.quantity = 3, output will be 150.

JavaScript Expressions

●​ JavaScript expressions are written in plain JS code and run inside the
browser’s global scope (window).​

●​ They can include variables, operators, function calls, objects, arrays, etc.​

●​ Must be explicitly written inside <script> tags or external .js files.​

Example:​
​
 var price = 50;
var quantity = 3;

●​ document.write("Total: " + (price * quantity));

 OR

Q8.a Compare React, Angular, and Vue based on their structure and features.

Comparison of React, Angular, and Vue

1. React.js

●​ Structure: A JavaScript library (not a full framework) developed by
Facebook. Uses a component-based architecture.​

●​ Features:​

○​ Virtual DOM for fast UI updates.​

○​ Unidirectional data flow (one-way binding).​

○​ Works with external libraries like Redux for state management.​

○​ Flexible and lightweight but needs integration with other tools for
routing and forms.​

8 L2 CO4

2. Angular

●​ Structure: A full-fledged framework developed by Google, written in
TypeScript.​

●​ Features:​

○​ Two-way data binding for automatic UI updates.​

○​ Dependency Injection (DI) for managing services and components.​

○​ Provides built-in tools like routing, form validation, HTTP
services.​

○​ Strongly opinionated and suited for large-scale enterprise apps.​

3. Vue.js

●​ Structure: A progressive framework created by Evan You. It is
lightweight, combining the best ideas of Angular and React.​

●​ Features:​

○​ Reactive two-way data binding like Angular.​

○​ Component-based architecture like React.​

○​ Easy to integrate with existing projects.​

○​ Simple learning curve, suitable for beginners.

Q8.b List the steps to create a simple AngularJS application.

Steps to Create a Simple AngularJS Application

Creating an AngularJS application involves initializing the app, creating a
controller, and binding data to the view.

Step 1: Include AngularJS Library

●​ First, include the AngularJS library in your HTML file.​

●​ You can use a CDN link:​

5 L3 CO4

<script
src="https://ajax.googleapis.com/ajax/libs/angularjs/1.8.2/angular.min.js"></script>

Step 2: Initialize AngularJS Application

●​ Use the ng-app directive in the <html> or <body> tag to define the
AngularJS application.​

<body ng-app="myApp">

Step 3: Create a Controller

●​ Use the ng-controller directive to attach a controller to a part of your page.​

●​ Define the controller in JavaScript and attach it to the AngularJS app.​

var app = angular.module("myApp", []);

app.controller("myController", function($scope) {
 $scope.message = "Hello, AngularJS!";
});

Step 4: Bind Data to the View

●​ Use AngularJS expressions {{ }} to display variables from $scope in
HTML.​

<p>{{ message }}</p>

●​ The data from the controller is automatically shown in the view.​

Step 5: Add Interactivity (Optional)

●​ Use directives like ng-model for input binding and ng-click for events.​

Enter your name: <input type="text" ng-model="name">
<p>Hello, {{ name }}!</p>

Step 6: Run the Application

●​ Open the HTML file in a browser.​

●​ AngularJS automatically compiles the view and updates the DOM with
bound data.​

Final Simple HTML Example

<!DOCTYPE html>
<html ng-app="myApp">
<head>
 <scri
src="https://ajax.googleapis.com/ajax/libs/angularjs/1.8.2/angular.min.js"></script>
</head>
<body ng-controller="myController">

 <h2>Simple AngularJS App</h2>
 <p>{{ message }}</p>

 Enter your name: <input type="text" ng-model="name">
 <p>Hello, {{ name }}!</p>

 <script>
 var app = angular.module("myApp", []);
 app.controller("myController", function($scope) {
 $scope.message = "Hello, AngularJS!";
 });
 </script>

</body>
</html>

Q8.c Compare Angular and React in terms of architecture and usage.

Comparison: Angular vs React

1. Architecture

Aspect Angular React

Type Full-fledged front-end framework JavaScript library for building
UI

7 L2 CO4

Structure MVC / MVVM architectur
(Model-View-Controller o
Model-View-ViewModel). Provid
everything out-of-the-box includin
routing, forms, HTTP services.

Component-based
architecture. Focused only on
UI components; needs external
libraries for routing, state
management, and HTTP
requests.

Data
Binding

Two-way data binding – changes
the UI automatically update the mod
and vice versa.

One-way data binding – data
flows in a single direction; state
management libraries like
Redux are used for complex
apps.

DOM Real DOM with change detectio
mechanism

Virtual DOM for faster and
efficient updates

2. Usage / Learning Curve

Aspect Angular React

Learning
Curve

Steep; requires knowledge o
TypeScript, dependency injectio
decorators, and Angular-specif
concepts.

Moderate; easier for
developers familiar with
JavaScript and JSX.

Best For Large-scale enterpris
applications with comple
architecture.

Flexible, UI-focused
applications, single-page
apps, and projects requiring
custom integrations.

Ecosystem Provides everything built-i
(routing, forms, services).

Lightweight; relies on external
libraries for routing, state
management, and advanced
features.

Performance Slightly slower for heavy update
due to real DOM, but optimized b
change detection.

Faster updates due to Virtual
DOM. Ideal for apps with
dynamic, frequently changing
UIs.

 Module-5

Q9.a Differentiate between SQL and NoSQL databases with examples.

SQL vs NoSQL Databases
7 L2 CO5

1. Definition

●​ SQL Databases: Relational databases that store data in tables with rows
and columns. Use Structured Query Language (SQL) to manage and
query data.​

●​ NoSQL Databases: Non-relational databases that store data in flexible
formats such as key-value pairs, documents, graphs, or wide-columns. They
are schema-less or have dynamic schemas.​

2. Comparison Table

Feature SQL Databases NoSQL Databases

Data Model Relational (tables, rows,
columns)

Non-relational (key-value,
document, graph, column)

Schema Fixed schema (predefined
structure)

Dynamic schema (flexible, can
change over time)

Query
Language

SQL (Structured Query
Language)

Varies by type; e.g., MongoDB
uses JSON-style queries

Scalability Vertical scaling (adding
more CPU/RAM to single
server)

Horizontal scaling (adding more
servers to distribute data)

Transactio
ns

Supports ACID (Atomicity,
Consistency, Isolation,
Durability)

Many support BASE (Basically
Available, Soft state, Eventually
consistent)

Examples MySQL, PostgreSQL,
Oracle, SQL Server

MongoDB, Cassandra, Redis,
CouchDB

Use Case Applications needing
structured data and complex
queries (banking, ERP)

Applications with large-scale,
unstructured, or rapidly changing
data (social media, IoT, big data)

3. Key Differences

1.​ Structure: SQL uses structured tables, NoSQL is schema-less.​

2.​ Flexibility: SQL requires predefined columns; NoSQL can store different
data formats in the same database.​

3.​ Scaling: SQL is vertically scalable, NoSQL is horizontally scalable.​

4.​ Transactions: SQL ensures strong consistency (ACID); NoSQL often
prioritizes availability and partition tolerance (BASE).​

5.​ Examples: MySQL (SQL), MongoDB (NoSQL).​

Q9.b Mention any two server-side languages and list the advantages of each.

Two Server-Side Languages and Their Advantages

1. PHP (Hypertext Preprocessor)

Advantages:

1.​ Open Source and Free – PHP is free to use, which reduces development
cost.​

2.​ Easy Integration with Databases – Works seamlessly with databases like
MySQL, PostgreSQL, and SQLite.​

3.​ Cross-Platform – Runs on Windows, Linux, and macOS servers.​

4.​ Large Community Support – Many libraries, frameworks (like Laravel,
CodeIgniter) are available.​

Example Use: WordPress, Facebook (initially), e-commerce websites.

2. Python

Advantages:

1.​ Simple and Readable Syntax – Easy to learn and maintain, which speeds
up development.​

2.​ Wide Range of Frameworks – Frameworks like Django and Flask help
build secure, scalable web applications quickly.​

3.​ Supports Multiple Paradigms – Object-oriented, procedural, and
functional programming.​

4.​ Large Community and Libraries – Many libraries for web development,
data analysis, AI, and more.

7 L2 CO5

Q9.c Define authentication and authorization in web applications.

Authentication and Authorization in Web Applications

1. Authentication

●​ Definition: Authentication is the process of verifying the identity of a user
or system before granting access to an application.​

●​ It ensures that the person trying to access the application is who they claim
to be.​

●​ Common Methods:​

○​ Username and password​

○​ OTP (One-Time Password)​

○​ Biometric verification (fingerprint, face recognition)​

○​ OAuth / Social logins (Google, Facebook)​

Example: When a user enters a username and password on a login page, the system
checks if the credentials are correct. If yes, the user is authenticated.

2. Authorization

●​ Definition: Authorization is the process of determining what an
authenticated user is allowed to do within the application.​

●​ It ensures that users can only access resources or perform actions they
are permitted to.​

●​ Common Methods:​

○​ Role-based access control (RBAC) – Admin, User, Guest​

○​ Permission levels – Read, Write, Delete​

Example: A regular user can view their profile but cannot access the admin
dashboard. The system checks the user’s role and authorizes access accordingly.

6 L3 CO5

 OR

Q10.a Describe the concept of full-stack development with a real-time example.

Full-Stack Development

Definition:​
 Full-stack development is the practice of building both the front-end (client-side)
and back-end (server-side) parts of a web application. A full-stack developer is
capable of handling everything from designing the user interface to managing
databases and server logic.

●​ Front-End (Client-Side): Responsible for what users see and interact with.
Uses technologies like HTML, CSS, JavaScript, and frameworks/libraries
like React, Angular, Vue.​

●​ Back-End (Server-Side): Handles the server, application logic, and
database interactions. Uses languages like Node.js, Python, PHP, Java and
databases like MySQL, MongoDB.​

●​ Full Stack: Combines front-end + back-end + database knowledge,
enabling development of complete applications.​

Key Responsibilities of a Full-Stack Developer

1.​ Designing and developing responsive user interfaces.​

2.​ Implementing server-side logic and APIs.​

3.​ Managing databases and data storage.​

4.​ Ensuring security, authentication, and authorization.​

5.​ Deploying applications to cloud servers or hosting platforms.​

Real-Time Example: Online Food Delivery Application

Scenario: Building a food delivery app like Zomato or Swiggy.

●​ Front-End (React/Angular/Vue):​

○​ User can browse restaurants, view menus, add items to the cart, and
place an order.​

○​ Implements responsive design for mobile and desktop users.​

10 L3 CO5

●​ Back-End (Node.js/PHP/Python):​

○​ Handles order processing, user authentication, payment processing,
and sending notifications.​

○​ Exposes APIs to the front-end for fetching restaurant data and
submitting orders.​

●​ Database (MySQL/MongoDB):​

○​ Stores user information, restaurant menus, orders, and payment
history.​

●​ Full-Stack Role:​

○​ The developer connects the front-end UI with the back-end APIs and
database, ensuring smooth interaction between user actions and
server responses.

Q10.b How would you deploy a web application on a cloud hosting platform?

Steps to Deploy a Web Application on a Cloud Hosting Platform

1. Choose a Cloud Hosting Platform

●​ Popular platforms: AWS (Amazon Web Services), Google Cloud
Platform (GCP), Microsoft Azure, Heroku, Netlify, Vercel.​

●​ Decide based on your project requirements, like scalability, ease of use, or
cost.​

2. Prepare Your Web Application

●​ Ensure your application is production-ready:​

○​ Front-end built (HTML, CSS, JS, or frameworks like
React/Angular/Vue).​

○​ Back-end configured (Node.js, Python, PHP, etc.) with database
connections.​

○​ Configuration files updated (like .env for environment variables).​

10 L3 CO5

3. Set Up a Cloud Instance or Hosting Service

●​ For IaaS (Infrastructure as a Service, e.g., AWS EC2):​

○​ Create a virtual server instance.​

○​ Install necessary software (web server like Apache/Nginx, language
runtime).​

●​ For PaaS (Platform as a Service, e.g., Heroku, Netlify, Vercel):​

○​ Simply link your repository (GitHub/GitLab).​

○​ Configure build commands and deployment settings.​

4. Upload or Connect Your Application

●​ Option 1: Git Deployment​

○​ Push your code to a Git repository.​

○​ Connect the repository to the cloud platform (Heroku, Netlify,
Vercel).​

●​ Option 2: File Upload / FTP​

○​ Upload files to the cloud server using FTP/SFTP.​

○​ Place files in the web server directory (e.g., /var/www/html for
Apache).​

5. Configure the Database (if required)

●​ Set up a database instance (MySQL, PostgreSQL, MongoDB).​

●​ Update your application configuration with database URL, username, and
password.​

●​ Ensure database is accessible from your deployed app.​

6. Set Up Environment Variables

●​ Configure variables like API_KEY, DB_URL, or PORT without hardcoding
them.​

●​ This keeps sensitive data secure and allows easy configuration across
environments.​

7. Start the Application

●​ For back-end apps: Run the server (e.g., node app.js) or let PaaS handle it
automatically.​

●​ Ensure the server is listening on the correct port and reachable via the
internet.​

8. Test the Deployment

●​ Access the application using the cloud URL or custom domain.​

●​ Verify all features work: UI, database, APIs, and authentication.​

9. Set Up a Domain and SSL (Optional but Recommended)

●​ Register a domain name.​

●​ Configure DNS to point to your cloud application.​

●​ Enable SSL (HTTPS) for secure connections.​

Example Scenario: Deploying a Node.js App on Heroku

1.​ Create a Heroku account.​

2.​ Install Heroku CLI.​

Navigate to your app folder and run:​
​
 git init
heroku create my-app
git add .
git commit -m "Initial commit"

3.​ git push heroku main

	1. Definition
	3. Technologies Used
	5. Example
	HTML Elements
	HTML Element Code Example:
	Some Key Points About HTML Elements
	Block-Level Elements and Inline Elements
	Components of Attribute
	Types of HTML Attributes
	1.href
	Definition:​ Specifies the URL of the page the hyperlink points to. Used with the <a> tag.​
	2. src
	3. width and height
	Definition:​​​ Define the width and height of an image or media element in pixels.
	4. alt
	Definition:​​ ​Provides alternative text for an image if it cannot be displayed. Also helps with accessibility.
	5. style
	6. lang Attribute
	7. title Attribute

	HTML5 Semantics
	Why Use Semantic HTML Tags?
	Semantic Elements
	 HTML5 <audio> Tag
	2. Basic Syntax
	3. Explanation
	4. Attributes of <audio>
	5. Example with Attributes
	1. What is <canvas>?
	2. Basic Syntax
	3. Drawing Example (Rectangle in Canvas)

	Difference Between <canvas> and SVG
	HTML APIs

	HTML Geolocation API
	Locate the User's Position
	Using HTML Geolocation API
	Example

	What is HTML Web Storage?
	Web Storage API Objects
	Test Web Storage API Support
	Example

	The localStorage Object
	Example

	The sessionStorage Object
	Counting Clicks with sessionStorage
	Example

	What is a Web Worker?
	1. Font-family
	2. font-size
	3. font-weight
	4. font-style
	5. font-variant
	6. font-shorthand
	1. CSS Color Properties
	b. Hexadecimal Colors
	c. RGB Colors

	1. color
	2. text-align
	3. text-decoration
	4. text-transform
	5. letter-spacing
	Combining Text Properties

	What is responsive web design? Why is it important?
	1. Selector: h1
	2. Property: background-color
	Mobile-First Design with CSS
	Steps to Implement
	Advantages of Mobile-First Approach
	Flexible Images in Responsive Web Design
	Example (HTML + CSS)
	CSS Snippet Using Class Selector
	Example
	The HTML DOM Tree of Objects
	Finding HTML Elements

	AJAX
	How AJAX Works
	Why AJAX is Useful
	Example: Loading Data without Reloading
	1. React.js (Developed by Facebook)
	Key Features:

	2. Angular (Developed by Google)
	Key Features:

	3. Vue.js
	Key Features:

	oncept of Scope in AngularJS
	Simple Example
	HTML + AngularJS Code:

	AngularJS Expressions
	JavaScript Expressions
	Comparison of React, Angular, and Vue
	1. React.js
	2. Angular
	3. Vue.js

	Steps to Create a Simple AngularJS Application
	Step 1: Include AngularJS Library
	Step 2: Initialize AngularJS Application
	Step 3: Create a Controller
	Step 4: Bind Data to the View
	Step 5: Add Interactivity (Optional)
	Step 6: Run the Application
	Final Simple HTML Example

	Comparison: Angular vs React
	1. Architecture
	2. Usage / Learning Curve

	SQL vs NoSQL Databases
	1. Definition
	2. Comparison Table
	3. Key Differences

	Two Server-Side Languages and Their Advantages
	1. PHP (Hypertext Preprocessor)
	2. Python

	Authentication and Authorization in Web Applications
	1. Authentication
	2. Authorization

	Full-Stack Development
	Key Responsibilities of a Full-Stack Developer
	Real-Time Example: Online Food Delivery Application
	Steps to Deploy a Web Application on a Cloud Hosting Platform
	1. Choose a Cloud Hosting Platform
	2. Prepare Your Web Application
	3. Set Up a Cloud Instance or Hosting Service
	4. Upload or Connect Your Application
	5. Configure the Database (if required)
	6. Set Up Environment Variables
	7. Start the Application
	8. Test the Deployment
	9. Set Up a Domain and SSL (Optional but Recommended)
	Example Scenario: Deploying a Node.js App on Heroku

