» CELEgy,,

(oYEARS

A

/1
()

Q'(‘:MRIT

USN * CMR INSTITUTE OF TECHNOLOGY, BENGALURU.
Internal Assessment Test 1 - Sept. 2025
Subject/Code
Date: | Duration: 90 mins | Max. Marks: 50| Semester: 07 | Brarch:
Sl. | Answer any FIVE FULL Questions Marks | CO RBT
1 | Describe the different types of interconnection networks (bus,
crossbar, mesh, torus). Compare their performance. 10 CO1 | L1

Answer:

Interconnection networks connect processors and memory modules in a
parallel computer

system. Their performance is critical for efficient communication.
Types:

1. Bus:

o Description: A single communication path (a set of wires) shared by
all

processors and memory modules. Only one device can transmit data at a
time,

requiring an arbitration mechanism.

o Performance: Low cost and simple to implement. However, it has high
contention (traffic conflict) and limited bandwidth. Performance
degrades

significantly as the number of processors increases.

2. Crossbar:

o Description: A non-blocking network with a grid of switches. It
provides a

dedicated path for every possible pair of processors and memory
modules.

o Performance: Offers the highest bandwidth and low latency, as
multiple

communications can happen simultaneously without interference. The
major

drawback is its high cost and complexity, as the number of switches
required

is O(N2) for N processors.

3. Mesh:

o Description: Processors are arranged in a k-dimensional grid
(commonly 2D).

Each processor connects to its north, south, east, and west neighbours.
Processors on the edges have fewer connections.

o Performance: More scalable than a bus or crossbar. Cost is O(N)for N
processors. Latency depends on the distance (number of hops) between
communicating nodes. A significant drawback is that the diameter
(longest

shortest path) is large for non-adjacent nodes.

4. Torus:
o Description: A variant of the mesh where the nodes on the edges are
connected to the nodes on the opposite edges, forming a ring in each




dimension. This eliminates the edge nodes of a simple mesh.

o Performance: Has a smaller diameter and better average latency
compared to

a mesh of the same size due to its wraparound connections. The cost and

complexity are slightly higher than a mesh but offer better performance
and

load balancing.

Comparison of Performance:

Network Scalability Latency Bandwidth Contention Cost &

Complexity
Very Poor Low (if idle) Very High
Good Very Low Very High  Very Low  Very High (N2N2)
Good Medium-High Medium Medium Medium (NN)
Good Medium Medium Low Medium-High (NN)

Very Low Very Low

a) Explain data parallelism? Give one example.
Answer:

Data parallelism is a parallel computing model where the same
operation is performed

concurrently (simultaneously) on different elements of a large dataset.
The key idea is to

distribute the data across multiple processing units, and each unit
executes the same function

on its portion of the data.

* Example: Adding two large arrays, A and B, to produce a result array
C. If you have

4 processor cores, you can split the arrays into 4 chunks. Each core
independently

computes C[i] = A[i] + B[i] for its assigned chunk of indices i.

b) Mention any two drawbacks of distributed-memory programming.

Answer:

1. Explicit Communication Overhead: The programmer is responsible
for explicitly

sending and receiving messages between processes. This adds
complexity to the code

and introduces communication latency, which can become a
performance bottleneck.

2. Data Partitioning and Load Balancing: It can be challenging to divide
the data and

5+5

COl

L2




workload evenly among all processors. Poor load balancing leads to
some processes

finishing early and sitting idle while others are still working, reducing
overall

efficiency.

A serial program runs for 480 seconds. Its parallel MPI version runs
for 100 seconds using 5 processes.
a) Calculate the speedup and efficiency.

Answer:

. — T.-ﬂ rial p— ﬂ —_—
» Speedup (S): S = 7l = o0 = 4.8

» Efficiency (E: E = & = %% = 0.96 or 96%

(Where N = 5 is the number of processes)

b) The parallel time can be broken down: T parallel=T comp +

T comm + T _idle. If the total computation time (sum across all
processes) is 450 seconds, and the total communication time is 50
seconds, calculate the average utilization (computation time/parallel
time) for a process.

* Total parallel time for the application, Tjura11s = 100 seconds.

= Total computation time across all processes = 450 seconds.

= Since there are 5 processes, the average computation time per process is %“ = 90 seconds.

= Average Utilization for a process is the fraction of time it spends computing.

Utilizntim] — .-\\'vrngr('nul]nu;.llin:.:. :I'i:m-p.-r Process _ % — 0.90 or 90%

5+5 [ CO2

L3

Write pseudocode for shared-memory vector addition using
OpenMP parallel for. 10

Answer:

The problem is to compute C[i] = A[i] + BJ[i] for all i in parallel
using OpenMP.
Pseudocode:

Program VectorAddition
Declare arrays A[0..N-1], B[0..N-1], C[0..N-1]
Initialize arrays A and B with values

#pragma omp parallel for
for1=0 to N-1 do

C[i] = A[i] + BJi]

end for

(Optional: Output or use the result array C)

CO2 | L1




End Program

Explanation:

* The #pragma omp parallel for directive tells the compiler to split
the

following for loop iterations among multiple threads automatically.
* Each thread gets a different chunk of the indices 1 and performs
the addition C[i] =

A[i] + B[i] on its chunk.

* OpenMP handles the creation, management, and synchronization
of threads, making

the code simple and concise.

a)
Discuss point-to-point communication in MPI with suitable
examples of send/receive operations.

Answer:

Point-to-point communication involves a direct, one-to-one data
transfer between two

specific MPI processes: a sender and a receiver. It is the
fundamental building block for

message passing.

» Key Functions:

o MPI_Send(void *buf, int count, MPI Datatype datatype, int
dest, int tag,

MPI_Comm comm): Sends count elements of datatype from buffer
buf to

process dest.

o MPI_Recv(void *buf, int count, MPI Datatype datatype, int
source, int tag,

MPI_Comm comm, MPI_Status *status): Receives a message into
buffer buf from process source.

» Example:

Process 0 sends an integer to Process 1.

c

// In Process 0

int data_to_send = 123;

MPI Send(&data to send, 1, MPI INT, 1, 0,
MPI_ COMM_WORLD);

// In Process 1
int received data;

MPI Recv(&received data, 1, MPI _INT, 0, 0,
MPI_ COMM_WORLD,

MPI_STATUS IGNORE);

// Now received data = 123

b)
Describe in detail collective communication operations such as
Scatter, Gather, and All reduce.

Answer:

5+5

CO3

L2




Collective communication involves a group of processes (all
processes in a communicator)

participating in a coordinated communication operation.

1. MPI Scatter:

o Description: One process (the root) divides its send buffer into
equal chunks

and sends a distinct chunk to every process in the communicator,
including

itself.

o Use Case: Distributing parts of an input array from a root
process to all other

processes.

2. MPI_Gather:

o Description: The inverse of Scatter. The root process collects
distinct chunks

of data from every process in the communicator and assembles
them into a

single receive buffer in rank order.

o Use Case: Collecting results from all worker processes onto a
single master

process.

3. MPI_Allreduce:

o Description: Combines data from all processes using a reduction
operation

(like sum, max, min) and distributes the result back to all
processes.

o Use Case: Calculating a global sum, a global maximum, or any
other

associative/commutative operation where every process needs the
final result.

For example, calculating the dot product in a parallel linear
algebra routine.

a) Discuss GPU architecture as an extension of SIMD
Parallelism.

Answer:

GPU architecture is a highly parallel architecture that can be
viewed as a powerful extension

of the traditional SIMD (Single Instruction, Multiple Data) model.
» SIMD: A single control unit (CU) fetches an instruction, and
multiple processing

elements (PEs) execute that same instruction simultaneously on
different data

elements.

* GPU Extension: A GPU consists of many Streaming
Multiprocessors (SMs). Each

SM contains many cores (e.g., CUDA Cores in NVIDIA GPUs).
These cores are

organized in groups (warps in NVIDIA, wavefronts in AMD).

o SIMT (Single Instruction, Multiple Threads): This is the GPU's
execution

5+5

COl1

L2




model. A single instruction is executed concurrently by a large

number of

threads (often thousands). These threads are grouped into warps.

All threads in

a warp execute the same instruction in lockstep on different data,

which is the
essence of SIMD.

0 Massive Parallelism: While SIMD typically handles a few to

dozens of data

elements, a GPU can launch thousands of threads, making it

massively

parallel. This makes GPUs exceptionally well-suited for

data-parallel tasks

like graphics rendering, matrix operations, and machine learning.

b) Compare data-parallel programming and task-parallel
programming with suitable use cases

Answer:

Feature

Core Idea Same operation applied
to different data items.

DT GETOT  Problem is decomposed
by data.

LI TTFATIT - Often requires
synchronization (e.g.,
barriers).

Suitability

Regular problems with
large, homogeneous
datasets.

Use Cases Vector addition, image
filtering, matrix
multiplication.

Task-Parallel Programming

Different operations (tasks) executed
concurrently.

Problem is decomposed by functions/tasks.

Requires coordination and communication
between tasks.

Irregular problems, pipelines, or
heterogeneous tasks.

Web server (handling different requests),
compiling multiple files in a large project, a
complex simulation with different physics
models.




