S
N
Internal Assessment Test 1 — September 2025
Sub: NoSQL Databases Sub | BCD51 CS (DS)
Code: | 5C
Branch:
Date: 26-09- |Duration 90 Max | 50 Sem \" OBE
25 : | minute Marks:
s
Answer any FIVE Questions MARK [CO |RBT
S
1 Critically evaluate the benefits and drawbacks of using Map-Reduce for | [10] 3 L5
large-scale data analytics compared to traditional SQL queries.
2 Explain the CAP theorem with real-world scenarios where each trade-off | [10] 2 L2
is prioritized
3 Consider a large-scale e-commerce application. How would you apply [10] 2 L3
sharding and replication to ensure scalability and reliability?
4 Apply the concept of version stamps to explain how conflicts can be [10] 2 L3
resolved in peer-to-peer replication.
5 What is a materialized view? How does it help in improving the [10] 1 L1
performance?

6 Compare and contrast traditional databases and schema-less databases| [10] 1 L4
in terms of data model, flexibility, and query processing.
Cl CClI HOD

Answer Key

1. MapReduce vs Traditional SQL Queries

(CO3 — L5: Evaluate)

Answer: Map-Reduce is a processing paradigm where any task is divided into sub-tasks,
each sub-tasks is processed parallely and assigned with keys. The key-value pairs are

shuffled and sorted and then finally, reduced to an aggregated output.

G

o Benefits of MapReduce:
o Designed for distributed processing over large datasets.
o Scales horizontally across clusters of commodity hardware.
o Handles unstructured/semi-structured data easily.
o Fault-tolerant — tasks automatically re-executed on failure.
o Supports parallel execution, improving performance on petabyte-scale data.
e Drawbacks:
o Complex programming model (requires writing map and reduce functions).
o High latency — unsuitable for real-time queries.
o No ad-hoc querying as in SQL; limited optimization features.
o Requires manual tuning for efficiency.
e Comparison with SQL.:

o SQL: Declarative, optimized by query engine, suited for structured data.

o MapReduce: Procedural, good for batch analytics on massive data.

Conclusion: MapReduce is superior for batch analytics on unstructured data, while SQL excels
in fast, interactive analysis of structured data.

2. CAP Theorem with Real-World Scenarios

(CO2 - L2: Understand)
Answer:

e CAP Theorem: A distributed system can provide only two of the following three:
o C - Consistency: All nodes see the same data.
o A - Availability: Every request receives a response.

o P —Partition Tolerance: System functions despite network failures.

CP:
System can be distributed
and promise to respond last

CA:
system respond last
updated data and

promise higher updated data
availability ex: HBase, MongoDB,
ex:RDBMS, \ Redis

PostgreSQlL,
etc |

All of the databases
only having atmost two
capabilities

Availability

A i \p

System can be ditributed and
promise to has high availability
ex: Cassandra, CouchDB, Riak,
Voldemort, DynamoDB, etc

Scenarios:

1. CA (No Partition Tolerance): Suitable for single server transactions or where ACID
property is required.

o Example: Traditional RDBMS like PostgreSQL on a single node.
o Prioritizes data accuracy (Consistency) and response (Availability).

2. CP (Consistency + Partition Tolerance):Required for critical transactions where
consistency is crucial. Ex. Financial Transactions

o Example: MongoDB, HBase.
o During partition, system may reject some requests to maintain consistency.

3. AP (Availability + Partition Tolerance): For transactions where availability is required
with eventual consistency. For eg. Social Media

o Example: Cassandra, CouchDB.

o System remains available, allowing eventual consistency.

Conclusion: The choice depends on application needs — banking prefers CP, social media
prefers AP.

3. Sharding and Replication in E-commerce Application

(CO2 - L3: Apply)
Answer:

e Sharding (Horizontal Partitioning):
o Distribute user/order/product data across multiple servers.
o Example:
m Shard 1: Users A-M
m Shard 2: Users N-Z
o Improves scalability and load distribution.
e Replication:
o Maintain multiple copies of shards (Master-Slave or Multi-Master).

o Provides fault tolerance and high availability.

e Application:
o Catalog Service: Sharded by product category.
o User Service: Replicated for faster authentication.

o Order Service: Master—slave setup to ensure durability and quick reads.

Conclusion: Combining sharding (for scalability) and replication (for reliability) ensures
seamless performance in high-traffic e-commerce systems.

4. Version Stamps in Conflict Resolution

(CO2 - L3: Apply)
Answer:

e Version Stamp: Metadata (timestamp or vector clock) attached to each data item to
track updates and resolve conflicts in a distributed enviroment.

e Conflict Scenario:
1. Two nodes update the same record concurrently.
e Resolution Steps:

1. Each update tagged with a unique version vector (e.g., Node ID + timestamp/
Vector clock etc.).

2. On synchronization, system compares version stamps:
m If one version supersedes the other — overwrite.

m If concurrent — conflict — user-defined merge rule or manual
reconciliation.

e Example (CouchDB, Riak): Use vector clocks to detect causality among versions.

Conclusion: Version stamps ensure eventual consistency by detecting and resolving update
conflicts in distributed databases.

5. Materialized View and Its Role in Performance

(CO1 - L1: Remember)
Answer:

e Definition:
A materialized view is a precomputed table that stores the result of a query physically,
unlike a normal (virtual) view.
e Purpose:
o Reduces computation time for complex joins/aggregations.
o Avoids repeatedly running expensive queries.
e Example:
Precomputed sales summary by region instead of aggregating daily transactions each
time.
e Performance Benefit:
o Faster query response.

o Reduced load on base tables.

o Periodically refreshed for updated results.

Conclusion: Materialized views improve performance by trading storage for query speed.
6. Traditional vs Schema-less Databases

(CO1 - L4: Analyze)

Aspect Traditional (RDBMS) Schema-less (NoSQL)

Data Model Structured tables with predefined Flexible JSON, key-value, column, or
schema graph model

Schema Rigid, must alter table to change
Flexibility schema

Scalability Vertical (single node)

Query SQL (structured queries, joins)
Language

Transactions ACID (Atomicity, Consistency,
Isolation, Durability)

Use Case Banking, ERP

Dynamic — fields can vary per
document

Horizontal (multiple nodes)

Proprietary (MongoDB query
language, CQL, etc.)

BASE (Basically Available, Soft-state,
Eventually consistent)

Social media, 10T, analytics

Schema-less databases offer flexibility and scalability, while traditional DBs ensure strong

consistency and transactional integrity.

	1.​MapReduce vs Traditional SQL Queries
	2.​ CAP Theorem with Real-World Scenarios
	3. Sharding and Replication in E-commerce Application
	4. Version Stamps in Conflict Resolution
	5. Materialized View and Its Role in Performance

