

Internal Assessment Test 1 – Sept. 2025

Sl. Answer any FIVE FULL Questions Marks CO RBT
1 Describe the different types of interconnection networks (bus,

crossbar, mesh, torus). Compare their performance.

Answer:

Interconnection networks connect processors and memory modules in a
parallel computer
system. Their performance is critical for efficient communication.
Types:
1. Bus:
o Description: A single communication path (a set of wires) shared by
all
processors and memory modules. Only one device can transmit data at a
time,
requiring an arbitration mechanism.
o Performance: Low cost and simple to implement. However, it has high
contention (traffic conflict) and limited bandwidth. Performance
degrades
significantly as the number of processors increases.

2. Crossbar:
o Description: A non-blocking network with a grid of switches. It
provides a
dedicated path for every possible pair of processors and memory
modules.
o Performance: Offers the highest bandwidth and low latency, as
multiple
communications can happen simultaneously without interference. The
major
drawback is its high cost and complexity, as the number of switches
required
is O(N2) for N processors.

3. Mesh:
o Description: Processors are arranged in a k-dimensional grid
(commonly 2D).
Each processor connects to its north, south, east, and west neighbours.
Processors on the edges have fewer connections.
o Performance: More scalable than a bus or crossbar. Cost is O(N)for N
processors. Latency depends on the distance (number of hops) between
communicating nodes. A significant drawback is that the diameter
(longest
shortest path) is large for non-adjacent nodes.

4. Torus:
o Description: A variant of the mesh where the nodes on the edges are
connected to the nodes on the opposite edges, forming a ring in each

10

CO1

L1

USN

Subject/Code
Date: Duration: 90 mins Max. Marks: 50 Semester: 07 Branch:

dimension. This eliminates the edge nodes of a simple mesh.
o Performance: Has a smaller diameter and better average latency
compared to
a mesh of the same size due to its wraparound connections. The cost and

complexity are slightly higher than a mesh but offer better performance
and
load balancing.

Comparison of Performance:

2 a) Explain data parallelism? Give one example.

Answer:

Data parallelism is a parallel computing model where the same
operation is performed
concurrently (simultaneously) on different elements of a large dataset.
The key idea is to
distribute the data across multiple processing units, and each unit
executes the same function
on its portion of the data.
• Example: Adding two large arrays, A and B, to produce a result array
C. If you have
4 processor cores, you can split the arrays into 4 chunks. Each core
independently
computes C[i] = A[i] + B[i] for its assigned chunk of indices i.

b) Mention any two drawbacks of distributed-memory programming.

Answer:

1. Explicit Communication Overhead: The programmer is responsible
for explicitly
sending and receiving messages between processes. This adds
complexity to the code
and introduces communication latency, which can become a
performance bottleneck.
2. Data Partitioning and Load Balancing: It can be challenging to divide
the data and

5+5

CO1

L2

workload evenly among all processors. Poor load balancing leads to
some processes
finishing early and sitting idle while others are still working, reducing
overall
efficiency.

3 A serial program runs for 480 seconds. Its parallel MPI version runs
for 100 seconds using 5 processes.
a) Calculate the speedup and efficiency.

Answer:

b) The parallel time can be broken down: T_parallel = T_comp +
T_comm + T_idle. If the total computation time (sum across all
processes) is 450 seconds, and the total communication time is 50
seconds, calculate the average utilization (computation time/parallel
time) for a process.

5+5

CO2

L3

4 Write pseudocode for shared-memory vector addition using

OpenMP parallel for.

Answer:

The problem is to compute C[i] = A[i] + B[i] for all i in parallel
using OpenMP.
Pseudocode:

Program VectorAddition
Declare arrays A[0..N-1], B[0..N-1], C[0..N-1]
Initialize arrays A and B with values

#pragma omp parallel for
for i = 0 to N-1 do
C[i] = A[i] + B[i]
end for

(Optional: Output or use the result array C)

10

CO2

L1

End Program
Explanation:
• The #pragma omp parallel for directive tells the compiler to split
the
following for loop iterations among multiple threads automatically.
• Each thread gets a different chunk of the indices i and performs
the addition C[i] =
A[i] + B[i] on its chunk.
• OpenMP handles the creation, management, and synchronization
of threads, making
the code simple and concise.

5 a)
Discuss point-to-point communication in MPI with suitable
examples of send/receive operations.

Answer:

Point-to-point communication involves a direct, one-to-one data
transfer between two
specific MPI processes: a sender and a receiver. It is the
fundamental building block for
message passing.
• Key Functions:
o MPI_Send(void *buf, int count, MPI_Datatype datatype, int
dest, int tag,
MPI_Comm comm): Sends count elements of datatype from buffer
buf to
process dest.
o MPI_Recv(void *buf, int count, MPI_Datatype datatype, int
source, int tag,
MPI_Comm comm, MPI_Status *status): Receives a message into
buffer buf from process source.

• Example:
Process 0 sends an integer to Process 1.
c
// In Process 0
int data_to_send = 123;
MPI_Send(&data_to_send, 1, MPI_INT, 1, 0,
MPI_COMM_WORLD);

// In Process 1
int received_data;

MPI_Recv(&received_data, 1, MPI_INT, 0, 0,
MPI_COMM_WORLD,
MPI_STATUS_IGNORE);
// Now received_data = 123

b)
Describe in detail collective communication operations such as
Scatter, Gather, and All_reduce.

Answer:

5+5

CO3

L2

Collective communication involves a group of processes (all
processes in a communicator)
participating in a coordinated communication operation.
1. MPI_Scatter:
o Description: One process (the root) divides its send buffer into
equal chunks
and sends a distinct chunk to every process in the communicator,
including
itself.
o Use Case: Distributing parts of an input array from a root
process to all other
processes.
2. MPI_Gather:
o Description: The inverse of Scatter. The root process collects
distinct chunks
of data from every process in the communicator and assembles
them into a
single receive buffer in rank order.
o Use Case: Collecting results from all worker processes onto a
single master
process.
3. MPI_Allreduce:
o Description: Combines data from all processes using a reduction
operation
(like sum, max, min) and distributes the result back to all
processes.
o Use Case: Calculating a global sum, a global maximum, or any
other
associative/commutative operation where every process needs the
final result.
For example, calculating the dot product in a parallel linear
algebra routine.

6 a) Discuss GPU architecture as an extension of SIMD
Parallelism.

Answer:

GPU architecture is a highly parallel architecture that can be
viewed as a powerful extension
of the traditional SIMD (Single Instruction, Multiple Data) model.
• SIMD: A single control unit (CU) fetches an instruction, and
multiple processing
elements (PEs) execute that same instruction simultaneously on
different data
elements.
• GPU Extension: A GPU consists of many Streaming
Multiprocessors (SMs). Each
SM contains many cores (e.g., CUDA Cores in NVIDIA GPUs).
These cores are
organized in groups (warps in NVIDIA, wavefronts in AMD).

o SIMT (Single Instruction, Multiple Threads): This is the GPU's
execution

5+5

CO1

L2

model. A single instruction is executed concurrently by a large
number of
threads (often thousands). These threads are grouped into warps.
All threads in
a warp execute the same instruction in lockstep on different data,
which is the
essence of SIMD.
o Massive Parallelism: While SIMD typically handles a few to
dozens of data
elements, a GPU can launch thousands of threads, making it
massively
parallel. This makes GPUs exceptionally well-suited for
data-parallel tasks
like graphics rendering, matrix operations, and machine learning.

b) Compare data-parallel programming and task-parallel
programming with suitable use cases

